CXML
LAPACK version 3.0
dlaed6(3)
PURPOSE
DLAED6 - compute the positive or negative root (closest to the origin) of z(1) z(2) z(3) f(x) = rho + --------- + ---------- + --------- d(1)-x d(2)-x d(3)-x It is assumed that if ORGATI = .trueSYNTAX
SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO ) LOGICAL ORGATI INTEGER INFO, KNITER DOUBLE PRECISION FINIT, RHO, TAU DOUBLE PRECISION D( 3 ), Z( 3 )DESCRIPTION
DLAED6 computes the positive or negative root (closest to the origin) of z(1) z(2) z(3) f(x) = rho + --------- + ---------- + --------- d(1)-x d(2)-x d(3)-x It is assumed that if ORGATI = .true. the root is between d(2) and d(3); otherwise it is between d(1) and d(2) This routine will be called by DLAED4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations.ARGUMENTS
KNITER (input) INTEGER Refer to DLAED4 for its significance. ORGATI (input) LOGICAL If ORGATI is true, the needed root is between d(2) and d(3); otherwise it is between d(1) and d(2). See DLAED4 for further details. RHO (input) DOUBLE PRECISION Refer to the equation f(x) above. D (input) DOUBLE PRECISION array, dimension (3) D satisfies d(1) < d(2) < d(3). Z (input) DOUBLE PRECISION array, dimension (3) Each of the elements in z must be positive. FINIT (input) DOUBLE PRECISION The value of f at 0. It is more accurate than the one evaluated inside this routine (if someone wants to do so). TAU (output) DOUBLE PRECISION The root of the equation f(x). INFO (output) INTEGER = 0: successful exit > 0: if INFO = 1, failure to convergeFURTHER DETAILS
Based on contributions by Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA