
i

Intel® Fortran Compiler for Linux* Systems
User's Guide
Volume II: Optimizing Applications
Legal Information
Copyright © 2003 Intel Corporation
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

ii

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING L IABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

This User's Guide Volume II as well as the software described in it is furnished
under license and may only be used or copied in accordance with the terms of
the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any
software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The software described in this User's Guide Volume II may contain software
defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel
XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon,
Pentium M, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2003.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

iii

Table Of Contents

Disclaimer and Legal Information .. ii

What's New in This Release..1

Improvements and New Optimization in This Release1

Introduction to Volume II ..2

The Subjects Covered..3

Notations and Conventions ..4

Programming for High Performance..5

Programming for High Performance: Overview...5

Programming Guidelines..5

Analyzing and Timing Your Application ...30

Compiler Optimizations..34

Compiler Optimizations Overview..34

Optimizing Compilation Process..34

Optimizing Different Application Types..57

Floating-point Arithmetic Optimizations ...61

Optimizing for Specific Processors ..69

Interprocedural Optimizations (IPO) ..75

Profile-guided Optimizations ..88

High-level Language Optimizations (HLO) ..116

Parallel Programming with Intel® Fortran ...120

Parallelism: an Overview..120

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

iv

Auto-vectorization (IA-32 Only)..124

Auto-parallelization...137

Parallelization with OpenMP*...144

Debugging Multithreaded Programs..190

Optimization Support Features..199

Optimization Support Features Overview..199

Compiler Directives ..199

Optimizations and Debugging..207

Optimizer Report Generation ...209

Index...213

1

What's New in This Release
This volume focuses on the coding techniques and compiler optimizations that
make your application more efficient.

Improvements and New Optimization in This
Release

This document provides information about Intel® Fortran Compiler for IA-32-
based applications and Itanium®-based applications. IA-32-based applications
run on any processor of the Intel® Pentium® processor family generations,
including the Intel® Xeon(TM) processor and Intel® Pentium® M processor.
Itanium-based applications run on the Intel® Itanium® processor family.

The Intel Fortran Compiler has many options that provide high application
performance. In this release, the Intel Fortran Compiler supports most Compaq*
Visual Fortran (CVF) options. Some of the CVF options are supported as
synonyms for the Intel Fortran Compiler back-end optimizations. For a complete
list of new options in this release, see New Compiler Options in the Intel Fortran
Compiler Options Quick Reference Guide.

Note
Please refer to the Release Notes for the most current information about
features implemented in this release.

New Processors Support

The new options -xN, -xB, and -xP support Intel® Pentium® 4 processors, Intel
Pentium M processors Intel® Pentium® M processors and Intel processors
code-named "Prescott," respectively. Correspondingly, the options -axN, -axB,
and -axP optimize for Intel Pentium® 4 processors, Intel® Xeon™ processors,
Intel® Pentium® M processors, and Intel processors code-named "Prescott"
(new processor).

Optimizing for Specific Processors at Run-time, IA-32 Systems

This release enhances processor-specific optimizations for IA-32 systems by
performing the following run-time checks to determine the processor on which
the program is running and:

• verify whether that processor supports the features of the new options -xN, -
xB, and -xP

• set the appropriate flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

2

See Processor-specific Run-time Checks, IA-32 Systems for more details.

Symbol Visibility Attribute Options

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options
cause all global symbols to get the visibility specified by the option.

IPO Functionality

Automatic generation and update of the intermediate language (.il) and
compiler files is part of the compilation process. You can create a library that
retain versioned .il files and use them in IPO compilations. The compiler can
extract the .il files from the library and use them to optimize the program.

New Directive for Auto-vectorization

Added extended optimization directive !DEC$ VECTOR NONTEMPORAL.

Miscellaneous

IA-32 option -fpstkchk checks whether a program makes a correct call to a
function that should return a floating-point value. Marks the incorrect call and
makes it easy to find the error.

The -align keyword option provides more data alignment control with
additional keywords.

Introduction to Volume II

This is the second volume in a two-volume Intel® Fortran Compiler User's Guide.
It explains how you can use the Intel Fortran Compiler to enhance your
application.

The variety of optimizations used by the Intel Fortran Compiler enables you to
enhance the performance of your application. Each optimization is performed by
a set of options discussed in the sections of this volume.

In addition to optimizations invoked by the compiler command line options, the
compiler includes features which enhance your application performance such as
directives, intrinsics, run-time library routines and various utilities. These features
are discussed in the Optimization Support Features section.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

3

Note
This document explains how information and instructions apply differently
to a targeted architecture, IA-32 or Itanium® architecture. If there is no
specific reference to either architecture, the description applies to both
architectures.

This documentation assumes that you are familiar with the Fortran Standard
programming language and with the Intel® processor architecture. You should
also be familiar with the host computer's operating system.

The Subjects Covered

Programming for high performance by using the specifics of Intel Fortran:

• Setting Data Type and Alignment
• Using Arrays Efficiently
• Improving I/O Performance
• Improving Run-time Efficiency
• Coding for Intel Architectures

Implementing Intel Fortran Compiler optimizations

• Optimizing Compilation Process
• Options to Optimize Different Application Types
• Floating Point Arithmetic Optimizations
• Optimizing for Specific Processors
• Interprocedural Optimizations
• Profile-guided Optimizations
• High-level Language Optimizations (HLO)

Parallel Programming with Intel Fortran

• Auto-vectorization (IA-32 Only)
• Auto-parallelization
• Parallelization with OpenMP*

Optimization Support Features

• Compiler Directives
• Optimizations and Debugging

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

4

Notations and Conventions

This documentation uses the following conventions:

Intel® Fortran
(later: Intel Fortran)

The name of the common compiler language supported by
the Intel Fortran Compiler for Windows* and Intel Fortran
Compiler for Linux* products.

Adobe Acrobat* An asterisk at the end of a word or name indicates it is a
third-party product trademark.

FORTRAN 77 and
later versions of
Fortran

The references to the versions of the Fortran language.
After FORTRAN 77, the references are Fortran 90 or
Fortran 95. The default is "Fortran," which corresponds to
all versions.

THIS TYPE STYLE Statements, keywords, and directives are shown in all
uppercase, in a normal font. For example, “add the USE
statement…”

This type style Bold normal font shows menu names, menu items, button
names, dialog window names, and other user-interface
items.

File > Open Menu names and menu items joined by a greater than (>)
sign indicate a sequence of actions. For example, "Click
File > Open" indicates that in the File menu, click Open to
perform this action.

ifort The use of the compiler command in the examples for both
IA-32 and Itanium processors is as follows: when there is
no usage difference between the two architectures, only
one command is given. Whenever there is a difference in
usage, the commands for each architecture are given.

This type
style

An element of syntax, a reserved word, a keyword, a file
name, a variable, or a code example. The text appears in
lowercase unless uppercase is required.

THIS TYPE
STYLE

Fortran source text or syntax element.

This type style Indicates what you type as command or input.
This type style Command line arguments and option arguments you enter.
This type
style

Indicates an argument on a command line or an option's
argument in the text.

[options] Indicates that the items enclosed in brackets are optional.
{value |
value}

A value separated by a vertical bar (|) indicates a version of
an option.

... Ellipses in the code examples indicate that part of the code
is not shown.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

5

Programming for High Performance
Programming for High Performance: Overview

This section consists of two sub-sections: Programming Guidelines and
Analyzing and Timing Your Application. The first one discusses the programming
guidelines geared to enhance application performance, including the specific
coding practices to utilize the Intel® architecture features. The second discusses
how to use the Intel performance analysis tools and how to time the program
execution to collect information about the problem areas.

The correlation between the programming practices and related compiler options
is explained and the related topics are linked.

Programming Guidelines

Setting Data Type and Alignment

Alignment of data concerns these kinds of variables:

• dynamically allocated
• members of a data structure
• global or local variables
• parameters passed on the stack.

For best performance, align data as follows:

• 8-bit data at any address
• 16-bit data to be ontained within an aligned four byte word
• 32-bit data so that its base address is a multiple of four
• 64-bit data so that its base address is a multiple of eight
• 80-bit data so that its base address is a multiple of sixteen
• 128-bit data so that its base address is a multiple of sixteen.

Causes of Unaligned Data and Ensuring Natural Alignment

For optimal performance, make sure your data is aligned naturally. A natural
boundary is a memory address that is a multiple of the data item's size. For
example, a REAL (KIND=8) data item aligned on natural boundaries has an
address that is a multiple of 8. An array is aligned on natural boundaries if all of
its elements are.

All data items whose starting address is on a natural boundary are naturally
aligned. Data not aligned on a natural boundary is called unaligned data.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

6

Although the Intel Fortran Compiler naturally aligns individual data items when it
can, certain Fortran statements (such as EQUIVALENCE) can cause data items to
become unaligned (see causes of unaligned data below).

You can use the command-line option -align to ensure naturally aligned data,
but you should check and consider reordering data declarations of data items
within common blocks, derived type and record structures as follows:

• carefully specify the order and sizes of data declarations to ensure
naturally aligned data

• start with the largest size numeric items first, followed by smaller size
numeric items, and then non-numeric (character) data.

Common blocks (COMMON statement), derived-type data, and FORTRAN 77
record structures (RECORD statement) usually contain multiple items within the
context of the larger structure.

The following declaration statements can force data to be unaligned:

• Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their storage order.
Unless you are sure that the data items in the common block will be naturally
aligned, specify either the -align commons or -align dcommons option,
depending on the largest data size used. See Alignment Options.

• Derived-type (user-defined) data

Derived-type data members are declared after a TYPE statement.

If your data includes derived-type data structures, you should use the -align
records option, unless you are sure that the data items in derived-type data
structures will be naturally aligned.

If you omit the SEQUENCE statement, the -align records option (default)
ensures all data items are naturally aligned.

If you specify the SEQUENCE statement, the -align records option is
prevented from adding necessary padding to avoid unaligned data (data items
are packed) unless you specify the
-align sequence option. When you use SEQUENCE, you should specify data
declaration order such that all data items are naturally aligned.

• Record structures (RECORD and STRUCTURE statements)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

7

Intel Fortran record structures usually contain multiple data items. The order of
variables in the STRUCTURE statement determines their storage order. The
RECORD statement names the record structure.

If your data includes Intel Fortran record structures, you should use the -align
records option, unless you are sure that the data items in derived-type data and
Intel Fortran record structures will be naturally aligned.

• EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to span
natural boundaries. For more information, see the Intel® Fortran Language
Reference Manual.

To avoid unaligned data in a common block, derived-type data, or record
structure (extension), use one or both of the following:

• For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care. For
example, you should order variables in a COMMON statement such that
numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Ordering Data
Declarations to Avoid Unaligned Data below.

• For existing programs where source code changes are not easily done or
for array elements containing derived-type or record structures, you can
use command line options to request that the compiler align numeric data
by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments
and arrays that contain a derived-type structure or Intel Fortran record structure
as detailed below.

• When actual arguments from outside the program unit are not naturally
aligned, unaligned data access occurs. Intel Fortran assumes all passed
arguments are naturally aligned and has no information at compile time
about data that will be introduced by actual arguments during program
execution.

• For arrays where each array element contains a derived-type structure or
Intel Fortran record structure, the size of the array elements may cause
some elements (but not the first) to start on an unaligned boundary.

• Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an array
element might require use of the Fortran
-align records option to supply needed padding to avoid some array
elements being unaligned.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

8

• If you specify -align norecords or specify -vms without -align
records, no padding bytes are added between array elements. If array
elements each contain a derived-type structure with the SEQUENCE
statement, array elements are packed without padding bytes regardless of
the Fortran command options specified. In this case, some elements will
be unaligned.

• When -align records option is in effect, the number of padding bytes
added by the compiler for each array element is dependent on the size of
the largest data item within the structure. The compiler determines the
size of the array elements as an exact multiple of the largest data item in
the derived-type structure without the SEQUENCE statement or a record
structure. The compiler then adds the appropriate number of padding
bytes. For instance, if a structure contains an 8-byte floating-point number
followed by a 3-byte character variable, each element contains five bytes
of padding (16 is an exact multiple of 8). However, if the structure contains
one 4-byte floating-point number, one 4-byte integer, followed by a 3-byte
character variable, each element would contain one byte of padding (12 is
an exact multiple of 4).

Checking for Inefficient Unaligned Data

During compilation, the Intel Fortran compiler naturally aligns as much data as
possible. Exceptions that can result in unaligned data are described above.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common block, derived-type data,
or record structures to ensure all data items are naturally aligned (see the
data declaration rules in the subsection below). Using modules to contain
data declarations can ensure consistent alignment and use of such data.

• Avoid the EQUIVALENCE statement or use it in a manner that cannot
cause unaligned data or data spanning natural boundaries.

• Ensure that passed arguments from outside the program unit are naturally
aligned.

• Check that the size of array elements containing at least one derived-type
data or record structure (extension) cause array elements to start on
aligned boundaries (see the previous subsection).

• There are two ways unaligned data might be reported:
• During compilation, warning messages are issued for any data items that

are known to be unaligned (unless you specify the -warn noalignments
(-W0) option that suppresses all warnings).

• During program execution, warning messages are issued for any data that
is detected as unaligned. The message includes the address of the
unaligned access. You can use the EDB debugger to locate unaligned
data.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

9

The following run-time message shows that:

• The statement accessing the unaligned data (program counter) is
located at 3ff80805d60

• The unaligned data is located at address 140000154

Unaligned access pid=24821 <a.out> va=140000154,
pc=3ff80805d60,
ra=1200017bc

Ordering Data Declarations to Avoid Unaligned Data

For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type data, record structure, or data
items made equivalent by an EQUIVALENCE statement will be naturally aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.
• If your data includes a mixture of character and numeric data, place the

numeric data first.
• Add small data items of the correct size (or padding) before otherwise

unaligned data to ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as
specifying a KIND parameter. For example, specify INTEGER(KIND=4) (or
INTEGER(4)) rather than INTEGER. If you do use a default size (such as
INTEGER, LOGICAL, COMPLEX, and REAL), be aware that the compiler options -
i{2|4|8} and -r{8|16} can change the size of an individual field's data
declaration size and thus can alter the data alignment of a carefully planned
order of data declarations.

Using the suggested data declaration guidelines minimizes the need to use the -
align keyword options to add padding bytes to ensure naturally aligned data.
In cases where the -align keyword options are still needed, using the
suggested data declaration guidelines can minimize the number of padding bytes
added by the compiler.

Arranging Data Items in Common Blocks

The order of data items in a common statement determine the order in which the
data items are stored. Consider the following declaration of a common block
named x:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

10

logical (kind=2) flag
integer iarry_i(3)
character(len=5) name_ch
common /x/ flag, iarry_i(3),
name_ch

As shown in Figure 1-1, if you omit the appropriate Fortran command options, the
common block will contain unaligned data items beginning at the first array
element of iarry_i.

Figure 1-1 Common Block with Unaligned Data

As shown in Figure 1-2, if you compile the program units that use the common
block with the
-align commons option, data items will be naturally aligned.

Figure 1-2 Common Block with Naturally Aligned Data

Because the common block x contains data items whose size is 32 bits or
smaller, specify
-align commons option. If the common block contains data items whose size
might be larger than 32 bits (such as REAL (KIND=8) data), use -align
commons option.

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size and
place the character variable last. This provides more portability, ensures natural
alignment without padding, and does not require the Fortran command options -
align commons or -align commons option:

logical (kind=2) flag
integer iarry_i(3)
character(len=5) name_ch
common /x/ iarry_i(3), flag,
name_ch

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

11

As shown in Figure 1-3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

Figure 1-3 Common Block with Naturally Aligned Reordered Data

When modifying or creating all source files that use common block data, consider
placing the common block data declarations in a module so the declarations are
consistent. If the common block is not needed for compatibility (such as file
storage or FORTRAN 77 use), you can place the data declarations in a module
without using a common block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type data may contain multiple data items
(members).

Data item components within derived-type data will be naturally aligned on up to
64-bit boundaries, with certain exceptions related to the use of the SEQUENCE
statement and Fortran options. See Options Controlling Alignment for information
about these exceptions.

Intel Fortran stores a derived data type as a linear sequence of values, as
follows:

• If you specify the SEQUENCE statement, the first data item is in the first
storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The Fortran
options have no effect on unaligned data, so data declarations must be
carefully specified to naturally align data. The -align sequence option
specifically aligns data items in a SEQUENCE derived-type on natural
boundaries.

• If you omit the SEQUENCE statement, the Intel Fortran adds the padding
bytes needed to naturally align data item components, unless you specify
the -align norecords option.

Consider the following declaration of array CATALOG_SPRING of derived-type
PART_DT:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

12

module data_defs
type part_dt
integer identifier
real weight
character(len=15) description
end type part_dt
type(part_dt)
catalog_spring(30)
. . .
end module data_defs

As shown in Figure 1-4, the largest numeric data items are defined first and the
character data type is defined last. There are no padding characters between
data items and all items are naturally aligned. The trailing padding byte is needed
because CATALOG_SPRING is an array; it is inserted by the compiler when the -
align records option is in effect.

Figure 1-4 Derived-Type Naturally Aligned Data (in CATALOG_SPRING : (,))

Arranging Data Items in Intel Fortran Record Structures

Intel Fortran supports record structures provided by Intel Fortran. Intel Fortran
record structures use the RECORD statement and optionally the STRUCTURE
statement, which are extensions to the FORTRAN 77 and Fortran standards. The
order of data items in a STRUCTURE statement determine the order in which the
data items are stored.

Intel Fortran stores a record in memory as a linear sequence of values, with the
record's first element in the first storage location and its last element in the last
storage location. Unless you specify -align norecords, padding bytes are
added if needed to ensure data fields are naturally aligned.

The following example contains a structure declaration, a RECORD statement,
and diagrams of the resulting records as they are stored in memory:

structure /stra/
character*1 chr
integer*4 int
end structure
. . .
record /stra/ rec

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

13

Figure 1-5 shows the memory diagram of record REC for naturally aligned
records.

Figure 1-5 Memory Diagram of REC for Naturally Aligned Records

Using Arrays Efficiently

This topic discusses how to efficiently access arrays and how to efficiently pass
array arguments.

Accessing Arrays Efficiently

Many of the array access efficiency techniques described in this section are
applied automatically by the Intel Fortran loop transformations optimizations.
Several aspects of array use can improve run-time performance:

• The fastest array access occurs when contiguous access to the whole
array or most of an array occurs. Perform one or a few array operations
that access all of the array or major parts of an array instead of numerous
operations on scattered array elements. Rather than use explicit loops for
array access, use elemental array operations, such as the following line
that increments all elements of array variable a:
a = a + 1
When reading or writing an array, use the array name and not a DO loop or
an implied DO-loop that specifies each element number. Fortran 95/90
array syntax allows you to reference a whole array by using its name in an
expression. For example:

real :: a(100,100)
a = 0.0
a = a + 1 ! Increment all
elements

! of a by 1
. . .

write (8) a ! Fast whole array
use

Similarly, you can use derived-type array structure components, such as:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

14

type x
INTEGER A(5)integer a(5)
end type x
. . .
type (x) z
write (8)z%a ! Fast array
structure ! component use

• Make sure multidimensional arrays are referenced using proper array
syntax and are traversed in the natural ascending storage order, which
is column-major order for Fortran. With column-major order, the leftmost
subscript varies most rapidly with a stride of one. Whole array access
uses column-major order.
Avoid row-major order, as is done by C, where the rightmost subscript
varies most rapidly.
For example, consider the nested do loops that access a two-dimension
array with the j loop as the innermost loop:

integer x(3,5), y(3,5), i, j
y = 0
do i=1,3 ! I outer loop varies slowest
do j=1,5 ! J inner loop varies fastest
x (i,j) = y(i,j) + 1 ! Inefficient row-major
storage order
end do ! (rightmost subscript varies
fastest)
end do
. . .
end program

Since j varies the fastest and is the second array subscript in the
expression x (i,j), the array is accessed in row-major order.
To make the array accessed in natural column-major order, examine the
array algorithm and data being modified. Using arrays x and y, the array
can be accessed in natural column-major order by changing the nesting
order of the do loops so the innermost loop variable corresponds to the
leftmost array dimension:

integer x(3,5), y(3,5), i, j
y = 0
do j=1,5 ! J outer loop varies slowest
do i=1,3 ! I inner loop varies fastest
x (i,j) = y(i,j) + 1 ! Efficient column-major
storage order
end do ! (leftmost subscript varies
fastest)
end do
. . .
end program

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

15

The Intel Fortran whole array access (x = y + 1) uses efficient column
major order. However, if the application requires that J vary the fastest or if
you cannot modify the loop order without changing the results, consider
modifying the application program to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

• Dimensions in the declaration of the arrays x(5,3) and y(5,3)
• The assignment of x(j,i) and y(j,i) within the do loops
• All other references to arrays x and y

In this case, the original DO loop nesting is used where J is the innermost
loop:

integer x(3,5), y(3,5), i, j
y = 0
do i=1,3 ! I outer loop varies slowest
do j=1,5 ! J inner loop varies fastest
x (j,i) = y(j,i) + 1 ! Efficient column-major storage
order
end do ! (leftmost subscript varies
fastest)
end do
. . .
end program

Code written to access multidimensional arrays in row-major order (like C)
or random order can often make use of the CPU memory cache less
efficient. For more information on using natural storage order during record,
see Improving I/O Performance.

• Use the available Fortran 95/90 array intrinsic procedures rather than
create your own.

Whenever possible, use Fortran 95/90 array intrinsic procedures instead of
creating your own routines to accomplish the same task. Fortran 95/90
array intrinsic procedures are designed for efficient use with the various
Intel Fortran run-time components.

Using the standard-conforming array intrinsics can also make your program
more portable.

• With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of two
(such as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are also a
power of 2 may make less efficient use of cache when array access is
noncontiguous. If the cache size is an exact multiple of the leftmost

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

16

dimension, your program will probably make inefficient use of the cache.
This does not apply to contiguous sequential access or whole array access.

One work-around is to increase the dimension to allow some unused
elements, making the leftmost dimension larger than actually needed. For
example, increasing the leftmost dimension of A from 512 to 520 would
make better use of cache:

real a(512, 100)
do i= 2,511
do j = 2,99
a(i,j)=(a(i+1,j-1) + a(i-1, j+1)) * 0.5
end do
end do

In this code, array a has a leftmost dimension of 512, a power of two. The
innermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of a to 520 (real a
(520,100)) allows the loop to provide better performance, but at the
expense of some unused elements.

Because loop index variables I and J are used in the calculation, changing
the nesting order of the do loops changes the results.

For more information on arrays and their data declaration statements, see the
Intel® Fortran Language Reference Manual.

Passing Array Arguments Efficiently

In Fortran, there are two general types of array arguments:

• Explicit-shape arrays used with FORTRAN 77.

These arrays have a fixed rank and extent that is known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.

• Deferred-shape arrays introduced with Fortran 95/90.

Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about
passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

17

• When using explicit-shape (or assumed-size) arrays to receive an array,
the starting address of the array is passed.

• When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array can
slow run-time performance. This is because the compiler needs to create an
array temporary for the entire array. The array temporary is created because the
passed array may not be contiguous and the receiving (explicit-shape) array
requires a contiguous array. When an array temporary is created, the size of the
passed array determines whether the impact on slowing run-time performance is
slight or severe.

The following table summarizes what happens with the various combinations of
array types. The amount of run-time performance inefficiency depends on the
size of the array.

Output Argument Array Types

Input
Arguments
Array Types

Explicit-Shape Arrays Deferred-Shape and
Assumed-Shape
Arrays

Explicit-shape
arrays

Very efficient. Does not use an
array temporary. Does not pass an
array descriptor. Interface block
optional.

Efficient. Only allowed
for assumed-shape
arrays (not deferred-
shape arrays). Does not
use an array temporary.
Passes an array
descriptor. Requires an
interface block.

Deferred-
shape and
assumed-
shape arrays

When passing an allocatable array,
very efficient. Does not use an
array temporary. Does not pass an
array descriptor. Interface block
optional.
When not passing an allocatable
array, not efficient. Instead use
allocatable arrays whenever
possible.
Uses an array temporary. Does not
pass an array descriptor. Interface
block optional.

Efficient. Requires an
assumed-shape or array
pointer as dummy
argument. Does not use
an array temporary.
Passes an array
descriptor. Requires an
interface block.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

18

Improving I/O Performance

Improving overall I/O performance can minimize both device I/O and actual CPU
time. The techniques listed in this topic can significantly improve performance in
many applications.

An I/O flow problems limit the maximum speed of execution by being the slowest
process in an executing program. In some programs, I/O is the bottleneck that
prevents an improvement in run-time performance. The key to relieving I/O
problems is to reduce the actual amount of CPU and I/O device time involved in
I/O.

The problems can be caused by one or more of the following:

• A dramatic reduction in CPU time without a corresponding improvement in
I/O time

• Such coding practices as:
• Unnecessary formatting of data and other CPU-intensive

processing
• Unnecessary transfers of intermediate results
• Inefficient transfers of small amounts of data
• Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual
CPU time.

Intel offers software solutions to system-wide problems like minimizing device I/O
delays.

Use Unformatted Files Instead of Formatted Files

Use unformatted files whenever possible. Unformatted I/O of numeric data is
more efficient and more precise than formatted I/O. Native unformatted data
does not need to be modified when transferred and will take up less space on an
external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient
than S2:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

19

S1 WRITE (7) A

S2 WRITE (7,100) A
100 FORMAT (25(' ',25F5.21))

Although formatted data files are more easily ported to other systems, Intel
Fortran can convert unformatted data in several formats; see Little-endian-to-Big-
endian Conversion.

Write Whole Arrays or Strings

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DO loops. When accessing whole arrays, use the array
name (Fortran array syntax) instead of using implied-DO loops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1. (See
Accessing Arrays Efficiently.) If a program must read or write data in any other
order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

If you must use an unnatural storage order, in certain cases it might be more
efficient to transfer the data to memory and reorder the data before performing
the I/O operation.

Use Memory for Intermediate Results

Performance can improve by storing intermediate results in memory rather than
storing them in a file on a peripheral device. One situation that may not benefit
from using intermediate storage is when there is a disproportionately large
amount of data in relation to physical memory on your system. Excessive page
faults can dramatically impede virtual memory performance.

If you are primarily concerned with the CPU performance of the system, consider
using a memory file system (mfs) virtual disk to hold any files your code reads or
writes.

Enable Implied-DO Loop Collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each
element in an I/O list generates a separate call to the Intel Fortran run-time

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

20

library (RTL). The processing overhead of these calls can be most significant in
implied-DO loops.

Intel Fortran reduces the number of calls in implied-DO loops by replacing up to
seven nested implied-DO loops with a single call to an optimized run-time library
I/O routine. The routine can transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain
conditions are met:

• The control variable must be an integer. The control variable cannot be a
dummy argument or contained in an EQUIVALENCE or VOLATILE
statement. Intel Fortran must be able to determine that the control variable
does not change unexpectedly at run time.

• The format must not contain a variable format expression.

For information on VOLATILE attribute and statement, see the Intel® Fortran
Language Reference.

For loop optimizations, see Loop Transformations, Loop Unrolling, and
Optimization Levels.

Use of Variable Format Expressions

Variable format expressions (an Intel Fortran extension) are almost as flexible as
run-time formatting, but they are more efficient because the compiler can
eliminate run-time parsing of the I/O format. Only a small amount of processing
and the actual data transfer are required during run time.

On the other hand, run-time formatting can impair performance significantly. For
example, in the following statements, S1 is more efficient than S2 because the
formatting is done once at compile time, not at run time:

S1 WRITE (6,400) (A(I), I=1,N)
400 FORMAT (1X, <N> F5.2)

.

.

.
S2 WRITE (CHFMT,500)
'(1X,',N,'F5.2)'
500 FORMAT (A,I3,A)
WRITE (6,FMT=CHFMT) (A(I), I=1,N)

Efficient Use of Record Buffers and Disk I/O

Records being read or written are transferred between the user's program buffers
and one or more disk block I/O buffers, which are established when the file is

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

21

opened by the Intel Fortran RTL. Unless very large records are being read or
written, multiple logical records can reside in the disk block I/O buffer when it is
written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block physical I/O buffer by using the open
statement BLOCKSIZE specifier; the default size can be obtained from
fstat(2). If you omit the BLOCKSIZE specifier in the open statement, it is set
for optimal I/O use with the type of device the file resides on (with the exception
of network access).

The open statement BUFFERCOUNT specifier specifies the number of I/O
buffers. The default for BUFFERCOUNT is 1. Any experiments to improve I/O
performance should increase the BUFFERCOUNT value and not the BLOCKSIZE
value, to increase the amount of data read by each disk I/O.

If the open statement has BLOCKSIZE and BUFFERCOUNT specifiers, then the
internal buffer size in bytes is the product of these specifiers. If the open
statement does not have these specifiers, then the default internal buffer size is
8192 bytes. This internal buffer will grow to hold the largest single record, but will
never shrink.

The default for the Fortran run-time system is to use unbuffered disk writes. That
is, by default, records are written to disk immediately as each record is written
instead of accumulating in the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal buffer
before the buffer is written to disk), use one of the following:

• The OPEN statement BUFFERED specifier
• The -assume buffered_io command-line option
• The FORT_BUFFERED run-time environment variable

The open statement BUFFERED specifier takes precedence over the -assume
buffered_io option. If neither one is set (which is the default), the
FORT_BUFFERED environment variable is tested at run time.

The open statement BUFFERED specifier applies to a specific logical unit. In
contrast, the
-assume nobuffered_io option and the FORT_BUFFERED environment
variable apply to all Fortran units.

Using buffered writes usually makes disk I/O more efficient by writing larger
blocks of data to the disk less often. However, a system failure when using
buffered writes can cause records to be lost, since they might not yet have been
written to disk. (Such records would have been written to disk with the default
unbuffered writes.)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

22

When performing I/O across a network, be aware that the size of the block of
network data sent across the network can impact application efficiency. When
reading network data, follow the same advice for efficient disk reads, by
increasing the BUFFERCOUNT. When writing data through the network, several
items should be considered:

• Unless the application requires that records be written using unbuffered
writes, enable buffered writes by a method described above.

• Especially with large files, increasing the BLOCKSIZE value increases the
size of the block sent on the network and how often network data blocks
get sent.

• Time the application when using different BLOCKSIZE values under
similar conditions to find the optimal network block size.

When writing records, be aware that I/O records are written to unified buffer
cache (UBC) system buffers. To request that I/O records be written from program
buffers to the UBC system buffers, use the flush library routine (see FLUSH in
Intel® Fortran Library Reference). Be aware that calling flush also discards read-
ahead data in user buffer.

Specify RECL

The sum of the record length (RECL specifier in an open statement) and its
overhead is a multiple or divisor of the blocksize, which is device-specific. For
example, if the BLOCKSIZE is 8192 then RECL might be 24576 (a multiple of 3)
or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over
capacity). Such values allow efficient moves, with each operation moving as
much data as possible; the least amount of space in the block is wasted. Avoid
using values larger than the block capacity, because they create very inefficient
moves for the excess data only slightly filling a block (allocating extra memory for
the buffer and writing partial blocks are inefficient).

The RECL value unit for formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assume byterecl
option to request 1-byte units (see
-assume byterecl).

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most
efficient type, as follows:

• For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

23

• For sequential unformatted files when records are not fixed in size, the
variable-length record type gives the best performance, particularly for
BACKSPACE operations.

• For sequential formatted files when records are not fixed in size, the
Stream_LF record type gives the best performance.

Reading from a Redirected Standard Input File

Due to certain precautions that the Fortran run-time system takes to ensure the
integrity of standard input, reads can be very slow when standard input is
redirected from a file. For example, when you use a command such as
myprogram.exe < myinput.data>, the data is read using the READ(*) or
READ(5) statement, and performance is degraded. To avoid this problem, do
one of the following:

• Explicitly open the file using the open statement. For example:

open(5, STATUS='OLD',
FILE='myinput.dat')

Use an environment variable to specify the input file.

To take advantage of these methods, be sure your program does not rely on
sharing the standard input file.

For More Information on Intel Fortran data files and I/O, see "Files, Devices, and
I/O" in Volume I; on open statement specifiers and defaults, see "Open
Statement" in the Intel® Fortran Language Reference Manual.

Improving Run-time Efficiency

Source coding guidelines can be implemented to improve run-time performance.
The amount of improvement in run-time performance is related to the number of
times a statement is executed. For example, improving an arithmetic expression
executed within a loop many times has the potential to improve performance,
more than improving a similar expression executed once outside a loop.

Avoid Small Integer and Small Logical Data Items

Avoid using integer or logical data less than 32 bits. Accessing a 16-bit (or 8-bit)
data type can make data access less efficient, especially on Itanium-based
systems.

To minimize data storage and memory cache misses with arrays, use 32-bit data
rather than 64-bit data, unless you require the greater numeric range of 8-byte

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

24

integers or the greater range and precision of double precision floating-point
numbers.

Avoid Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data between
fixed and floating-point formats. Expressing all numbers in an integer arithmetic
expression as integer values also achieves this. This improves run-time
performance.

For example, assuming that I and J are both INTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Inefficient Code:

INTEGER I, J

I = J / 2.

Efficient Code:

INTEGER I, J

I = J / 2

You can use different sizes of the same general data type in an expression with
minimal or no effect on run-time performance. For example, using REAL, DOUBLE
PRECISION, and COMPLEX floating-point numbers in the same floating-point
arithmetic expression has minimal or no effect on run-time performance.

Use Efficient Data Types

In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

• Integer (also see above example)
• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or

REAL*4
• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL

(KIND=8), or REAL*8
• Extended-precision real, expressed explicitly as REAL (KIND=16) or

REAL*16

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

25

However, keep in mind that in an arithmetic expression, you should avoid mixing
integer and floating-point (REAL) data (see example in the previous subsection).

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that
optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J**2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for
critical code areas. The following hierarchy lists the Intel Fortran arithmetic
operators, from fastest to slowest:

• Addition (+), subtraction (-), and floating-point multiplication (*)
• Integer multiplication (*)
• Division (/)
• Exponentiation (**)

Avoid Using EQUIVALENCE Statements

Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.
• Prevent certain optimizations, including:

• Global data analysis under certain conditions (see -O2 in Setting
Optimization with -On options).

• Implied-DO loop collapsing when the control variable is contained in
an EQUIVALENCE statement

Use Statement Functions and Internal Subprograms

Whenever the Intel Fortran compiler has access to the use and definition of a
subprogram during compilation, it may choose to inline the subprogram. Using
statement functions and internal subprograms maximizes the number of
subprogram references that will be inlined, especially when multiple source files
are compiled together at optimization level -O3.

For more information, see Efficient Compilation.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

26

Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DO loop whenever
possible. Moving unnecessary operations outside the loop will improve
performance (for example, when the intermediate nonvarying values within the
loop are not needed).

For More Information on loop optimizations, see Pipelining for Itanium®-based
Applications and Loop Unrolling; on coding Intel Fortran statements, see the
Intel® Fortran Language Reference Manual.

Using Intrinsics for Itanium®-based Systems

Intel® Fortran supports all standard Fortran intrinsic procedures and in addition,
provides Intel-specific intrinsic procedures to extend the functionality of the
language. Intel Fortran intrinsic procedures are provided in the library
libintrins.a. See the Intel® Fortran Language Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in
developing efficient applications.

Cache Size Intrinsic (Itanium® Compiler)

Intrinsic cachesize(n) is used only with Intel® Itanium® Compiler.
cachesize(n) returns the size in kilobytes of the cache at level n; 1 represents
the first level cache. Zero is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmer
would like to tailor their algorithms for target processor's cache hierarchy. For
example, an application may query the cache size and use it to select block sizes
in algorithms that operate on matrices.

subroutine foo (level)
integer level
if (cachesize(level) >
threshold)
call big_bar()
else
call small_bar()
end if
end subroutine

Coding Guidelines for Intel® Architectures

This section provides general guidelines for coding practices and techniques that
insure most benefits of using:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

27

• IA-32 architecture supporting MMX(TM) technology and Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2)

• Itanium® architecture

This section describes practices, tools, coding rules and recommendations
associated with the architecture features that can improve the performance on
IA-32 and Itanium processors families. For all details about optimization for IA-32
processors, see Intel® Architecture Optimization Reference Manual. For all
details about optimization for Itanium processor family, see the Intel Itanium 2
Processor Reference Manual for Software Development and Optimization.

Note

If a guideline refers to a particular architecture only, this architecture is
explicitly named. The default is for both IA-32 and Itanium architectures.

Performance of compiler-generated code may vary from one compiler to another.
Intel® Fortran Compiler generates code that is highly optimized for Intel
architectures. You can significantly improve performance by using various
compiler optimization options. In addition, you can help the compiler to optimize
your Fortran program by following the guidelines described in this section.

When coding in Fortran, the most important factors to consider in achieving
optimum processor performance are:

• avoiding memory access stalls
• ensuring good floating-point performance
• ensuring good SIMD integer performance
• using vectorization.

The following sections summarize and describe coding practices, rules and
recommendations associated with the features that will contribute to optimizing
the performance on Intel architecture-based processors.

Memory Access

The Intel compiler lays out Fortran arrays in column-major order. For example, in
a two-dimensional array, elements A(22, 34) and A(23, 34) are contiguous
in memory. For best performance, code arrays so that inner loops access them in
a contiguous manner. Consider the following examples.

The code in example 1 will likely have higher performance than the code in
example 2.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

28

Example 1

DO J = 1, N
DO I = 1, N
B(I,J) = A(I, J) + 1
END DO
END DO

The code above illustrates access to arrays A and B in the inner loop I in a
contiguous manner which results in good performance.

Example 2

DO I = 1, N
DO J = 1, N
B(I,J) = A(I, J) + 1
END DO
END DO

The code above illustrates access to arrays A and B in inner loop J in a non-
contiguous manner which results in poor performance.

The compiler itself can transform the code so that inner loops access memory in
a contiguous manner. To do that, you need to use advanced optimization
options, such as -O3 for both IA-32 and Itanium acrchitectures, and -O3 and
-axW|N|B|P for IA-32 only.

Memory Layout

Alignment is a very important factor in ensuring good performance. Aligned
memory accesses are faster than unaligned accesses. If you use the
interprocedural optimization on multiple files (the -ipo option), the compiler
analizes the code and decides whether it is beneficial to pad arrays so that they
start from an aligned boundary. Multiple arrays specified in a single common
block can impose extra constraints on the compiler. For example, consider the
following COMMON statement:

COMMON /AREA1/ A(200), X, B(200)

If the compiler added padding to align A(1) at a 16-byte aligned address, the
element B(1) would not be at a 16-byte aligned address. So it is better to split
AREA1 as follows.

COMMON /AREA1/
A(200)
COMMON /AREA2/ X
COMMON /AREA3/
B(200)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

29

The above code provides the compiler maximum flexibility in determining the
padding required for both A and B.

Optimizing for Floating-point Applications

To improve floating-point performance, generally follow these rules:

• Avoid exceeding representable ranges during computation since handling
these cases can have a performance impact. Use REAL variables in
single-precision format unless the extra precision obtained through
DOUBLE or REAL*10 variables is required. Using variables with a larger
precision formation will also increase memory size and bandwidth
requirements.

• For IA-32 only: Avoid repeatedly changing rounding modes between
more than two values, which can lead to poor performance when the
computation is done using non-SSE instructions. Hence avoid using
FLOOR and TRUNC instructions together when generating non-SSE code.
The same applies for using CEIL and TRUNC.

Another way to avoid the problem is to use the -x{K|W|N|B|P} options to
do the computation using SSE instructions.

• Reduce the impact of denormal exceptions for both architectures as
described below.

Denormal Exceptions

Floating point computations with underflow can result in denormal values that
have an adverse impact on performance.

For IA-32: take advantage of the SIMD capabilities of Streaming SIMD
Extensions (SSE), and Streaming SIMD Extensions 2 (SSE2) instructions. The -
x{K|W|N|B|P} options enable the flush-to-zero (FTZ) mode in SSE and SSE2
instructions, whereby underflow results are automatically converted to zero,
which improves application performance. In addition, the -xP option also enables
the denormals-as-zero (DAZ) mode, whereby denormals are converted to zero
on input, further improving performance. An application developer willing to trade
pure IEEE-754 compliance for speed would benefit from these options. For more
information on FTZ and DAZ, see Setting FTZ and DAZ Flags and "Floating-point
Exceptions" in the Intel® Architecture Optimization Reference Manual.

For Itanium architecture: enable flush-to-zero (FTZ) mode with the -ftz option
set by -O3 option.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

30

Auto-vectorization

Many applications significantly increase their performance if they can implement
vectorization, which uses streaming SIMD SSE2 instructions for the main
computational loops. The Intel Compiler turns vectorization on (auto-
vectorization) or you can implement it with compiler directives.

See Auto-vectorization (IA-32 Only) section for complete details.

Creating Multithreaded Applications

The Intel Fortran Compiler and the Intel® Threading Toolset have the capabilities
that make developing multithreaded application easy. See Parallel Programming
with Intel Fortran. Multithreaded applications can show significant benefit on
multiprocessor Intel symmetric multiprocessing (SMP) systems or on Intel
processors with Hyper-Threading technology.

Analyzing and Timing Your Application

Using Intel Performance Analysis Tools

Intel offers an array of application performance tools that are optimized to take
the best advantage of the Intel architecture-based processors. You can employ
these tools for developing the most efficient programs without having to write
assembly code.

The performance tools to help you analyze your application and find and resolve
the problem areas are as follows:

• Intel® Enhanced Debugger for IA-32 systems and Intel® Debugger (IDB)
for Itanium®-based systems.

The Enhanced Debugger (EDB) enables you to debug your programs and
view the XMM registers in a variety of formats corresponding to the data
types supported by Streaming SIMD Extensions and Streaming SIMD
Extensions 2.

The IDB debugger provides extensive support for debugging programs by
using a command-line or graphical user interface.

• Intel® VTune(TM) Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-
specific software performance data from the system-wide view down to a
specific module, function, and instruction in your code. For information, see
http://www.intel.com/software/products/vtune/.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

31

• Intel® Threading Tools. The Intel Threading Tools consist of the following:
• Intel® Thread Checker
• Intel® Thread Profiler

For general information, see
http://www.intel.com/software/products/threadtool.htm.

Timing Your Application

One of the performance indicators is your application timing. Use the time
command to provide information about program performance. The following
considerations apply to timing your application:

• Run program timings when other users are not active. Your timing results
can be affected by one or more CPU-intensive processes also running
while doing your timings.

• Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a
previous version of the same program. Use the same CPU system (model,
amount of memory, version of the operating system, and so on) if
possible.

• If you do need to change systems, you should measure the time using the
same version of the program on both systems, so you know each system's
effect on your timings.

• For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Using the form of the time command that specifies the name of the executable
program provides the following:

• The elapsed, real, or "wall clock" time, which will be greater than the total
charged actual CPU time.

• Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

Example

In the following example timings, the sample program being timed displays the
following line:

Average of all the numbers is: 4368488960.000000

Using the Bourne shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

32

user program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

$ time a.out

Average of all the numbers is:
4368488960.000000

real 0m2.46s
user 0m0.61s
sys 0m0.58s

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

% time a.out

Average of all the numbers is:
4368488960.000000

0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

Using the bash shell, the following program timing reports that the program uses
1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for user
program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

[user@system user]$ time ./a.out

Average of all the numbers is:
4368488960.000000

elapsed 0m2.46s
user 0m0.61s
sys 0m0.58s

Timings that show a large amount of system time may indicate a lot of time spent
doing I/O, which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the
program on the time command line. Redirecting output from the program will
change the times reported because of reduced screen I/O.

For more information, see time(1).

In addition to the time command, you might consider modifying the program to
call routines within the program to measure execution time. For example, use the

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

33

Intel Fortran intrinsic procedures, such as SECNDS, DCLOCK, CPU_TIME,
SYSTEM_CLOCK, TIME, and DATE_AND_TIME. See "Intrinsic Procedures" in the
Intel® Fortran Language Reference.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

34

Compiler Optimizations
Compiler Optimizations Overview

The variety of optimizations used by the Intel® Fortran Compiler enable you to
enhance the performance of your application. Each optimization is performed by
a set of options discussed in each section dedicated to the following
optimizations:

• Optimizing compilation process
• Optimizing different types of applications
• Floating-point arithmetic operations
• Optimizing applications for specific processors
• Interprocedural optimizations (IPO)
• Profile-guided optimizations
• High-level Language optimizations

In addition to optimizations invoked by the compiler command-line options, the
compiler includes features which enhance your application performance such as
directives, intrinsics, run-time library routines and various utilities. These
features are discussed in the Optimization Support Features section.

Optimizing Compilation Process

Optimizing Compilation Process Overview

This section describes the Intel® Fortran Compiler options that optimize the
compilation process. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you not only to control the process
and obtain desired output file produced by the compiler, but also make the
compilation itself more efficient.

A group of options monitors the outcome of Intel compiler-generated code
without interfering with the way your program runs. These options control some
computation aspects, such as allocating the stack memory, setting or modifying
variable settings, and defining the use of some registers.

The options in this section provide you with the following capabilities of efficient
compilation:

• automatic allocation of variables and stacks
• aligning data
• symbol visibility attribute options

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

35

Efficient Compilation

Understandably, efficient compilation contributes to performance improvement.
Before you analyze your program for performance improvement, and improve
program performance, you should think of efficient compilation itself. Based on
the analysis of your application, you can decide which Intel Fortran Compiler
optimizations and command-line options can improve the run-time performance
of your application.

Efficient Compilation Techniques

The effcicient compilation techniques can be used during the earlier stages and
later stages of program development.

During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

ifort -c -O1 sub2.f90 (generates object file of sub2)

ifort -c -O1 sub3.f90 (generates object file of sub3)

ifort -omain.exe -g -O0 main.f90 sub2.obj sub3.obj

The above command turns off all compiler default optimizations (for example, -
O2) with -O0. You can use the -g option to generate symbolic debugging
information and line numbers in the object code for use by a source-level
debugger. The main.exe file created in the above command contains symbolic
debugging information.

During the later stages of program development, you should specify multiple
source files together and use an optimization level of at least -O2 (default) to
allow more optimizations to occur. For instance, the following command compiles
all three source files together using the default level of optimization, -O2:

ifort -omain.exe main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for possible
optimizations, which results in:

• Inlining more procedures
• More complete data flow analysis
• Reducing the number of external references to be resolved during linking

For very large programs, compiling all source files together may not be practical.
In such instances, consider compiling source files containing related routines

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

36

together using multiple ifort commands, rather than compiling source files
individually.

Options That Improve Run-Time Performance

The table below lists the options that can directly improve run-time performance.
Most of these options do not affect the accuracy of the results, while others
improve run-time performance but can change some numeric results. The Intel
Fortran Compiler performs some optimizations by default unless you turn them
off by corresponding command-line options. Additional optimizations can be
enabled or disabled using command options.

Option Description
-align
keyword

Analyzes and reorders memory layout for variables and
arrays.

Controls whether padding bytes are added between
data items within common blocks, derived-type data,
and record structures to make the data items naturally
aligned.

-ax{K|W|N|B|P}
IA-32 only

Optimizes your application's performance for specific
processors. Regardless of which -ax suboption you
choose, your application is optimized to use all the
benefits of that processor with the resulting binary file
capable of being run on any Intel IA-32 processor.

-O2 (-fast) Sets the following performance-related options: -align
dcommons, -align sequence

-O1,
-inline all

Inlines every call that can possibly be inlined while
generating correct code. Certain recursive routines are
not inlined to prevent infinite loops

-parallel Enables parallel processing using directed
decomposition (directives inserted in source code. This
can improve the performance of certain programs
running on shared memory multiprocessor systems

-On Controls the types of optimization performed. The
default optimizations set is -O2, unless you specify -O0
(no optimizations). Use -O3 to activate loop
transformation optimizations.

-openmp Enables parallel processing using directed
decomposition (directives inserted in source code). This
can improve the performance of certain programs
running on shared memory multiprocessor systems.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

37

-qp Requests profiling information, which you can use to
identify those parts of your program where improving
source code efficiency would most likely improve run-
time performance. After you modify the appropriate
source code, recompile the program and test the run-
time performance.

-tpp{n} Specifies the target processor generation architecture
on which the program will be run, allowing the optimizer
to make decisions about instruction tuning optimizations
needed to create the most efficient code. Keywords
allow specifying one particular processor generation
type, multiple processor generation types, or the
processor generation type currently in use during
compilation. Regardless of the setting of -tpp{n}, the
generated code will run correctly on all implementations
of the Intel® IA-32 or Itanium® architectures.

-unrolln Specifies the number of times a loop is unrolled (n)
when specified with optimization level -O3. If you omit n
in -unroll, the optimizer determines how many times
loops can be unrolled.

Options That Slow Down the Run-time Performance

The table below lists options that can slow down the run-time performance.
Some applications that require floating-point exception handling or rounding
might need to use the -fpen dynamic option. Other applications might need to
use the -assume dummy_aliases or -vms options for compatibility reasons.
Other options that can slow down the run-time performance are primarily for
troubleshooting or debugging purposes.

Table below lists the options that can slow down run-time performance.

Option Description

-assume
dummy_aliases

Forces the compiler to assume that dummy (formal)
arguments to procedures share memory locations
with other dummy arguments or with variables shared
through use association, host association, or common
block use. These program semantics slow
performance, so you should specify
-assume dummy_aliases only for the called
subprograms that depend on such aliases.

The use of dummy aliases violates the FORTRAN 77
and Fortran 95/90 standards but occurs in some older
programs.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

38

-c If you use -c when compiling multiple source files,
also specify
-ooutputfile to compile many source files
together into one object file. Separate compilations
prevent certain interprocedural optimizations, such as
when using multiple f90 commands or using -c
without the -ooutputfile option.

-check bounds Generates extra code for array bounds checking at
run time.

-check
overflow

Generates extra code to check integer calculations for
arithmetic overflow at run time. Once the program is
debugged, omit this option to reduce executable
program size and slightly improve run-time
performance.

-fpe 3 Using this option slows program execution. It enables
certain types of floating-point exception handling,
which can be expensive.

-g Generate extra symbol table information in the object
file. Specifying this option also reduces the default
level of optimization to -O0 or -O0 (no optimization).

Note

The -g option only slows your program down when
no optimization level is specified, in which case -g
turns on -O0, which slows the compilation down. If -
g, -O2 are specified, the code runs very much the
same speed as if -g were not specified.

-inline none
-inline
manual

Prevents the inlining of all procedures except
statement functions.

-save Forces the local variables to retain their values from
the last invocation terminated. This may change the
output of your program for floating-point values as it
forces operations to be carried out in memory rather
than in registers, which in turn causes more frequent
rounding of your results.

-O0 Turns off optimizations. Can be used during the early
stages of program development or when you use the
debugger.

-vms Controls certain VMS-related run-time defaults,
including alignment. If you specify the -vms option,
you may need to also specify the -align records
option to obtain optimal run-time performance.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

39

Little-endian-to-Big-endian Conversion (IA-32)

The Intel Fortran Compiler writes unformatted sequential files in big-endian
format and reads files produced in big-endian format.

The little-endian-to-big-endian conversion feature is intended for Fortran
unformatted input/output operations in unformatted sequential files. It enables the
development and processing of files with big-endian data organization on the IA-
32-based processors, which usually process the data in the little endian format.

The feature also enables processing of the files developed on processors that
accept big-endian data format and producing the files for such processors on IA-
32-based little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following
operations:

• The WRITE operation converts little endian format to big endian format.
• The READ operation converts big endian format to little endian format.

The feature enables the conversion of variables and arrays (or array subscripts)
of basic data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the
numbers of the units to be used for conversion purposes by setting the
F_UFMTENDIAN environment variable. Then, the READ/WRITE statements that
use these unit numbers, will perform relevant conversions. Other READ/WRITE
statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No
spaces are allowed inside the F_UFMTENDIAN value. The variable has the
following syntax:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

where:

MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal -decimal

• MODE defines current format of data, represented in the files; it can be
omitted.
The keyword little means that the data have little endian format and will

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

40

not be converted. For IA-32 systems, this keyword is a default.
The keyword big means that the data have big endian format and will be
converted. This keyword may be omitted together with the colon.

• EXCEPTION is intended to define the list of exclusions for MODE; it can be
omitted. EXCEPTION keyword (little or big) defines data format in the
files that are connected to the units from the EXCEPTION list. This value
overrides MODE value for the units listed.

• Each list member U is a simple unit number or a number of units. The
number of list members is limited to 64.
decimal is a non-negative decimal number less than 232.

Converted data should have basic data types, or arrays of basic data types.
Derived data types are disabled.

Command lines for variable setting with different shells:

Sh: export F_UFMTENDIAN=MODE;EXCEPTION

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Note

Environment variable value should be enclosed in quotes if semicolon is
present.

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

F_UFMTENDIAN=u[,u] . . .

Command lines for the variable setting with different shells:

• Sh: export F_UFMTENDIAN=u[,u] . . .
• Csh: setenv F_UFMTENDIAN u[,u] . . .

See error messages that may be issued during the little endian – big endian
conversion. They are all fatal. You should contact Intel if such errors occur.

Usage Examples

1. F_UFMTENDIAN=big

All input/output operations perform conversion from big-endian to little-
endian on READ and from little-endian to big-endian on WRITE.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

41

2. F_UFMTENDIAN="little;big:10,20"
or F_UFMTENDIAN=big:10,20
or F_UFMTENDIAN=10,20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

3. F_UFMTENDIAN="big;little:8"

In this case, on unit number 8 no conversion operation occurs. On all other
units, the input/output operations perform big-little endian conversion.

4. F_UFMTENDIAN=10-20

Define 10, 11, 12 … 19, 20 units for conversion purposes; on these units,
the input/output operations perform big-little endian conversion.

5. Assume you set F_UFMTENDIAN=10,100 and run the following program.

integer*4 cc4
integer*8 cc8
integer*4 c4
integer*8 c8
c4 = 456
c8 = 789

C prepare a little endian representation
of data

open(11,file='lit.tmp',form='unformatted')
write(11) c8
write(11) c4
close(11)

C prepare a big endian representation of
data

open(10,file='big.tmp',form='unformatted')
write(10) c8
write(10) c4
close(10)

C read big endian data and operate with
them on
C little endian machine.

open(100,file='big.tmp',form='unformatted')
read(100) cc8
read(100) cc4

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

42

C Any operation with data, which have been
read

C . . .
close(100)
stop
end

Now compare lit.tmp and big.tmp files with the help of od utility.

> od -t x4 lit.tmp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

> od -t x4 big.tmp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.

Default Compiler Optimizations

If you invoke the Intel® Fortran Compiler without specifying any compiler options,
the default state of each option takes effect. The following tables summarize the
options whose default status is ON as they are required for Intel Fortran Compiler
default operation. The tables group the options by their functionality.

For the default states and values of all options, see Compiler Options Quick
Reference Alphabetical table in the Intel® Fortran Compiler Options Quick
Reference. The table provides links to the sections describing the functionality of
the options. If an option has a default value, such value is indicated.

Per your application requirement, you can disable one or more options. For
general methods of disabling optimizations, see Volume I.

The following tables list all options that compiler uses for its default optimizations.

Data Setting and Fortran Language Conformance

Default Option Description
-align
-align records

Analyzes and reorders memory layout
for variables and arrays.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

43

-align rec8bytes Specifies 8-byte boundary for alignment
constraint.

-altparam Specifies if alterate form of parameter
constant declarations is recognized or
not.

-ansi_alias Enables assumption of the program's
ANSI conformance.

-assume cc_omp Enables OpenMP conditional
compilation directives.

-ccdefault default Specifies default carriage control for
units 6 and *.

-double_size 64 Defines the default KIND for double-
precision variables to be 64.

-double_size 64 n is 64 (KIND=8)
-dps Enables DEC* parameter statement

recognition.
-error_limit 30 Specifies the maximum number of

error-level or fatal-level compiler errors
permissible.

-fpe 3 Specifies floating-point exception
handling at run time for the main
program.

-iface
nomixed_str_len_arg

Specifies the type of argument-passing
conventions used for general
arguments and for hidden-length
character arguments.

-integer_size 32 Specifies the default size of integer and
logical variables.

-libdir all Controls the library names that should
be emitted into the object file.

-pad Enables changing variable and array
memory layout.

-pc80
IA-32 only

-pc{32|64|80} enables floating-point
significand precision control as follows:
-pc32 to 24-bit significand, -pc64 to
53-bit significand, and -pc80 to 64-bit
significand.

-real_size 64 Specifies the size of REAL and
COMPLEX declarations, constants,
functions, and intrinsics.

-save Saves all variables in static allocation.
Disables
-auto, that is, disables setting all

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

44

variables AUTOMATIC.
-Zp8 -Zp{n} specifies alignment constraint

for structures on 1-, 2-, 4-, 8-, or 16-
byte boundary. To disable, use
-align-.

Optimizations

Default Option Description

-assume cc_omp Enables OpenMP conditional
compilation directives.

-fp
IA-32 only

Disables the use of the ebp register in
optimizations. Directs to use the ebp-
based stack frame for all functions.

-fpe 3 Specifies floating-point exception
handling at run time for the main
program. -fpe 0 disables the option.

-ip_no_inlining Disables full or partial inlining that
would result from the -ip
interprocedural optimizations.
Requires -ip or -ipo.

-IPF_fltacc-
Itanium® compiler

Enables the compiler to apply
optimizations that affect floating-point
accuracy.

-IPF_fma
Itanium compiler

Enables the contraction of floating-
point multiply and add/subtract
operations into a single operation.

-IPF_fp_speculation
fast
Itanium compiler

Sets the compiler to speculate on
floating-point operations. -
IPF_fp_speculationoff disables
this optimization.

-ipo_obj
Itanium compiler

Forces the generation of real object
files. Requires -ipo.
IA-32 systems: OFF

-O, -O1, -O2 Optimize for maximum speed.

-Ob1 Disables inlining unless -ip or -Ob2
is specified.

-openmp_report1 Indicates loops, regions, and sections
parallelized.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

45

-
opt_report_levelmin

Specifies the minimal level of the
optimizations report.

-par_report1 Indicates loops successfully auto-
parallelized.

-tpp2
Itanium compiler

Optimizes code for the Intel®
Itanium® 2 processor for Itanium-
based applications. Generated code is
compatible with the Itanium
processor.

-tpp7
IA-32 only

Optimizes code for the Intel®
Pentium® 4 and Intel® Xeon(TM)
processor for IA-32 applications.

-unroll -unroll[n]: omit n to let the
compiler decide whether to perform
unrolling or not (default).
Specify n to set maximum number of
times to unroll a loop.
The Itanium compiler currently uses
only
n = 0, -unroll0 (disabled option) for
compatibility.

-vec_report1 Indicates loops successfully
vectorized.

Disabling Default Options

To disable an option, use one of the following as applies:

• Generally, to disable one or a group of optimization options, use -O0
option. For example:

ifort -O2 -O0 input_file(s)

Note
The -O0 option is part of a mutually-exclusive group of options that
includes -O0, -O, -O1, -O2, and -O3. The last of any of these options
specified on the command line will override the previous options from this
group.

• To disable options that include optional "-" shown as [-], use that version
of the option in the command line, for example: -align-.

• To disable options that have {n} parameter, use n=0 version, for
example: -unroll0.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

46

Note
If there are enabling and disabling versions of switches on the line, the last
one takes precedence.

Using Compilation Options

Stacks: Automatic Allocation and Checking

The options in this group enable you to control the computation of stacks and
variables in the compiler generated code.

Automatic Allocation of Variables

-auto

The -auto option specifies that locally declared variables are allocated to the
run-time stack rather than static storage. If variables defined in a procedure
appear in an AUTOMATIC statement, or if the procedure is recursive and the
variables do not have the SAVE or ALLOCATABLE attribute, they are allocated to
the stack. It does not affect variables that appear in an EQUIVALENCE or SAVE
statement, or those that are in COMMON.

-auto is the same as -automatic and -nosave.

-auto may provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was
invoked, your program may not function properly. Variables that need to retain
their values across routine calls should appear in a SAVE statement.

If you specify -recursive or -openmp, the default is -auto.

-auto_scalar

The -auto_scalar option causes allocation of local scalar variables of intrinsic
type INTEGER, REAL, COMPLEX, or LOGICAL to the stack. This option does not
affect variables that appear in an EQUIVALENCE or SAVE statement, or those
that are in COMMON.

-auto_scalar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine
was invoked, your program may not function properly. Variables that need to
retain their values across subroutine calls should appear in a SAVE statement.
This option is similar to -auto, which causes all local variables to be allocated
on the stack. The difference is that -auto_scalar allocates only scalar
variables of the stated above intrinsic types to the stack.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

47

-auto_scalar enables the compiler to make better choices about which
variables should be kept in registers during program execution.

-save, -zero

The -save option is opposite of -auto: the -save option saves all variables in
static allocation except local variables within a recursive routine. If a routine is
invoked more than once, this option forces the local variables to retain their
values from the last invocation terminated. This may cause a performance
degradation and may change the output of your program for floating-point values
as it forces operations to be carried out in memory rather than in registers, which
in turn causes more frequent rounding of your results. -save is the same as -
noauto.

The -[no]zero option initializes to zero all local scalar variables of intrinsic type
INTEGER, REAL, COMPLEX, or LOGICAL, which are saved and not initialized yet.
Used in conjunction with -save. The default is -nozero.

Summary

There are three choices for allocating variables: -save, -auto, and -
auto_scalar. Only one of these three can be specified. The correlation among
them is as follows:

• -save disables -auto, sets -noautomatic, and allocates all variables
not marked AUTOMATIC to static memory.

• -auto disables -save, sets -automatic, and allocates all variables—
scalars and arrays of all types—not marked SAVE to the stack.

• -auto_scalar:
o It makes local scalars of intrinsic types INTEGER, REAL, COMPLEX,

and LOGICAL automatic.
o This is the default; there is no -noauto_scalar; however, -

recursive or -openmp disables -auto_scalar and makes -
auto the default.

Checking the Floating-point Stack State (IA-32 only), -fpstkchk

The -fpstkchk option (IA-32 only) checks whether a program makes a correct
call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program.

When an application calls a function that returns a floating-point value, the
returned floating-point value is supposed to be on the top of the floating-point
stack. If return value is not used, the compiler must pop the value off of the
floating-point stack in order to keep the floating-point stack in correct state.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

48

If the application calls a function, either without defining or incorrectly defining the
function's prototype, the compiler does not know whether the function must return
a floating-point value, and the return value is not popped off of the floating-point
stack if it is not used. This can cause the floating-point stack overflow.

The overflow of the stack results in two undesirable situations:

• a NAN value gets involved in the floating-point calculations
• the program results become unpredicatble; the point where the program

starts making errors can be arbitrarily far away from the point of the actual
error.

The -fpstkchk option marks the incorrect call and makes it easy to find the
error.

Note

This option causes significant code generation after every
function/subroutine call to insure a proper state of a floating-point stack and
slows down compilation. It is meant only as a debugging aid for finding
floating point stack underflow/overflow problems, which can be otherwise
hard to find.

Aliases

-common_args

The -common_args option assumes that the "by-reference" subprogram
arguments may have aliases of one another.

Preventing CRAY* Pointer Aliasing

Option -safe_cray_ptr specifies that the CRAY* pointers do not alias with
other variables. The default is OFF.

Consider the following example.
pointer (pb, b)
pb =
getstorage()
do i = 1, n
b(i) = a(i) + 1
enddo

When -safe_cray_ptr is not specified (default), the compiler assumes that b
and a are aliased. To prevent such an assumption, specify this option, and the
compiler will treat b(i) and a(i) as independent of each other.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

49

However, if the variables are intended to be aliased with CRAY pointers, using
the -safe_cray_ptr option produces incorrect result. For the code example
below, -safe_cray_ptr should not be used.

pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

Cross-platform, -ansi_alias

The -ansi_alias[-] enables (default) or disables the compiler to assume that
the program adheres to the ANSI Fortran type aliasablility rules. For example, an
object of type real cannot be accessed as an integer. You should see the ANSI
standard for the complete set of rules.

The option directs the compiler to assume the following:

• Arrays are not accessed out of arrays' bounds.
• Pointers are not cast to non-pointer types and vice-versa.
• References to objects of two different scalar types cannot alias. For

example, an object of type integer cannot alias with an object of type
real or an object of type real cannot alias with an object of type double
precision.

If your program satisfies the above conditions, setting the -ansi_alias option
will help the compiler better optimize the program. However, if your program may
not satisfy one of the above conditions, the option must be disabled, as it can
lead the compiler to generate incorrect code.

The synonym of -ansi_alias is -assume [no]dummy_aliases.

Alignment Options

-align recnbyte or -Zp[n]

Use the -align recnbyte (or -Zp[n]) option to specify the alignment
constraint for structures on n-byte boundaries (where n = 1, 2, 4, 8, or 16 with -
Zp[n]).

When you specify this option, each structure member after the first is stored on
either the size of the member type or n-byte boundaries (where n = 1, 2, 4, 8, or
16), whichever is smaller.

For example, to specify 2 bytes as the packing boundary (or alignment
constraint) for all structures and unions in the file prog1.f, use the following
command:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

50

ifort -Zp2 prog1.f

The default for IA-32 and Itanium-based systems is -align rec8byte or -
Zp8. The -Zp16 option enables you to align Fortran structures such as common
blocks. For Fortran structures, see STRUCTURE statement in Intel® Fortran
Language Reference Manual.

If you specify -Zp (omit n), structures are packed at 8-byte boundary.

-align and -pad

The -align option is a front-end option that changes alignment of variables in a
common block.

Example:

common
/block1/ch,doub,ch1,int
integer int
character(len=1) ch,
ch1
double precision doub
end

The -align option enables padding inserted to assure alignment of doub and
int on natural alignment boundaries. The -noalign option disables padding.

The -align option applies mainly to structures. It analyzes and reorders
memory layout for variables and arrays and basically functions as -Zp{n}. You
can disable either option with -noalign.

For -align keyword options, see Command-line Options.

The -pad option is effectively not different from -align when applied to
structures and derived types. However, the scope of -pad is greater because it
applies also to common blocks, derived types, sequence types, and VAX*
structures.

Recommendations on Controlling Alignment with Options

The following options control whether the Intel Fortran compiler adds padding
(when needed) to naturally align multiple data items in common blocks, derived-
type data, and Intel Fortran record structures:

• By default (with -O2), the -align commons option requests that data in
common blocks be aligned on up to 4-byte boundaries, by adding padding
bytes as needed.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

51

The -align nocommons arbitrarily aligns the bytes of common block data.
In this case, unaligned data can occur unless the order of data items specified
in the COMMON statement places the largest numeric data item first, followed
by the next largest numeric data (and so on), followed by any character data.

• By default (with -O2), the -align dcommons option requests that data in
common blocks be aligned on up to 8-byte boundaries, by adding padding
bytes as needed.
The -align nodcommons arbitrarily aligns the bytes of data items in a
common data.

Specify the -align dcommons option for applications that use common
blocks, unless your application has no unaligned data or, if the application
might have unaligned data, all data items are four bytes or smaller. For
applications that use common blocks where all data items are four bytes or
smaller, you can specify -align commons instead of -align dcommons.

• The -align norecords option requests that multiple data items in derived-
type data and record structures (an Intel Fortran extension) be aligned
arbitrarily on byte boundaries instead of being naturally aligned. The default
is -align records .

• The -align records option requests that multiple data items in record
structures (extension) and derived-type data without the SEQUENCE
statement be naturally aligned, by adding padding bytes as needed.

• The -align recnbyte option requests that fields of records and
components of derived types be aligned on either the size byte boundary
specified or the boundary that will naturally align them, whichever is smaller.
This option does not affect whether common blocks are naturally aligned or
packed.

• The -align sequence option controls alignment of derived types with the
SEQUENCE attribute.

The -align nosequence option means that derived types with the
SEQUENCE attribute are packed regardless of any other alignment rules. Note
that -align none implies
-align nosequence .

The -align sequence option means that derived types with the SEQUENCE
attribute obey whatever alignment rules are currently in use. Consequently,
since -align record is a default value, then -align sequence alone on
the command line will cause the fields in these derived types to be naturally
aligned.

The default behavior is that multiple data items in derived-type data and record
structures will be naturally aligned; data items in common blocks will not (-
align records with -align nocommons). In derived-type data, using the

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

52

SEQUENCE statement prevents -align records from adding needed padding
bytes to naturally align data items.

Symbol Visibility Attribute Options

Applications that do not require symbol preemption or position-independent code
can obtain a performance benefit by taking advantage of the generic ABI visibility
attributes.

Note

The visibility options are supported by both IA-32 and Itanium compilers,
but currently the optimization benefits are for Itanium-based systems only.

Global Symbols and Visibility Attributes

A global symbol is a symbol that is visible outside the compilation unit in which it
is declared (compilation unit is a single-source file with its include files). Each
global symbol definition or reference in a compilation unit has a visibility attribute
that controls how it may be referenced from outside the component in which it is
defined. The values for visibility are defined in the table that follows.

EXTERN The compiler must treat the symbol as though it is defined in
another component. This means that the compiler must
assume that the symbol will be overridden (preempted) by a
definition of the same name in another component. (See
Symbol Preemption.) If a function symbol has external
visibility, the compiler knows that it must be called indirectly
and can inline the indirect call stub.

DEFAULT Other components can reference the symbol. Furthermore,
the symbol definition may be overridden (preempted) by a
definition of the same name in another component.

PROTECTED Other components can reference the symbol, but it cannot
be preempted by a definition of the same name in another
component.

HIDDEN Other components cannot directly reference the symbol.
However, its address might be passed to other components
indirectly; for example, as an argument to a call to a function
in another component, or by having its address stored in a
data item referenced by a function in another component.

INTERNAL The symbol cannot be referenced outside the component
where it is defined, either directly or indirectly.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

53

Note

Visibility applies to both references and definitions. A symbol reference's
visibility attribute is an assertion that the corresponding definition will have
that visibility.

Symbol Preemption and Optimization

Sometimes programmers need to use some of the functions or data items from a
shareable object, but at the same time, they need to replace other items with
definitions of their own. For example, an application may need to use the
standard run-time library shareable object, libc.so, but to use its own
definitions of the heap management routines malloc and free. In this case it is
important that calls to malloc and free within libc.so use the user's
definition of the routines and not the definitions in libc.so. The user's definition
should then override, or preempt, the definition within the shareable object.

This functionality of redefining the items in shareable objects is called symbol
preemption. When the run-time loader loads a component, all symbols within the
component that have default visibility are subject to preemption by symbols of the
same name in components that are already loaded. Note that since the main
program image is always loaded first, none of the symbols it defines will be
preempted (redefined).

The possibility of symbol preemption inhibits many valuable compiler
optimizations because symbols with default visibility are not bound to a memory
address until run-time. For example, calls to a routine with default visibility cannot
be inlined because the routine might be preempted if the compilation unit is
linked into a shareable object. A preemptable data symbol cannot be accessed
using GP-relative addressing because the name may be bound to a symbol in a
different component; and the GP-relative address is not known at compile time.

Symbol preemption is a rarely used feature and has negative consequences for
compiler optimization. For this reason, by default the compiler treats all global
symbol definitions as non-preemptable (protected visibility). Global references to
symbols defined in another compilation unit are assumed by default to be
preemptable (default visibility). In those rare cases where all global definitions as
well as references need to be preemptable, specify the -fpic option to override
this default.

Specifyng Symbol Visibility Explicitly

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

54

cause all global symbols to get the visibility specified by the option. There are two
variety of options to specify symbol visibility explicitly:

-fvisibility=keyword
-fvisibility-keyword=file

The first form specifies the default visibility for global symbols. The second form
specifies the visibility for symbols that are in a file (this form overrides the first
form).

The file is the pathname of a file containing the list of symbols whose visibility
you want to set; the symbols are separated by whitespace (spaces, tabs, or
newlines).

In both options, the keyword is: extern, default, protected, hidden, and
internal, see definitions above.

Note

These two ways to explicitly set visibility are mutually exclusive: you may
use the visibility attribute on the declaration, or specify the symbol name in
a file, but not both.

The option -fvisibility-keyword=file specifies the same visibility
attribute for a number of symbols using one of the five command line options
corresponding to the keyword:

-fvisibility-extren=file
-fvisibility-default=file
-fvisibility-protected=file
-fvisibility-hidden=file
-fvisibility-internal=file

where file is the pathname of a file containing a list of the symbol names
whose visibility you wish to set; the symbol names in the file are separated by
either blanks, tabs, or newlines. For example, the command line option:

-fvisibility-protected=prot.txt

where file prot.txt contains symbols a, b, c, d, and e sets protected visibility
for symbols a, b, c, d, and e. This has the same effect as declared attribute
visibility=protected on the declaration for each of the symbols.

Specifying Visibility without Symbol File, -fvisibility=keyword

This option sets the visiblity for symbols not specified in a visibility list file and
that do not have visibilty attribute in their declaration. If no symbol file

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

55

option is specified, all symbols will get the specified attribute. Command line
example:

ifort -fvisibility=protected a.f

You can set the default visibility for symbols using one of the following command
line options:

-fvisibility=external
-fvisibility=default
-fvisibility=protected
-fvisibility=hidden
-fvisibility=internal

The above options are listed in the order of precedence: explicitly setting the
visibility to external, by using either the attribute syntax or the command line
option, overrides any setting to default, protected, hidden, or internal.
Explicitly setting the visibility to default overrides any setting to protected,
hidden, or internal and so on.

The visibility attribute default enables compiler to change the default symbol
visibility and then set the default attribute on functions and variables that require
the default setting. Since internal is a processor-specific attribute, it may not
be desirable to have a general option for it.

In the combined command-line options

-fvisibility=protected -fvisibility-default=prot.txt

file prot.txt (see above) causes all global symbols except a, b, c, d, and e to
have protected visibility. Those five symbols, however, will have default visibility
and thus be preemptable.

Visibility-related Options

-fminshared

Directs to treat the compilation unit as a component of a main program and not
to link it as a part of a shareable object.

Since symbols defined in the main program cannot be preempted, this enables
the compiler to treat symbols declared with default visibility as though they have
protected visibility. It means that
-fminshared implies -fvisibility=protected. The compiler need not
generate position-independent code for the main program. It can use absolute
addressing, which may reduce the size of the global offset table (GOT) and may
reduce memory traffic.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

56

-fpic

Specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly
specified otherwise. Generates position-independent code.

-fno_common

Instructs the compiler to treat common symbols as global definitions and to
allocate memory for each symbol at compile time. This may permit the compiler
to use the more efficient GP-relative addressing mode when accessing the
symbol.
Normally a Fortran uninitialized common block declaration with no initializer and
without the extern or static keywords. For example,
integer i
is represented as a common symbol. Such a symbol is treated as external
reference, except that if no other compilation unit has a global definition for the
name, the linker allocates memory for it.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

57

Optimizing Different Application Types

Optimizing Different Application Types Overview

This section discusses the command-line options -O0, -O1, -O2 (or -O), and -
O3. The -O0 option disables optimizations. Each of the other three turns on
several compiler capabilities. To specify one of these optimizations, take into
consideration the nature and structure of your application as indicated in the
more detailed description of the options.

In general terms, -O1, -O2 (or -O), and -O3 optimize as follows:

-O1 : code size and locality

-O2 (or -O): code speed; this is the default option

-O3: enables -O2 with more aggressive optimizations.

-fast: enables -O3 and -ipo to enhance speed across the entire program.

These options behave similarly on IA-32 and Itanium® architectures, with some
specifics that are detailed in the sections that follow.

Setting Optimizations with -On Options

The following table details the effects of the -O0, -O1, -O2, -O3, and -fast
options. The table first describes the characteristics shared by both IA-32 and
Itanium architectures and then explicitly describes the specifics (if any) of the -
On and -fast options’ behavior on each architecture.

Option Effect

-O0 Disables -On optimizations. On IA-32 systems, this
option sets the -fp option.

-O1 Optimizes to favor code size and code locality.
Disables loop unrolling.
May improve performance for applications with very
large code size, many branches, and execution time
not dominated by code within loops.
In most cases, -O2 is recommended over -O1.
IA-32 systems:
Disables intrinsics inlining to reduce code size.
Enables optimizations for speed. Also disables
intrinsic recognition and the -fp option. This option
is the same as the -O2 option.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

58

Itanium-based systems:
Disables software pipelining and global code
scheduling. Enables optimizations for server
applications (straight-line and branch-like code with
flat profile). Enables optimizations for speed, while
being aware of code size. For example, this option
disables software pipelining and loop unrolling.

-O2, -O This option is the default for optimizations. However,
if -g is specified, the default is -O0.
Optimizes for code speed.
This is the generally recommended optimization
level.

On IA-32 systems, this option is the same as the -
O1 option.

Itanium-based systems:
Enables optimizations for speed, including global
code scheduling, software pipelining, predication,
and speculation.

On these systems, the -O2 option enables inlining of
intrinsics. It also enables the following capabilities for
performance gain: constant propagation, copy
propagation, dead-code elimination, global register
allocation, global instruction scheduling and control
speculation, loop unrolling, optimized code selection,
partial redundancy elimination, strength
reduction/induction variable simplification, variable
renaming, exception handling optimizations, tail
recursions, peephole optimizations, structure
assignment lowering and optimizations, and dead
store elimination.

-O3 Enables -O2 optimizations and in addition, enables
more aggressive optimizations such as prefetching,
scalar replacement, and loop and memory access
transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance
unless loop and memory access transformation take
place. The -O3 optimizations may slow down code in
some cases compared to -O2 optimizations.
Recommended for applications that have loops that
heavily use floating point calculations and process
large data sets.
IA-32 systems:
In conjunction with -ax{K|W|N|B|P} or -

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

59

x{K|W|N|B|P} options, this option causes the
compiler to perform more aggressive data
dependency analysis than for -O2. This may result in
longer compilation times.

On Itanium-based systems, enables optimizations
for technical computing applications (loop-intensive
code): loop optimizations and data prefetch.

-fast This option is a single, simple method to enable a
collection of optimizations for run-time performance.
Sets the following options that can improve run-time
performance:

-O3: maximum speed and high-level optimizations,
see above

-ipo: enables interprocedural optimizations across
files

-static: prevents linking with shared libraries

Provides a shortcut that requests several important
compiler optimizations. To override one of the
options set by -fast, specify that option after the -
fast option on the command line.

The options set by the -fast option may change
from release to release.

IA-32 systems:

In conjunction with -ax{K|W|N|B|P} or -
x{K|W|N|B|P} options, this option provides the
best run-time performance.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your
program:

-O0 Disables optimizations. Enables -
fp option.

-mp Restricts optimizations that cause
some minor loss or gain of

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

60

precision in floating-point arithmetic
to maintain a declared level of
precision and to ensure that
floating-point arithmetic more
nearly conforms to the ANSI and
IEEE* standards. See -mp option
for more details.

-g Specifying the -g option turns off
the default -O2 option and makes -
O0 the default unless -O2 (or -O1
or -O3) is explicitly specified in the
command line together with -g.
See Optimizations and Debugging.

-nolib_inline Disables inline expansion of
intrinsic functions.

For more information on ways to restrict optimization, see Using -ip with -
Qoption specifiers.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

61

Floating-point Arithmetic Optimizations

Options Used for IA-32 and Itanium® Architectures

The options described in this section all provide optimizations with varying
degrees of precision in floating-point (FP) arithmetic for IA-32 and Itanium®
compilers.

The -mp1 (IA-32 only) and -mp options improve floating-point precision, but also
affect the application performance. See more details about these options in
Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in
floating-point arithmetic. The option that disables these optimizations is -O0.

-mp Option

Use -mp to limit floating-point optimizations and maintain declared precision. For
example, the Intel® Fortran Compiler can change floating-point division
computations into multiplication by the reciprocal of the denominator. This
change can alter the results of floating point division computations slightly. The -
mp switch may slightly reduce execution speed. See Improving/Restricting FP
Arithmetic Precision for more detail.

-mp1 Option (IA-32 Only)

Use the -mp1 option to restrict floating-point precision to be closer to declared
precision with less impact to performance than with the -mp option. The option
will ensure the out-of-range check of operands of transcendental functions and
improve accuracy of floating-point compares.

Flushing to Zero Denormal Values, -ftz[-]

Option -ftz[-] flushes denormal results to zero when the application is in the
gradual underflow mode. Flushing the denormal values to zero with -ftz may
improve performance of your application.

Default

The default status of -ftz[-] is OFF. By default, the compiler lets results
gradually underflow. With the default -O2 option, -ftz[-] is OFF.

-ftz[-] on Itanium-based systems

On Itanium-based systems only, the -O3 option turns on -ftz.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

62

If the -ftz option produces undesirable results of the numerical behavior of your
program, you can turn the FTZ mode off by using -ftz- in the command line
while still benefiting from the -O3 optimizations:

ifort -O3 -ftz- myprog.f

Usage

• Use this option if the denormal values are not critical to application
behavior.

• -ftz[-] only needs to be used on the source that contains the main()
program to turn the FTZ mode on. The initial thread, and any threads
subsequently created by that process, will operate in FTZ mode.

Results

The -ftz[-] option affects the results of floating underflow as follows:

• -ftz- results in gradual underflow to 0: the result of a floating underflow
is a denormalized number or a zero.

• -ftz results in abrupt underflow to 0: the result of a floating underflow is
set to zero and execution continues. -ftz also makes a denormal value
used in a computation be treated as a zero so no floating invalid exception
occurs. On Itanium-based systems, the -O3 option sets the abrupt
underflow to zero (-ftz is on). At lower optimization levels, gradual
underflow to 0 is the default on the Itanium-based systems.

On IA-32, setting abrupt underflow by -ftz may improve performance of
SSE/SSE2 instructions, while it does not affect either performance or numerical
behavior of x87 instructions. Thus, -ftz will have no effect unless you select -
x{} or -ax{} options, which activate instructions of the more recent IA-32 Intel
processors.

On Itanium-based processors, gradual underflow to 0 can degrade performance.
Using higher optimization levels to get the default abrupt underflow or explicitly
setting -ftz improves performance.
-ftz may improve performance on Itanium® 2 processor, even in the absence
of actual underflow, most frequently for single-precision code.

Using the Floating-point Exception Handling, -fpen

Use the -fpe n option to control the handling of exceptions. The -fpe n option
controls floating-point exceptions according to the value of n.

The following are the kinds of floating-point exceptions:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

63

• Floating overflow: the result of a computation is too large for the floating-
point data type. The result is replaced with the exceptional value Infinity
with the proper "+" or "-" sign. For example, 1E30 * 1E30 overflows single-
precision floating-point value and results in a +Infinity; -1E30 * 1E30
results in a -Infinity.

• Floating divide-by-zero: if the computation is 0.0 / 0.0, the result is the
exceptional value NaN (Not a Number), a value that means the
computation was not successful. If the numerator is not 0.0, the result is a
signed Infinity.

• Floating underflow: the result of a computation is too small for the floating-
poinit type. Each floating-point type (32-, 64-, and 128-bit) has a
denormalized range where very small numbers can be represented with
some loss of precision. For example, the lower bound for normalized
single-precision floating-point value is approximately 1E-38; the lower
bound for denormalized single-precision floating-point value is 1E-45. 1E-
30 / 1E10 underflows the normalized range but not the denormalized
range so the result is the denormal exceptional value 1E-40. 1E-30 / 1E30
underflows the entire range and the result is zero. This is known as
gradual underflow to 0.

• Floating invalid: when the exceptional value (signed Infinities, NaN,
denormal) is used as input to a computation, the result is also a NaN.

The -fpen option allows some control over the results of floating-point exception
handling at run time for the main program.

• -fpe0 restricts floating-point exceptions as follows:
• Floating overflow, floating divide-by-zero, and floating invalid cause

the program to print an error message and abort.
• If a floating underflow occurs, the result is set to zero and execution

continues. This is called abrupt underflow to 0.
• -fpe1 restricts only floating underflow:

• Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

• If a floating underflow occurs, the result is set to zero and execution
continues.

• The default is -fpe3 on both IA-32 and Itanium-based processors. This
allows full floating-point exception behavior:

• Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

• Floating underflow is gradual: denormalized values are produced
until the result becomes 0.

The -fpen only affects the Fortran main program. The floating-point exception
behavior set by the Fortran main program is in effect throughout the execution of

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

64

the entire program. If the main program is not Fortran, you can use the Fortran
intrinsic FOR_SET_FPE to set the floating-point exception behavior.

When compiling different routines in a program separately, you should use the
same value of n in -fpen.

For more information, refer to the Intel Fortran Compiler User's Guide for Linux*
Systems, Volume I, section "Controlling Floating-point Exceptions."

Floating-point Arithmetic Precision for IA-32 Systems

-prec_div Option

The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use -prec_div to disable
floating point division-to-multiplication optimization resulting in more accurate
division results. May have speed impact.

-pc{32|64|80} Option

Use the -pc{32|64|80} option to enable floating-point significand precision
control. Some floating-point algorithms, created for specific IA-32 and Itanium®-
based systems, are sensitive to the accuracy of the significand or fractional part
of the floating-point value. Use appropriate version of the option to round the
significand to the number of bits as follows:

-pc32: 24 bits (single precision)

-pc64: 53 bits (double precision)

-pc80: 64 bits (extended precision)

The default version is -pc80 for full floating-point precision.

This option enables full optimization. Using this option does not have the
negative performance impact of using the -mp option because only the fractional
part of the floating-point value is affected. The range of the exponent is not
affected.

Note

This option only has effect when the module being compiled contains the
main program.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

65

Caution

A change of the default precision control or rounding mode (for example, by
using the -pc32 option or by user intervention) may affect the results
returned by some of the mathematical functions.

Rounding Control, -rcd, -fp_port

The Intel Fortran Compiler uses the -rcd option to disable changing of rounding
mode for floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means
that values are rounded during floating-point calculations. However, the Fortran
language requires floating-point values to be truncated when a conversion to an
integer is involved. To do this, the compiler must change the rounding mode to
truncation before each floating-point conversion and change it back afterwards.

The -rcd option disables the change to truncation of the rounding mode for all
floating-point calculations, including floating-point-to-integer conversions. Turning
on this option can improve performance, but floating-point conversions to integer
will not conform to Fortran semantics.

You can also use the -fp_port option to round floating-point results at
assignments and casts. May cause some speed impact, but also makes sure that
rounding to the user-declared precision at assignments is always done. The -
mp1 option implies -fp_port.

Floating-point Arithmetic Precision for Itanium®-based Systems

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on Itanium®-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-IPF_fma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless -mp is specified, the
compiler tries to contract these operations whenever possible. The -mp option
disables the contractions.

-IPF_fma and -IPF_fma- can be used to override the default compiler
behavior. For example, a combination of -mp and -IPF_fma enables the
compiler to contract operations:

ifort -mp -IPF_fma myprog.f

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

66

FP Speculation

-IPF_fp_speculationmode sets the compiler to speculate on floating-point
operations in one of the following modes:

fast: sets the compiler to speculate on floating-point operations; this is the
default.

safe: enables the compiler to speculate on floating-point operations only when it
is safe;

strict: enables the compiler's speculation on floating-point operations
preserving floating-point status in all situations. In the current version, this mode
disables the speculation of floating-point operations (same as off).

off: disables the speculation on floating-point operations.

FP Operations Evaluation

-IPF_flt_eval_method{0|2} option directs the compiler to evaluate the
expressions involving floating-point operands in the following way:

-IPF_flt_eval_method0 directs the compiler to evaluate the expressions
involving floating-point operands in the precision indicated by the variable types
declared in the program.

-IPF_flt_eval_method2 is not supported in the current version.

Controlling Accuracy of the FP Results

-IPF_fltacc disables the optimizations that affect floating-point accuracy. The
default is -IPF_fltacc- to enable such optimizations.

The Itanium® compiler may reassociate floating-point expressions to improve
application performance. Use -IPF_fltacc or -mp to disable or restrict these
floating-point optimizations.

Improving/Restricting FP Arithmetic Precision

The -mp and -mp1 (-mp1 is for IA-32 only) options maintain and restrict,
respectively, floating-point precision, but also affect the application performance.
The -mp1 option causes less impact on performance than the -mp option. -mp1
ensures the out-of-range check of operands of transcendental functions and
improve accuracy of floating-point compares. For IA-32 systems, the -mp option
implies -mp1; -mp1 implies -fp_port. -mp slows down performance the most
of these three, -fp_port the least of these three.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

67

The -mp option restricts some optimizations to maintain declared precision and
to ensure that floating-point arithmetic conforms more closely to the ANSI and
IEEE* standards. This option causes more frequent stores to memory, or
disallow some data from being register candidates altogether. The Intel
architecture normally maintains floating point results in registers. These registers
are 80 bits long, and maintain greater precision than a double-precision number.
When the results have to be stored to memory, rounding occurs. This can affect
accuracy toward getting more of the "expected" result, but at a cost in speed.
The -pc{32|64|80} option (IA-32 only) can be used to control floating point
accuracy and rounding, along with setting various processor IEEE flags.

For most programs, specifying the -mp option adversely affects performance. If
you are not sure whether your application needs this option, try compiling and
running your program both with and without it to evaluate the effects on
performance versus precision.

Specifying this option has the following effects on program compilation:

• On IA-32 systems, floating-point user variables declared as floating-point
types are not assigned to registers.

• On Itanium®-based systems, floating-point user variables may be
assigned to registers. The expressions are evaluated using precision of
source operands. The compiler will not use Floating-point Multiply and
Add (FMA) function to contract multiply and add/subtract operations in a
single operation. The contractions can be enabled by using -IPF_fma
option. The compiler will not speculate on floating-point operations that
may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

• Floating-point arithmetic comparisons conform to IEEE 754.
• The exact operations specified in the code are performed. For example,

division is never changed to multiplication by the reciprocal.
• The compiler performs floating-point operations in the order specified

without reassociation.
• The compiler does not perform the constant folding on floating-point

values. Constant folding also eliminates any multiplication by 1, division by
1, and addition or subtraction of 0. For example, code that adds 0.0 to a
number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are
also maintained.

For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits
(EXTENDED PRECISION), not 64 bits (DOUBLE PRECISION). Floating-
point operations conform to IEEE 754. When assignments to type REAL
and DOUBLE PRECISION are made, the precision is rounded from 80 bits
(EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION).

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

68

When you do not specify -O0, the extra bits of precision are not always
rounded away before the variable is reused.

• Even if vectorization is enabled by the -xK|W|B|P options, the compiler
does not vectorize reduction loops (loops computing the dot product) and
loops with mixed precision types. Similarly, the compiler does not enable
certain loop transformations. For example, the compiler does not
transform reduction loops to perform partial summation or loop
interchange.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

69

Optimizing for Specific Processors

Optimizing for Specific Processors Overview

This section describes targeting a processor and processor dispatch and
extensions support options.

The options -tpp{5|6|7} optimize for the IA-32 processors, and the options -
tpp{1|2} optimize for the Itanium® processor family. The options -
x{K|W|N|B|P} and -ax{K|W|N|B|P} generate code that is specific to
processor-instruction extensions.

Note that you can run your application on the latest processor-based systems,
like Intel® Pentium® M processor or Intel processors code-named "Prescott" and
still gear your code to any of the previous processors specified by N/W or K
versions of the -x and -ax options.

Targeting a Processor, -tpp{n}

The -tpp{n} optimizes your application's performance for specific Intel
processors. This option generates code that is tuned for the processor
associated with its version. For example, -tpp7 generates code optimized for
running on Intel® Pentium® 4, Intel® Xeon(TM), Intel® Pentium® M processors
and Intel processors code-named "Prescott," and -tpp2 generates code
optimized for running on Itanium® 2 processor.

The -tpp{n} option always generates code that is backwards compatible with
Intel® processors of the same family. This means that code generated with -
tpp7 will run correctly on Pentium Pro or Pentium III processors, possibly just
not quite as fast as if the code had been compiled with -tpp6. Similarly, code
generated with -tpp2 will run correctly on Itanium processor, but possibly not
quite as fast as if it had been generated with -tpp1.

Processors for IA-32 Systems

The -tpp5, -tpp6, and -tpp7 options optimize your application's performance
for a specific Intel IA-32 processor as listed in the table below. The resulting
binaries will also run correctly on any of the processors mentioned in the table.

Option Optimizes your application for...

-tpp5 Intel® Pentium® and Pentium® with MMX(TM) technology processor

-tpp6 Intel® Pentium® Pro, Pentium® II and Pentium® III processors

-tpp7 Intel Pentium 4 processors, Intel® Xeon(TM) processors, Intel®

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

70

(default) Pentium® M processors, and Intel processors code-named
"Prescott"

Example

The invocations listed below each result in a compiled binary of the source
program prog.f optimized for Pentium 4 and Intel Xeon processors by default.
The same binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium
III processors.

ifort prog.f

ifort -tpp7 prog.f

However if you intend to target your application specifically to the Intel Pentium
and Pentium with MMX technology processors, use the -tpp5 option:

ifort -tpp5 prog.f

Processors for Itanium®-based Systems

The -tpp1 and -tpp2 options optimize your application's performance for a
specific Intel IA-32 processor as listed in the table below. The resulting binaries
will also run correctly on both processors mentioned in the table.

Option Optimizes your application for...

-tpp1 Intel® Itanium® processor

-tpp2
(default) Intel® Itanium® 2 processor

Example

The following invocation results in a compiled binary of the source program
prog.f optimized for the Itanium 2 processor by default. The same binary will
also run on Itanium processors.

ifort prog.f

ifort -tpp2 prog.f

However if you intend to target your application specifically to the Intel Itanium
processor, use the -tpp1 option:

ifort -tpp1 prog.f

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

71

Processor-specific Optimization (IA-32 only)

The -x{K|W|N|B|P} options target your program to run on a specific Intel
processor. The resulting code might contain unconditional use of features that
are not supported on other processors.

Option Optimizes for...

-xK Intel® Pentium® III and compatible Intel processors.

-xW Intel Pentium 4 and compatible Intel processors.

-xN

Intel Pentium 4 and compatible Intel Processors. When the main
program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor
specific-optimizations.

-xB

Intel® Pentium® M and compatible Intel processors. When the main
program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor-
specific optimizations.

-xP

Intel processors code-named "Prescott." When the main program is
compiled with this option, it will detect non-compatible processors and
generate an error message during execution. This option also enables
new optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do
not specify the -x{K|W|N|B|P} option.

Example

The invocation below compiles myprog.f for Intel Pentium 4 and compatible
processors. The resulting binary might not execute correctly on Pentium,
Pentium Pro, Pentium II, Pentium III, or Pentium with MMX technology
processors, or on x86 processors not provided by Intel corporation.

ifort -xW myprog.f

Caution
If a program compiled with -x{K|W|N|B|P} is executed on a non-
compatible processor, it might fail with an illegal instruction exception, or
display other unexpected behavior. Executing programs compiled with -xN
, -xB, or -xP on unsupported processors (see table above) will display the
following run-time error:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

72

Fatal error: This program was not built to run on the
processor in your system.

Automatic Processor-specific Optimization (IA-32 only)

The -ax{K|W|N|B|P} options direct the compiler to find opportunities to
generate separate versions of functions that take advantage of features that are
specific to the specified Intel processor. If the compiler finds such an opportunity,
it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates
both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel
processor in use. In this way, the program can benefit from performance gains on
more advanced Intel processors, while still working properly on older IA-32
processors.

The disadvantages of using -ax{K|W|N|B|P} are:

• The size of the compiled binary increases because it contains processor-
specific versions of some of the code, as well as a generic version of the
code.

• Performance is affected slightly by the run-time checks to determine which
code to use.

Note
Applications that you compile to optimize themselves for specific
processors in this way will execute on any Intel IA-32 processor. If you
specify both the -x and -ax options, the -x option forces the generic code
to execute only on processors compatible with the processor type specified
by the -x option.

Option Optimizes Your Code for...

-axK Intel® Pentium® III and compatible Intel processors.

-axW Intel Pentium 4 and compatible Intel processors.

-axN
Intel Pentium 4 and compatible Intel processors. This option also
enables new optimizations in addition to Intel processor-specific
optimizations.

-axB
Intel Pentium M and compatible Intel processors. This option also
enables new optimizations in addition to Intel processor-specific
optimizations.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

73

-axP
Intel processors code-named "Prescott." This option also enables new
optimizations in addition to Intel processor-specific optimizations.

Example

The compilation below generates a single executable that includes:

• a generic version for use on any IA-32 processor
• a version optimized for Intel Pentium III processors, as long as there is a

performance benefit.
• a version optimized for Intel Pentium 4 processors, as long as there is a

performance benefit.

ifort -axKW prog.f90

Processor-specific Run-time Checks, IA-32 Systems

The Intel Fortran Compiler optimizations take effect at run-time. For IA-32
systems, the compiler enhances processor-specific optimizations by inserting in
the main routine a code segment that performs run-time checks described below.

Check for Supported Processor with -xB , -xB, or -xP

To prevent from execution errors, the compiler inserts code in the main routine of
the program to check for proper processor usage. Programs compiled with
options -xN, -xB, or -xP check at run-time whether they are being executed on
the Intel Pentium® 4, Intel® Pentium® M processor or the Intel processor code-
named "Prescott," respectively, or a compatible Intel processor. If the program is
not executed on one of these processors, the program terminates with an error.

Example

To optimize a program foo.f90 for an Intel processor code-named "Prescott,"
issue the following command:

ifort -xP foo.f90 -o foo.exe

foo.exe aborts if it is executed on a processor that is not validated to support
the Intel processor code-named "Prescott," such as the Intel Pentium 4
processor (to account for the fact that "Prescott" may be a Pentium 4 processor
with some feature enabling).

If you intend to run your programs on multiple IA-32 processors, do not use the
-x{} options that optimize for processor-specific features; consider using -ax{} to
attain processor-specific performance and portability among different processors.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

74

Setting FTZ and DAZ Flags

Previously, the default status of the flags flush-to-zero (FTZ) and denormals-are-
zero (DAZ) for IA-32 processors were off by default. However, even at the cost of
losing IEEE compliance, turning these flags on significantly increases the
performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel
Pentium III, Pentium 4, Pentium M, Intel processor code-named "Prescott," and
compatible IA-32 processors, the compiler's default behavior is to turn these flags
on. The compiler inserts code in the program to perform a run-time check for the
processor on which the program runs to verify it is one of the afore-listed Intel
processors.

• Executing a program on a Pentium III processor enables the FTZ flag, but
not DAZ.

• Executing a program on an Intel Pentium M processor or "Prescott"
processor enables both the FTZ and DAZ flags.

These flags are only turned on by Intel processors that have been validated to
support them.

For non-Intel processors, the flags can be set manually by calling the following
Intel Fortran intrinsic:
RESULT = FOR_SET_FPE (FOR_M_ABRUPT_UND).

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

75

Interprocedural Optimizations (IPO)

IPO Overview

Use -ip and -ipo to enable interprocedural optimizations (IPO), which enable
the compiler to analyze your code to determine where you can benefit from the
optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and
loops

interprocedural constant
propagation

arguments, global variables,
and return values

monitoring module-level
static variables

further optimizations, loop
invariant code

dead code elimination code size

propagation of function
characteristics

call deletion and call movement

multifile optimization affects the same aspects as -
ip, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program

passing arguments in
registers

calls, register usage

loop-invariant code motion further optimizations, loop
invariant code

Inline function expansion is one of the main optimizations performed by the
interprocedural optimizer. For function calls that the compiler believes are
frequently executed, the compiler might decide to replace the instructions of the
call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures
defined within the current source file. However, when you use -ipo to specify
multifile IPO, the compiler performs inline function expansion for calls to
procedures defined in separate files.

To disable the IPO optimizations, use the -O0 option.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

76

Caution

The -ip and -ipo options can in some cases significantly increase
compile time and code size.

Option -auto_ilp32 for Itanium Compiler

On Itanium-based systems, the -auto_ilp32 option requires interprocedural
analysis over the whole program. This optimization allows the compiler to use 32-
bit pointers whenever possible as long as the application does not exceed a 32-
bit address space. Using the -auto_ilp32 option on programs that exceed 32-
bit address space might cause unpredictable results during program execution.

Because this optimization requires interprocedural analysis over the whole
program, you must use the
-auto_ilp32 option with the -ipo option.

Multifile IPO

Multifile IPO Overview

Multifile IPO obtains potential optimization information from individual program
modules of a multifile program. Using the information, the compiler performs
optimizations across modules.

Building a program is divided into two phases: compilation and linkage. Multifile
IPO performs different work depending on whether the compilation, linkage or
both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate
representation (IR) of the source code in the object file, which includes summary
information used for optimization.

By default, the compiler produces "mock" object files during the compilation
phase of multifile IPO. Generating mock files instead of real object files reduces
the time spent in the multifile IPO compilation phase. Each mock object file
contains the IR for its corresponding source file, but no real code or data. These
mock objects must be linked using the -ipo option in ifort or using the xild
tool. (See Creating a Multifile IPO Executable with xild.)

Note
Failure to link "mock" objects with ifort and -ipo or xild will result in

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

77

linkage errors. There are situations where mock object files cannot be
used. See Compilation with Real Object Files for more information.

Linkage Phase

When you specify -ipo, the compiler is invoked a final time before the linker.
The compiler performs multifile IPO across all object files that have an IR.

Note
The compiler does not support multifile IPO for static libraries (.a files).
See Compilation with Real Object Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program
automatically. If a whole program is detected, the interprocedural constant
propagation, stack frame alignment, data layout and padding of common blocks
perform more efficiently, while more dead functions get deleted. This option is
safe.

Creating a Multifile IPO Executable with Command Line

Enable multifile IPO for compilations targeted for IA-32 architecture and for
compilations targeted for Itanium® architecture as follows in the example below.

Compile your source files with -ipo as follows:

Compile source files to produce object files:
ifort -ipo -c a.f b.f c.f

Produces a.o, b.o, and c.o object files containing Intel compiler intermediate
representation (IR) corresponding to the compiled source files a.f, b.f, and
c.f. Using -c to stop compilation after generating .o files is required. You can
now optimize interprocedurally.

Link object files to produce application executable:
ifort -oipo_file -ipo a.o b.o c.o

The ifort command performs IPO for objects containing IR and creates a new
list of object(s) to be linked. The ifort command calls GCC ld to link the
specified object files and produce ipo_file executable specified by the -o
option. Multifile IPO is applied only to the source files that have an IR, otherwise
the object file passes to link stage.

The -oname option stores the executable in ipo_file. Multifile IPO is applied
only to the source files that have an IR, otherwise the object file passes to link
stage.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

78

For efficiency, combine steps 1 and 2:

ifort -ipo -oipo_file a.f b.f c.f

Instead of ifort, you can use the xild tool.

For a description of how to use multifile IPO with profile information for further
optimization, see Example of Profile-Guided Optimization.

Creating a Multifile IPO Executable Using xild

Use the Intel® linker, xild, instead of step 2 in Creating a Multifile IPO
Executable with Command Line. The Intel linker xild performs the following
steps:

1. Invokes the Intel compiler to perform multifile IPO if objects containing IR
are found.

2. Invokes GCC ld to link the application.

The command-line syntax for xild is the same as that of the GCC linker:

prompt>xild [<options>] <LINK_commandline>

where:

• [<options>] (optional) may include any GCC linker options or options
supported only by xild.

• <LINK_commandline> is your linker command line containing a set of
valid arguments to the ld.

To place the multifile IPO executable in ipo_file, use the option -ofilename,
for example:

prompt>xild -oipo_file a.o b.o c.o

xild calls Intel compiler to perform IPO for objects containing IR and creates a
new list of object(s) to be linked. Then xild calls ld to link the object files that
are specified in the new list and produce ipo_file executable specified by the
-ofilename option.

Note

The -ipo option can reorder object files and linker arguments on the
command line. Therefore, if your program relies on a precise order of
arguments on the command line, -ipo can affect the behavior of your
program.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

79

Usage Rules

You must use the Intel linker xild to link your application if:

• Your source files were compiled with multifile IPO enabled. Multifile IPO is
enabled by specifying the -ipo command-line option

• You normally would invoke the GCC linker (ld) to link your application.

The xild Options

The additional options supported by xild may be used to examine the results of
multifile IPO. These options are described in the following table.

-qipo_fa[file.s] Produces assembly listing for the
multifile IPO compilation. You may
specify an optional name for the listing
file, or a directory (with the backslash)
in which to place the file. The default
listing name is ipo_out.s.

-qipo_fo[file.o] Produces object file for the multifile IPO
compilation. You may specify an
optional name for the object file, or a
directory (with the backslash) in which
to place the file. The default object file
name is ipo_out.o.

-ipo_fcode-asm Add code bytes to assembly listing
-ipo_fsource-asm Add high-level source code to

assembly listing
-ipo_fverbose-asm,
-ipo_fnoverbose-asm

Enable and disable, respectively,
inserting comments containing version
and options used in the assembly
listing for xild.

Compilation with Real Object Files

In certain situations you might need to generate real object files with -ipo. To
force the compiler to produce real object files instead of "mock" ones with IPO,
you must specify -ipo_obj in addition to -ipo.

Use of -ipo_obj is necessary under the following conditions:

• The objects produced by the compilation phase of -ipo will be placed in a
static library without the use of xiar. The compiler does not support
multifile IPO for static libraries, so all static libraries are passed to the
linker. Linking with a static library that contains "mock" object files will
result in linkage errors because the objects do not contain real code or

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

80

data. Specifying
-ipo_obj causes the compiler to generate object files that can be used
in static libraries.

• Alternatively, if you create the static library using xiar, then the resulting
static library will work as a normal library.

• The objects produced by the compilation phase of -ipo might be linked
without the -ipo option and without the use of xiar.

• You want to generate an assembly listing for each source file (using -S)
while compiling with -ipo. If you use -ipo with -S, but without -
ipo_obj, the compiler issues a warning and an empty assembly file is
produced for each compiled source file.

Implementing the .il Files with Version Numbers

An IPO compilation consists of two parts: the compile phase and the link phase.
In the compile phase, the compiler produces an intermediate language (IL)
version of the users’ code. In the link phase, the compiler reads the IL and
completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions,
and therefore the ILs from different compilations can be incompatible. Intel
Fortran Compiler assigns a unique version number with each compiler’s IL
definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in
the compilation. The compiler then issues a warning message about an
incompatible IL detected and discarded.

IL in Libraries: More Optimizations

The IL produced by the Intel compiler is stored in file with a suffix .il. Then the
.il file is placed in the library. If this library is used in an IPO compilation
invoked with the same compiler as produced the IL for the library, the compiler
can extract the .il file from the library and use it to optimize the program. For
example, it is possible to inline functions defined in the libraries into the users’
source code.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar. Given a list of
objects, the library manager will insert the objects into a named library to be used
in subsequent link steps.

xiar cru user.a a.obj b.obj

The above command creates a library named user.a that contains the a.o and
b.o objects.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

81

If, however, the objects have been created using -ipo -c, then the objects will
not contain a valid object but only the intermediate representation (IR) for that
object file. For example:

ifort -ipo -c a.f b.f

will produce a.o and b.o that only contains IR to be used in a link time
compilation. The library manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xild -ar. This program will
invoke the compiler on the IR saved in the object file and generate a valid object
that can be inserted in a library.

xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xild.

Analyzing the Effects of Multifile IPO

The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile
IPO, or when experimenting with multifile IPO between modules that do not make
up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This
option performs optimizations as described for -ipo, but stops prior to the final
link stage, leaving an optimized object file. The default name for this file is
ipo_out.o. You can use the -o option to specify a different name. For
example:

ifort -tpp6 -ipo_c -ofilename a.f b.f c.f

Use the -ipo_S option to optimize across files and produce an assembly file.
This option performs optimizations as described for -ipo, but stops prior to the
final link stage, leaving an optimized assembly file. The default name for this file
is ipo_out.s. You can use the -o option to specify a different name. For
example:

ifort -tpp6 -ipo_S -ofilename a.f b.f c.f

For more information on inlining and the minimum inlining criteria, see Criteria for
Inline Function Expansion and Controlling Inline Expansion of User Functions.

Using -ip with -Qoption Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular
application by experimenting with memory and interprocedural optimizations.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

82

Enter the -Qoption option with the applicable keywords to select particular
inline expansions and loop optimizations. The option must be entered with a -ip
or -ipo specification, as follows:

-ip[-Qoption,tool,opts]
where tool is Fortran (f) and opts are -Qoption specifiers (see below). Also
refer to Criteria for Inline Function Expansion to see how these specifiers may
affect the inlining heuristics of the compiler.

See Passing Options to Other Tools (-Qoption,tool,opts) for details about -
Qoption.

-Qoption Specifiers

If you specify -ip or -ipo without any -Qoption qualification, the compiler

• expands functions in line
• propagates constant arguments
• passes arguments in registers
• monitors module-level static variables.

You can refine interprocedural optimizations by using the following -Qoption
specifiers. To have an effect, the -Qoption option must be entered with either -
ip or -ipo also specified, as in this example:

-ip -Qoption,f,ip_specifier

where ip_specifier is one of the -Qoption specifiers
described in the table that follows.

-Qoption Specifiers
-ip_args_in_regs=0 Disables the passing of

arguments in registers. By
default, external functions can
pass arguments in registers
when called locally. Normally,
only static functions can pass
arguments in registers, provided
the address of the function is not
taken and the function does not
use a variable number of
arguments.

-ip_ninl_max_stats=n Sets the valid number of
intermediate language
statements for a function that is
expanded in line. The number n

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

83

is a positive integer. The
number of intermediate
language statements usually
exceeds the actual number of
source language statements.
The default value for n is 230.

-ip_ninl_min_stats=n Sets the valid min number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The default
value for ip_ninl_min_stats
is:
IA-32 compiler:
ip_ninl_min_stats = 7
Itanium® compiler:
ip_ninl_min_stats = 15

-
ip_ninl_max_total_stats=n

Sets the maximum increase in
size of a function, measured in
intermediate language
statements, due to inlining. The
number n is a positive integer.
The default value for n is 2000.

The following command activates procedural and interprocedural optimizations
on source.f and sets the maximum increase in the number of intermediate
language statements to five for each function:

ifort -ip -Qoption,f,-ip_ninl_max_stats=5 source.f

Inline Expansion of Functions

Criteria for Inline Function Expansion

For a call to be considered for inlining, it has to meet certain minimum criteria.
There are three main components of a call:

Call-site is the site of the call to the function that might be inlined.

Caller is the function that contains the call-site.

Callee is the function being called that might be inlined.

Minimum call-site criteria:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

84

• The number of actual arguments must match the number of formal
arguments of the callee.

• The number of return values must match the number of return values of
the callee.

• The data types of the actual and formal arguments must be compatible.
• No multilingual inlining is permitted. Caller and callee must be written in

the same source language.

Minimum criteria for the caller:

• At most 2000 intermediate statements will be inlined into the caller from all
the call-sites being inlined into the caller. You can change this value by
specifying the option

-Qoption,f,-ip_ninl_max_total_stats=new value

• The function must be called if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

• Does not have variable argument list.
• Is not considered infrequent due to the name. Routines which contain the

following substrings in their names are not inlined: abort, alloca,
denied, err, exit, fail, fatal, fault, halt, init, interrupt,
invalid, quit, rare, stop, timeout, trace, trap, and warn.

• Is not considered unsafe for other reasons.

Selecting Routines for Inlining with or without PGO

Once the above criteria are met, the compiler picks the routines whose inline
expansions will provide the greatest benefit to program performance. This is
done using the default heuristics. The inlining heuristics used by the compiler
differ based on whether you use profile-guided optimizations (-prof_use) or
not.

When you use profile-guided optimizations with -ip or -ipo, the compiler
uses the following heuristics:

• The default heuristic focuses on the most frequently executed call sites,
based on the profile information gathered for the program.

• By default, the compiler does not inline functions with more than 230
intermediate statements. You can change this value by specifying the
option
-Qoption,f,-ip_ninl_max_stats=new value.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

85

• The default inline heuristic will stop inlining when direct recursion is
detected.

• The default heuristic always inlines very small functions that meet the
minimum inline criteria.

- Default for Itanium®-based applications: ip_ninl_min_stats = 15.

- Default for IA-32 applications: ip_ninl_min_stats = 7.

These limits can be modified with the option:
-Qoption,f,-ip_ninl_min_stats=new value.

See -Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with -ip or -ipo, the
compiler uses less aggressive inlining heuristics: it inlines a function if the inline
expansion does not increase the size of the final program.

Inlining and Preemption

Preemption of a function means that the code, which implements that function at
run-time, is replaced by different code. When a function is preempted, the new
version of this function is executed rather than the old version. Preemption can
be used to replace an erroneous or inferior version of a function with a correct or
improved version.

The compiler assumes that when -ip is on, any externally visible function might
be preempted and therefore cannot be inlined. Currently, this means that all
Fortran subprograms, except for internal procedures, are not inlinable when -ip
is on.

However, if you use -ipo and -ipo_obj on a file-by-file basis, the functions
can be inlined. See Compilation with Real Object Files.

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with
the options shown in the following summary.

Option Effect
-ip_no_inlining This option is only useful if -ip or -ipo

is also specified. In such case, -
ip_no_inlining disables inlining that
would result from the -ip interprocedural
optimizations, but has no effect on other
interprocedural optimizations.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

86

-
inline_debug_info

Preserve the source position of inlined
code instead of assigning the call-site
source position to inlined code.

-Ob{0|1|2} Controls the compiler's inline expansion.
The amount of inline expansion
performed varies as follows:

-Ob0: disables inline expansion of user-
defined functions; however, statement
functions are always inlined.

-Ob1: disables inlining unless -ip or -
Ob2 is specified. Enables inlining of
functions (routines). This is the default.

-Ob2: enables inlining of any routine at
the compiler's direction: the compiler
decides which functions are inlined. This
option enables interprocedural
optimizations and has the same effect as
specifying the -ip option.

IA-32 only:
-ip_no_pinlining

Disables partial inlining; can be used if -
ip or -ipo is also specified.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard
and math library functions at the point of the call to that function, which usually
results in faster computation.

However, the inlined library functions do not set the errno variable when being
expanded inline. In code that relies upon the setting of the errno variable, you
should use the -nolib_inline option. Also, if one of your functions has the
same name as one of the compiler-supplied library functions, then when this
function is called, the compiler assumes that the call is to the library function and
replaces the call with an inlined version of the library function.

So, if the program defines a function with the same name as one of the known
library routines, you must use the -nolib_inline option to ensure that the
user-supplied function is used.
-nolib_inline disables inlining of all intrinsics.

Note
Automatic inline expansion of library functions is not related to the inline
expansion that the compiler does during interprocedural optimizations. For

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

87

example, the following command compiles the program sum.f without
expanding the math library functions:

ifort -ip -nolib_inline sum.f

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

88

Profile-guided Optimizations

Profile-guided Optimizations Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application
are most frequently executed. By knowing these areas, the compiler is able to be
more selective and specific in optimizing the application. For example, the use of
PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source
code and special code from the compiler. Each time this instrumented code is
executed, the instrumented program generates a dynamic information file. When
you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to
optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of
IPO and PGO vary. This is due to each program having a different profile and
different opportunities for optimizations. The guidelines provided help you
determine if you can benefit by using IPO and PGO. You need to understanding
the principles of the optimizations and the unique aspects of your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following
ways:

• Register allocation uses the profile information to optimize the location of
spill code.

• For indirect function calls, branch prediction is improved by identifying the
most likely targets. With the Intel® Pentium® 4 and Intel® Xeon(TM)
processors' longer pipeline, improving branch prediction translates into
high performance gains.

• The compiler detects and does not vectorize loops that execute only a
small number of iterations, reducing the run time overhead that
vectorization might otherwise add.

Profile-guided Optimizations Methodology and Usage Model

PGO works best for code with many frequently executed branches that are
difficult to predict at compile time. An example is the code with intensive error-
checking in which the error conditions are false most of the time. The "cold"
error-handling code can be placed such that the branch is hardly ever

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

89

mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases

The PGO methodology requires three phases and options:

1. Instrumentation compilation and linking with -prof_gen

2. Instrumented execution by running the executable; as a result, the dynamic-
information files (.dyn) are produced.

3. Feedback compilation with -prof_use

The flowcharts below illustrate this process for IA-32 compilation and Itanium®-
based compilation . A key factor in deciding whether you want to use PGO lies in
knowing which sections of your code are the most heavily used. If the data set
provided to your program is very consistent and it elicits a similar behavior on
every execution, then PGO can probably help optimize your program execution.
However, different data sets can elicit different algorithms to be called. This can
cause the behavior of your program to vary from one execution to the next.

Phases of Basic Profile-guided Optimization

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

90

PGO Usage Model

The chart that follows presents PGO usage model.

Here are the steps for a simple example (myApp.f90) for IA-32 systems.

1. Set

PROF_DIR=c:/myApp/prof_dir

2. Issue command

ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
myApp.exe as well as the corresponding static profile information pgopti.spi.

3. Execute myApp

Each invocation of myApp runs the instrumented application and generates one
or more new dynamic profile information files that have an extension .dyn in the
directory specified by PROF_DIR.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

91

4. Issue command

ifort -prof_use myApp.f90

At this step, the compiler merges all the .dyn files into one .dpi file
representing the total profile information of the application and generates the
optimized binary. The default name of the .dpi file is pgopti.dpi.

Basic PGO Options

The options used for basic PGO optimizations are:

• -prof_gen to generate instrumented code
• -prof_use to generate a profile-optimized executable
• -prof_format_32 to produce 32-bit counters for .dyn and .dpi files

In cases where your code behavior differs greatly between executions, you have
to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles. In the basic profile-guided optimization, the following
options are used in the phases of the PGO:

Generating Instrumented Code, -prof_gen

The -prof_gen option instruments the program for profiling to get the execution
count of each basic block. It is used in phase 1 of the PGO to instruct the
compiler to produce instrumented code in your object files in preparation for
instrumented execution. Parallel make is automatically supported for -prof_gen
compilations.

Generating a Profile-optimized Executable, -prof_use

The -prof_use option is used in phase 3 of the PGO to instruct the compiler to
produce a profile-optimized executable and merges available dynamic-
information (.dyn) files into a pgopti.dpi file.

Note:

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, -prof_use
merges the dynamic-information files again and overwrites the previous
pgopti.dpi file.

Using 32-bit Counters, -prof_format_32

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

92

The Intel Fortran compiler by default produces profile data with 64-bit counters to
handle large numbers of events in the .dyn and .dpi files. The -
prof_format_32 option produces 32-bit counters for compatibility with the
earlier compiler versions. If the format of the .dyn and .dpi files is incompatible
with the format used in the current compilation, the compiler issues the following
message:

Error: xxx.dyn has old or incompatible file format - delete
file and redo instrumentation compilation/execution.

Disabling Function Splitting, -fnsplit- (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by -
prof_use in phase 3 to improve code locality by splitting routines into different
sections: one section to contain the cold or very infrequently executed code and
one section to contain the rest of the code (hot code).

You can use -fnsplit- to disable function splitting for the following reasons:

• Most importantly, to get improved debugging capability. In the debug
symbol table, it is difficult to represent a split routine, that is, a routine with
some of its code in the hot code section and some of its code in the cold
code section.

The -fnsplit- option disables the splitting within a routine but enables
function grouping, an optimization in which entire routines are placed either
in the cold code section or the hot code section. Function grouping does
not degrade debugging capability.

• Another reason can arise when the profile data does not represent the
actual program behavior, that is, when the routine is actually used
frequently rather than infrequently.

Note
For Itanium®-based applications, if you intend to use the -prof_use option with
optimizations at the -O3 level, the -O3 option must be on. If you intend to use the
-prof_use option with optimizations at the -O2 level or lower, you can generate
the profile data with the default options.

See an example of using PGO.

Advanced PGO Options

The options controlling advanced PGO optimizations are:

• -prof_dirdirname

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

93

• -prof_filefilename.

Specifying the Directory for Dynamic Information Files

Use the -prof_dirdirname option to specify the directory in which you intend
to place the dynamic information (.dyn) files to be created. The default is the
directory where the program is compiled. The specified directory must already
exist.

You should specify -prof_dirdirname option with the same directory name
for both the instrumentation and feedback compilations. If you move the .dyn
files, you need to specify the new path.

Specifying Profiling Summary File

The -prof_filefilename option specifies file name for profiling summary
file.

Guidelines for Using Advanced PGO

When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution and
before feedback compilation. During feedback compilation, the compiler
ignores dynamic information for functions modified after that information
was generated.

Note
The compiler issues a warning that the dynamic information does not
correspond to a modified function.

• Repeat the instrumentation compilation if you make many changes to your
source files after execution and before feedback compilation.

• Specify the name of the profile summary file using the -
prof_filefilename option

See PGO Environment Variables.

PGO Environment Variables

The environment variables determine the directory in which to store dynamic
information files or whether to overwrite pgopti.dpi. The PGO environment
variables are described in the table below.

Variable Description
PROF_DIR Specifies the directory in which dynamic

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

94

information files are created. This variable
applies to all three phases of the profiling
process.

PROF_DUMP_INTERVAL Initiates interval profile dumping in an
instrumented user application.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly.
By default, during the feedback compilation
phase, the compiler merges the data from all
dynamic information files and creates a new
pgopti.dpi file, even if one already exists.
When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead,
the compiler issues a warning and you must
remove the pgopti.dpi file if you want to use
additional dynamic information files.

See also the documentation for your operating system for instructions on how to
specify environment variables and their values.

Example of Profile-Guided Optimization

The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking—Use -prof_gen to produce an
executable with instrumented information. Use also the -prof_dir option as
recommended for most programs, especially if the application includes the
source files located in multiple directories. -prof_dir ensures that the profile
information is generated in one consistent place. For example:

ifort -prof_gen -prof_dir/usr/profdata -c a1.f a2.f
a3.f

ifort -oa1 a1.o a2.o a3.o

In place of the second command, you could use the linker (ld) directly to
produce the instrumented program. If you do this, make sure you link with the
libirc.a library.

2. Instrumented Execution—Run your instrumented program with a
representative set of data to create a dynamic information file.

prompt>a1

The resulting dynamic information file has a unique name and .dyn suffix every
time you run a1. The instrumented file helps predict how the program runs with a

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

95

particular set of data. You can run the program more than once with different
input data.

3. Feedback Compilation—Compile and link the source files with -prof_use
to use the dynamic information to optimize your program according to its profile:

ifort -prof_use -prof_dir/usr/profdata -ipo a1.f a2.f
a3.f

Besides the optimization, the compiler produces a pgopti.dpi file. You
typically specify the default optimizations (-O2) for phase 1, and specify more
advanced optimizations (-ip or -ipo) for phase 3. This example used -O2 in
phase 1 and the -ipo in phase 3.

Note
The compiler ignores the -ip or the -ipo options with -prof_gen.

See Basic PGO Options.

Merging the .dyn Files

To merge the .dyn files, use the profmerge utility.

The profmerge Utility

The compiler executes profmerge automatically during the feedback
compilation phase when you specify -prof_use.

The command-line usage for profmerge is as follows:

profmerge [-nologo] [-prof_dirdirname]

where -prof_dirdirname is a profmerge utility option.

This merges all .dyn files in the current directory or the directory specified by -
prof_dir, and produces the summary file pgopti.dpi.

The -prof_filefilename option enables you to specify the name of the .dpi
file.

The command-line usage for profmerge with -prof_filefilename is as
follows:

profmerge [-nologo] [-prof_filefilename]

where /prof_filefilename is a profmerge utility option.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

96

Note

The profmerge tool merges all the .dyn files that exist in the given
directory. It is very important to make sure that unrelated .dyn files,
oftentimes from previous runs, are not present in that directory. Otherwise,
profile information will be based on invalid profile data. This can negatively
impact the performance of optimized code as well as generate misleading
coverage information.

Note

The .dyn files can be merged to a .dpi file by the profmerge tool
without recompiling the application.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from
Fortran. For complete description of the PGO API support routines, see PGO
API: Profile Information Generation Support.

As part of the instrumented execution phase of profile-guided optimization, the
instrumented program writes profile data to the dynamic information file (.dyn
file). The file is written after the instrumented program returns normally from
main() or calls the standard exit function. Programs that do not terminate
normally, can use the _PGOPTI_Prof_Dump function. During the
instrumentation compilation
(-prof_gen) you can add a call to this function to your program. Here is an
example:

INTERFACE
SUBROUTINE PGOPTI_PROF_DUMP()
!DEC$ ATTRIBUTES C,
ALIAS:'PGOPTI_Prof_Dump'::PGOPTI_PROF_DUMP
END SUBROUTINE
END INTERFACE
CALL PGOPTI_PROF_DUMP()

Note
You must remove the call or comment it out prior to the feedback
compilation with -prof_use.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file for each routine to look up the
profile summary information associated with that routine. By default, this prevents
you from:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

97

• Using the profile summary file (.dpi) if you move your application
sources.

• Sharing the profile summary file with another user who is building identical
application sources that are located in a different directory.

Source Relocation

To enable the movement of application sources, as well as the sharing of profile
summary files, use the profmerge with -src_old and -src_new options. For
example:

prompt>profmerge -prof_dir c:/work -src_old c:/work/sources
-src_new d:/project/src

The above command will read the c:/work/pgopti.dpi file. For each routine
represented in the pgopti.dpi file, whose source path begins with the
c:/work/sources prefix, profmerge replaces that prefix with
d:/project/src. The c:/work/pgopti.dpi file is updated with the new
source path information.

Notes

• You can execute profmerge more than once on a given pgopti.dpi
file. You may need to do this if the source files are located in
multiple directories. For example:

profmerge -src_old "c:/program files" -src_new
"e:/program files"

profmerge -src_old c:/proj/application -src_new
d:/app

• In the values specified for -src_old and -src_new, uppercase
and lowercase characters are treated as identical. Likewise,
forward slash (/) and backward slash (\) characters are treated as
identical.

• Because the source relocation feature of profmerge modifies the
pgopti.dpi file, you may wish to make a backup copy of the file
prior to performing the source relocation.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

98

Code-coverage Tool

The Intel® Compilers Code-coverage tool can be used for both IA-32 and
Itanium® architectures, in a number of ways to improve development efficiency,
reduce defects, and increase application performance. The major features of the
Intel Compilers code-coverage tool are:

• Visual presentation of the application's code coverage information with the
code-coverage coloring scheme

• Display of the dynamic execution counts of each basic block of the
application

• Differential coverage, or comparison of the profiles of the application's two
runs

Command-line Syntax

The syntax for this tool is as follows:

codecov [-codecov_option]

where -codecov_option is a tool option you choose to run the code coverage
with. If you do not use any option, the tool will provide the top level code
coverage for your whole program.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default
-help Prints all the options of the code-coverage tool.
-spi file Sets the path name of the static profile information

file .spi.
pgopti.spi

-dpi file Sets the path name of the dynamic profile
information file .dpi.

pgopti.dpi

-prj Sets the project name.
-counts Generates dynamic execution counts.
-
nopartial

Treats partially covered code as fully covered
code.

-comp Sets the filename that contains the list of files
of interest.

-ref Finds the differential coverage with respect to
ref_dpi_file.

-demang Demangles both function names and their
arguments.

-mname Sets the name of the web-page owner.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

99

-maddr Sets the email address of the web-page owner.
-bcolor Sets the html color name or code of the

uncovered blocks.
#ffff99

-fcolor Sets the html color name or code of the
uncovered functions.

#ffcccc

-pcolor Sets the html color name or code of the partially
covered code.

#fafad2

-ccolor Sets the html color name or code of the covered
code.

#ffffff

-ucolor Sets the html color name or code of the
unknown code.

#ffffff

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries
when testing an application, Intel® Compiler creates HTML files using a code-
coverage tool. These HTML files indicate portions of the source code that were
or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of
performance-critical modules is essential to taking full advantage of the profile-
guided optimizations.

The code-coverage tool can create two levels of coverage:

• Top level: for a group of selected modules
• Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that
were selected. The following options are provided:

• You can select the modules of interest
• For the selected modules, the tool generates a list with their coverage

information. The information includes the total number of functions and
blocks in a module and the portions that were covered.

• By clicking on the title of columns in the reported tables, the lists may be
sorted in ascending or descending order based on:

• basic block coverage
• function coverage
• function name.

The screenshot that follows shows a sample top-level coverage summary for a
project. By clicking on a module name (for example, SAMPLE.C), the browser will
display the coverage source view of that particular module.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

100

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to
identify uncovered code. The top frame displays the list of uncovered functions
while the bottom frame displays the list of covered functions. For uncovered
functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered
blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the
corresponding function were covered. The block coverage rate of that function is
thus 66.67%. These lists can be sorted based on the coverage rate, number of
blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the
least-covered function in the list and by another click the browser displays the
body of the function. The user can then scroll down in the source view and
browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered
functions as well as the list of covered functions. The lists are reported in two
distinct frames that provide easy navigation of the source code. The lists can be
sorted based on:

• the number of blocks within uncovered functions
• the block coverage in the case of covered functions

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

101

• the function names.

The following screen shows the coverage source view of SAMPLE.C.

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage
categories:

• covered code
• uncovered basic blocks
• uncovered functions
• partially covered code
• unknown.

The default colors that the tool uses for presenting the coverage information are
shown in the tables that follows.

This color Means
Covered code The portion of code colored in this color was exercised by the

tests. The default color can be overridden with the -ccolor
option.

Uncovered basic
block

Basic blocks that are colored in this color were not exercised
by any of the tests.

They were, however, within functions that were executed

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

102

during the tests.

The default color can be overridden with the -bcolor option.
Uncovered
function

Functions that are colored in this color were never called
during the tests. The default color can be overridden with the -
fcolor option.

Partially covered
code

More than one basic block was generated for the code at this
position.

Some of the blocks were covered while some were not. The
default color can be overridden with the -pcolor option.

Unknown No code was generated for this source line. Most probably, the
source at this position is a comment, a header-file inclusion, or
a variable declaration. The default color can be overridden with
the -ucolor option.

The default colors can be customized to be any valid HTML by using the options
mentioned for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following
heuristic. Source characters are scanned until reaching a position in the source
that is indicated by the profile information as the beginning of a basic block. If the
profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage
condition of that portion of the code, and the coverage tool inserts the
appropriate color change in the HTML files.

Note

You need to interpret the colors in the context of the code. For instance,
comment lines that follow a basic block that was never executed would be
colored in the same color as the uncovered blocks. Another example is the
closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel Compilers code-coverage tool is efficient
coverage analysis of an application' s subset of modules. This analysis is
accomplished based on the selected option -comp of the tool's execution.

You can generate the profile information for the whole application, or a subset of
it, and then break the covered modules into different components and use the
coverage tool to obtain the coverage information of each individual component. If
only a subset of the application modules is compiler with the -prof_genx
option, then the coverage information is generated only for those modules that
are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

103

To specify the modules of interest, use the tool's -comp option. This option takes
the name of a file as its argument. That file must be a text file that includes the
name of modules or directories you would like to analyze. Here is an example:

codecov -prj Project_Name -comp component1

Note

Each line of component file should include one, and only one, module
name.

Any module of the application whose full path name has an occurrence of any of
the names in the component file will be selected for coverage analysis. For
example, if a line of file component1 in the above example contains mod1.f90,
then all modules in the application that have such a name will be selected. The
user can specify a particular module by giving more specific path information. For
instance, if the line contains /cmp1/mod1.f90, then only those modules with
the name mod1.c will be selected that are in a directory named cmp1. If no
component file is specified, then all files that have been compiled with -
prof_genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the
application, and as such it is useful for both coverage and performance tuning.

The coverage tool can be configured to generate the information about the
dynamic execution counts. This configuration requires using the -counts option.
The counts information is displayed under the code after a ^ sign precisely under
the source position where the corresponding basic block begins. If more than one
basic block is generated for the code at a source position (for example, for
macros), then the total number of such blocks and the number of the blocks that
were executed are also displayed in front of the execution count.

For example, line 11 in the code is an IF statement:

11 IF ((N .EQ. 1).OR. (N .EQ. 0))
^ 10 (1/2)
12 PRINT N
^ 7

The coverage lines under code lines 11 and 12 contain the following information:

• The IF statement in line 11 was executed 10 times.
• Two basic blocks were generated for the IF statement in line 11.
• Only one of the two blocks was executed, hence the partial coverage

color.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

104

• Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a
single source position as one entity. In such cases, it is necessary to assume
that all blocks generated for one source position are covered when at least one
of the blocks is covered. This assumption can be configured with the
-nopartial option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11
and 12 indicate that the PRINT statement in line 12 was covered. However,
only one of the conditions in line 11 was ever true. With the -nopartial option,
the tool treats the partially covered code (like the code on line 11) as covered.

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's
two runs: a reference run and a new run identifying the code that is covered by
the new run but not covered by the reference run. This feature can be used to
find the portion of the application’s code that is not covered by the application’s
tests but is executed when the application is run by a customer. It can also be
used to find the incremental coverage impact of newly added tests to an
application’s test space.

The dynamic profile information of the reference run for differential coverage is
specified by the -ref option. such as in the following command:

codecov -prj Project_Name -dpi customer.dpi -ref
appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of
the code that was exercised on a new run but was missed in the reference run. In
such cases, the coverage tool shows only the modules that included the code
that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly.
The code that has the same coverage property (covered or not covered) on both
runs is considered as covered code. Otherwise, if the new run indicates that the
code was executed while in the reference run the code was not executed, then
the code is treated as uncovered. On the other hand, if the code is covered in the
reference run but not covered in the new run, the differential-coverage source
view shows the code as covered.

Running for Differential Coverage

Files Required

To run the Intel Compilers code-coverage tool for differential coverage, the
following files are required:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

105

• The application sources
• The .spi file generated by Intel Compilers when compiling the application

for the instrumented binaries with the -prof_genx option.
• The .dpi file generated by Intel Compilers profmerge utility as the result

of merging the dynamic profile information .dyn files or the .dpi file
generated implicitly by Intel Compilers when compiling the application with
the -prof_use option.

See Usage Model of the Profile-guided Optimizations.

Running

Once the required files are available, the coverage tool may be launched from
this command line:

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

The -spi and -dpi options specify the paths to the corresponding files.

The coverage tool also has the following additional options for generating a link
at the bottom of each HTML page to send an electronic message to a named
contact by using -mname and -maddr options.

codecov -prj Project_Name -mname John_Smith -maddr
js@company.com

Test Prioritization Tool

The Intel® Compilers Test-prioritization tool enables the profile-guided
optimizations to select and prioritize application's tests based on prior execution
profiles of the application. The tool offers a potential of significant time saving in
testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool enables the users to select and prioritize the tests that are most relevant
for any subset of the application's code. When certain modules of an application
are changed, the test-prioritization tool suggests the tests that are most probably
affected by the change. The tool analyzes the profile data from previous runs of
the application, discovers the dependency between the application's components
and its tests, and uses this information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code
coverage. The advantages of the tool usage can be summarized as follows:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

106

• Minimizing the number of tests that are required to achieve a given overall
coverage for any subset of the application: the tool defines the smallest
subset of the application tests that achieve exactly the same code
coverage as the entire set of tests.

• Reducing the turn-around time of testing: instead of spending a long time
on finding a possibly large number of failures, the tool enables the users to
quickly find a small number of tests that expose the defects associated
with the regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code
coverage in a minimal time based on the data of the tests' execution time.

Command-line Syntax

The syntax for this tool is as follows:

tselect -dpi_list file

where -dpi_list is a required tool option that sets the path to the DPI list file
that contains the list of the .dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default
-help Prints all the options of the test-prioritization

tool.
-spi file Sets the path name of the static profile

information file .spi.
pgopti.spi

-dpi_list
file

Sets the path name of the file that contains the
name of the dynamic profile information
(.dpi) files. Each line of the file should
contain one .dpi name optionally followed by
its execution time. The name must uniquely
identify the test.

-prof_dpi
file

Sets the path name of the output report
file.

-comp Sets the filename that contains the list of
files of interest.

-cutoff
value

Terminates when the cumulative block
coverage reaches value% of pre-
computed total coverage. value must be
greater than 0.0 (for example, 99.00). It
may be set to 100.

-nototal Does not pre-compute the total coverage.
-mintime Minimizes testing execution time. The

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

107

execution time of each test must be
provided on the same line of dpi_list
file after the test name in dd:hh:mm:ss
format.

-verbose Generates more logging information about
the program progress.

Usage Requirements

To run the test-prioritization tool on an application’s tests, the following files are
required:

• The .spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the -prof_genx option.

• The .dpi files generated by Intel Compilers profmerge tool as a result
of merging the dynamic profile information .dyn files of each of the
application tests. The user needs to apply the profmerge tool to all .dyn
files that are generated for each individual test and name the resulting
.dpi in a fashion that uniquely identifies the test. The profmerge tool
merges all the .dyn files that exist in the given directory.

Note

It is very important that the user makes sure that unrelated .dyn files,
oftentimes from previous runs or from other tests, are not present in that
directory. Otherwise, profile information will be based on invalid profile data.
This can negatively impact the performance of optimized code as well as
generate misleading coverage information.

• User-generated file containing the list of tests to be prioritized.

Note
For successful tool execution, you should:

§ Name each test .dpi file so that the file names uniquely
identify each test.

§ Create a DPI list file: a text file that contains the names of all
.dpi test files. The name of this file serves as an input for
the test-prioritization tool execution command. Each line of
the DPI list file should include one, and only one, .dpi file
name. The name can optionally be followed by the duration
of the execution time for a corresponding test in the
dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 informs that Test1
lasted 0 days, 0 hours, 60 minutes and 35 seconds.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

108

The execution time is optional. However, if it is not provided, then the tool
will not prioritize the test for minimizing execution time. It will prioritize to
minimize the number of tests only.

Usage Model

The chart that follows presents the test-prioritization tool usage model.

Here are the steps for a simple example (myApp.f90) for IA-32 systems.

1. Set

PROF_DIR=c:/myApp/prof_dir

2. Issue command

ifort -prof_genx myApp.f90

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

109

This command compiles the program and generates instrumented binary
myApp as well as the corresponding static profile information pgopti.spi.

3. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

4. Issue command

myApp < data1

Invocation of this command runs the instrumented application and generates
one or more new dynamic profile information files that have an extension
.dyn in the directory specified by PROF_DIR.

5. Issue command

profmerge -prof_dpi Test1.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test1.dpi) that represents the total profile information of the application on
Test1.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

7. Issue command

myApp < data2

This command runs the instrumented application and generates one or more
new dynamic profile information files that have an extension .dyn in the
directory specified by PROF_DIR.

8. Issue command

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test2.dpi) that represents the total profile information of the application on
Test2.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

110

9. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

10. Issue command

myApp < data3

This command runs the instrumented application and generates one or more
new dynamic profile information files that have an extension .dyn in the
directory specified by PROF_DIR.

11. Issue Command

profmerge -prof_dpi Test3.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test3.dpi) that represents the total profile information of the application on
Test3.

12. Create a file named tests_list with three lines. The first line contains
Test1.dpi, the second line contains Test2.dpi, and the third line contains
Test3.dpi.

When these items are available, the test-prioritization tool may be launched from
the command line in PROF_DIR directory as described in the following examples.
In all examples, the discussion references the same set of data.

Example 1 Minimizing the Number of Tests

tselect -dpi_list tests_list -spi pgopti.spi

where the /spi option specifies the path to the .spi file.

Here is a sample output from this run of the test-prioritization tool.

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00

Num %RatCvrg %BlkCvrg %FncCvrg Test Name @
Options

1 87.50 45.65 37.50 Test3.dpi
2 100.00 52.17 50.00 Test2.dpi

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

111

In this example, the test-prioritization tool has provided the following information:

• By running all three tests, we achieve 52.17% block coverage and 50.00%
function coverage.

• Test3 by itself covers 45.65% of the basic blocks of the application, which
is 87.50% of the total block coverage that can be achieved from all three
tests.

• By adding Test2, we achieve a cumulative block coverage of 52.17% or
100% of the total block coverage of Test1, Test2, and Test3.

• Elimination of Test1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in the tests_list
file.

Test1.dpi 00:00:60:35

Test2.dpi 00:00:10:15

Test3.dpi 00:00:30:45

The following command executes the test-prioritization tool to minimize the
execution time with the
-mintime option:

tselect -dpi_list tests_list -spi pgopti.spi -mintime

Here is a sample output.

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35

num elapsedTime %RatCvrg %BlkCvrg %FncCvrg Test Name
@ Options

1 10:15 75.00 39.13 25.00 Test2.dpi
2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would
require one hour, 45 minutes, and 35 seconds, while the selected tests would
achieve the same total block coverage in only 41 minutes.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

112

Note

The order of tests when prioritization is based on minimizing time (first
Test2, then Test3) could be different than when prioritization is done based
on minimizing the number of tests. See example above: first Test3, then
Test2. In Example 2, Test2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The -cutoff option enables the test-prioritization tool to exit when it reaches a
given level of basic block coverage.

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the above example, only Test3
will be selected, as it achieves 45.65% block coverage, which corresponds to
87.50% of the total block coverage that is reached from all three tests.

The test-prioritization tool does an initial merging of all the profile information to
figure out the total coverage that is obtained by running all the tests. The
-nototal option. enables you to skip this step. In such a case, only the
absolute coverage information will be reported, as the overall coverage remains
unknown.

PGO API: Profile Information Generation Support

PGO API Support Overview

The Profile Information Generation Support (Profile IGS) enables you to control
the generation of profile information during the instrumented execution phase of
profile-guided optimizations.

Normally, profile information is generated by an instrumented application when it
terminates by calling the standard exit() function.

To ensure that profile information is generated, the functions described in this
section may be necessary or useful in the following situations:

• The instrumented application exits using a non-standard exit routine.
• The instrumented application is a non-terminating application: exit() is

never called.
• The application requires control of when the profile information is

generated.

A set of functions and an environment variable comprise the Profile IGS.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

113

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header
file at the top of any source file where the functions may be used.

#include "pgouser.h"

Note
The Profile IGS functions are written in C language. Fortran applications need to
call C functions.

The rest of the topics in this section describe the Profile IGS functions.

Note
Without instrumentation, the Profile IGS functions cannot provide PGO API
support.

The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUMP_INTERVAL. This
environment variable may be used to initiate Interval Profile Dumping in an
instrumented user application. See the recommended usage of
_PGOPTI_Set_Interval_Prof_Dump() for more information.

Dumping Profile Information

The _PGOPTI_Prof_Dump() function dumps the profile information collected by
the instrumented application and has the following prototype:

void _PGOPTI_Prof_Dump(void);

The profile information is generated in a .dyn file (generated in phase 2 of the
PGO).

Recommended usage

Insert a single call to this function in the body of the function which terminates the
user application. Normally, _PGOPTI_Prof_Dump() should be called just once.

It is also possible to use this function in conjunction with the
_PGOPTI_Prof_Reset() function to generate multiple .dyn files (presumably
from multiple sets of input data).

Example
! selectively collect profile
information

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

114

! for the portion of the application
! involved in processing input data

input_data = get_input_data()
do while (input_data)
call _PGOPTI_Prof_Reset()
call process_data(input_data)
call _PGOPTI_Prof_Dump();
input_data = get_input_data();
end do

Resetting the Dynamic Profile Counters

The _PGOPTI_Prof_Reset() function resets the dynamic profile counters and
has the following prototype:

void _PGOPTI_Prof_Reset(void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information
on a section of the instrumented application. See the example under
_PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information

The _PGOPTI_Prof_Dump_And_Reset() function dumps the profile
information to a new .dyn file and then resets the dynamic profile counters.
Then the execution of the instrumented application continues. The prototype of
this function is:

void _PGOPTI_Prof_Dump_And_Reset(void);

This function is used in non-terminating applications and may be called more
than once.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate
one or more profile information files (.dyn files). These files are merged during
the feedback phase (phase 3) of profile-guided optimizations. The direct use of
this function enables your application to control precisely when the profile
information is generated.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

115

Interval Profile Dumping

The _PGOPTI_Set_Interval_Prof_Dump() function activates Interval Profile
Dumping and sets the approximate frequency at which dumps occur. The
prototype of the function call is:

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

This function is used in non-terminating applications.

The interval parameter specifies the time interval at which profile dumping
occurs and is measured in milliseconds. For example, if interval is set to 5000,
then a profile dump and reset will occur approximately every 5 seconds. The
interval is approximate because the time-check controlling the dump and reset
is only performed upon entry to any instrumented function in your application.

Notes

1. Setting interval to zero or a negative number will disable interval profile
dumping.

2. Setting a very small value for interval may cause the instrumented
application to spend nearly all of its time dumping profile information. Be
sure to set interval to a large enough value so that the application can
perform actual work and substantial profile information is collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to
initiate Interval Profile Dumping. Note that an alternative method of initiating
Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_INTERVAL, to the desired interval value prior to starting the
application.

The intention of Interval Profile Dumping is to allow a non-terminating application
to be profiled with minimal changes to the application source code.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

116

High-level Language Optimizations (HLO)

HLO Overview

High-level optimizations exploit the properties of source code constructs (for
example, loops and arrays) in the applications developed in high-level
programming languages, such as Fortran and C++. The high-level optimizations
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-
jam, blocking, data prefetch, scalar replacement, data layout optimizations and
loop unrolling techniques.

The option that turns on the high-level optimizations is -O3. The scope of
optimizations turned on by -O3 is different for IA-32 and Itanium®-based
applications. See Setting Optimization Levels.

IA-32 and Itanium®-based Applications

The -O3 option enables -O2 option and adds more aggressive optimizations; for
example, loop transformation and prefetching. -O3 optimizes for maximum
speed, but may not improve performance for some programs.

IA-32 Applications

In conjunction with the vectorization options, -ax{K|W|N|B|P} and -
x{K|W|N|B|P}, the -O3 option causes the compiler to perform more aggressive
data dependency analysis than for default -O2. This may result in longer
compilation times.

Itanium-based Applications

The -ivdep_parallel option asserts there is no loop-carried dependency in
the loop where IVDEP directive is specified. This is useful for sparse matrix
applications.

Loop Transformations

The loop transformation techniques include:

• loop normalization
• loop reversal
• loop interchange and permutation
• loop skewing
• loop distribution
• loop fusion
• scalar replacement

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

117

The loop transformations listed above are supported by data dependence. The
loop transformation techniques also include:

• induction variable elimination
• constant propagation
• copy propagation
• forward substitution
• and dead code elimination.

In addition to the loop transformations listed for both IA-32 and Itanium®
architectures above, the Itanium architecture enables implementation of the
collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done
mainly by replacing array references with register references.

While the compiler replaces some array references with register references when
-O1 or -O2 is specified, more aggressive replacement is performed when -O3 (-
scalar_rep) is specified. For example, with -O3 the compiler attempts
replacement when there are loop-carried dependences or when data-
dependence analysis is required for memory disambiguation.

-scalar_rep[-] Enables (default) or disables scalar
replacement performed during loop
transformations (requires -O3).

Loop Unrolling with -unroll[n]

The -unroll[n] option is used in the following way:

• -unrolln specifies the maximum number of times you want to unroll a
loop. The following example unrolls a loop at most four times:

ifort -unroll4 a.f

To disable loop unrolling, specify n as 0. The following example disables loop
unrolling:

ifort -unroll0 a.f

• -unroll (n omitted) lets the compiler decide whether to perform unrolling
or not.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

118

• -unroll0 (n = 0) disables unroller.

Itanium® compiler currently uses only n = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:

• Unrolling eliminates branches and some of the code.
• Unrolling enables you to aggressively schedule (or pipeline) the loop to

hide latencies if you have enough free registers to keep variables live.
• The Intel® Pentium® 4 or Intel® Xeon(TM) processors can correctly

predict the exit branch for an inner loop that has 16 or fewer iterations, if
that number of iterations is predictable and there are no conditional
branches in the loop. Therefore, if the loop body size is not excessive, and
the probable number of iterations is known, unroll inner loops for:
- Pentium 4 or Intel Xeon processor, until they have a maximum of 16
iterations
- Pentium III or Pentium II processors, until they have a maximum of 4
iterations

The potential costs are:

• Excessive unrolling, or unrolling of very large loops can lead to increased
code size.

• If the number of iterations of the unrolled loop is 16 or less, the branch
predictor should be able to correctly predict branches in the loop body that
alternate direction.

For more information on how to optimize with -unroll[n], refer to Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

Absence of Loop-carried Memory Dependency with IVDEP
Directive

For Itanium®-based applications, the -ivdep_parallel option indicates there
is absolutely no loop-carried memory dependency in the loop where IVDEP
directive is specified. This technique is useful for some sparse matrix
applications.

For example, the following loop requires -ivdep_parallel in addition to the
directive IVDEP to indicate there is no loop-carried dependencies.

!DIR$ IVDEP
do i=1,n
e(ix(2,i))=e(ix(2,i))+1.0

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

119

e(ix(3,i))=e(ix(3,i))+2.0
enddo

The following example shows that using this option and the IVDEP directive
ensures there is no loop-carried dependency for the store into a().

!DIR$IVDEP
do j=1,n
a(b(j)) = a(b(j))+1
enddo

See IVDEP directive for Vectorization Support.

Prefetching

The goal of -prefetch insertion is to reduce cache misses by providing hints to
the processor about when data should be loaded into the cache. The prefetching
optimizations implement the following options:

-prefetch[-] Enable or disable (-prefetch-)
prefetch insertion. This option
requires that -O3 be specified. The
default with -O3 is -prefetch.

To facilitate compiler optimization:

• Minimize use of global variables and pointers.
• Minimize use of complex control flow.
• Choose data types carefully and avoid type casting.

For more information on how to optimize with -prefetch[-], refer to Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

In addition to the -prefetch option, an intrinsic subroutine, MM_PREFETCH, is
also available. This intrinsic subroutine prefetches data from the specified
address on one memory cache line. For details, refer to the Intel® Fortran
Language Reference.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

120

Parallel Programming with Intel®
Fortran
Parallelism: an Overview

This section discusses the three major features of parallel programming
supported by the Intel® Fortran compiler: OpenMP*, Auto-parallelization, and
Auto-vectorization. Each of these features contributes to the application
performance depending on the number of processors, target architecture (IA-32
or Itanium® architecture), and the nature of the application. The three features
OpenMP, Auto-parallelization and Auto-vectorization, can be combined arbitrarily
to contribute to the application performance.

Parallel programming can be explicit, that is, defined by a programmer using
OpenMP directives. Parallel programming can be implicit, that is, detected
automatically by the compiler. Implicit parallelism implements Auto-parallelization
of outer-most loops and Auto-vectorization of innermost loops.

Parallelism defined with OpenMP and Auto-parallelization directives is based on
thread-level parallelism (TLP). Parallelism defined with Auto-vectorization
techniques is based on instruction-level parallelism (ILP).

The Intel Fortran compiler supports OpenMP and Auto-parallelization on both IA-
32 and Itanium architectures for multiprocessor systems as well as on single IA-
32 processors with Hyper-Threading Technology (for Hyper-Threading
Technology, refer to the IA-32 Intel® Architecture Optimization Reference
Manual). Auto-vectorization is supported on the families of the Pentium®,
Pentium with MMX(TM) technology, Pentium II, Pentium III, and Pentium 4
processors. To enhance the compilation of the code with Auto-vectorization, the
users can also add vectorizer directives to their program. A closely related
technique that is available on the Itanium-based systems is software pipelining
(SWP).

The table below summarizes the different ways in which parallelism can be
exploited with the Intel Fortran compiler.

Parallelism

Explicit

Parallelism programmed
by the user

Implicit

Parallelism generated by compiler and by user-
supplied hints

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

121

OpenMP* (TLP)

IA-32 and Itanium
architectures

Auto-parallelization
(TLP)
of outer-most loops

IA-32 and Itanium
architectures

Auto-vectorization
(ILP)
of inner-most loops

IA-32 only

Software pipelining
for Itanium
architecture

Supported on Supported on
IA-32 or Itanium-based Multiprocessor systems;

IA-32 Hyper-Threading Technology-enabled
systems.

Pentium®, Pentium
with MMX™
Technology, Pentium
II, Pentium III, and
Pentium 4 processors

Parallel Program Development

The Intel Fortran Compiler supports the OpenMP Fortran version 2.0 API
specification available from the www.openmp.org web site. The OpenMP
directives relieve the user from having to deal with the low-level details of
iteration space partitioning, data sharing, and thread scheduling and
synchronization.

The Auto-parallelization feature of the Intel Fortran Compiler automatically
translates serial portions of the input program into semantically equivalent
multithreaded code. Automatic parallelization determines the loops that are good
worksharing candidates, performs the dataflow analysis to verify correct parallel
execution, and partitions the data for threaded code generation as is needed in
programming with OpenMP directives. The OpenMP and Auto-parallelization
applications provide the performance gains from shared memory on
multiprocessor systems and IA-32 processors with the Hyper-Threading
Technology.

Auto-vectorization detects low-level operations in the program that can be done
in parallel, and then converts the sequential program to process 2, 4, 8 or up to
16 elements in one operation, depending on the data type. In some cases auto-
parallelization and vectorization can be combined for better performance results.
For example, in the code below, TLP can be exploited in the outermost loop,
while ILP can be exploited in the innermost loop.

DO I = 1, 100 ! execute groups of
iterations in different

! threads (TLP)
DO J = 1, 32 ! execute in SIMD style with
multimedia

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

122

! extension (ILP)
A(J,I) = A(J,I) + 1
ENDDO
ENDDO

Auto-vectorization can help improve performance of an application that runs on
the systems based on Pentium®, Pentium with MMX(TM) technology, Pentium
II, Pentium III, and Pentium 4 processors.

The following table lists the options that enable Auto-vectorization, Auto-
parallelization, and OpenMP support.

Auto-vectorization, IA-32 only
-x{K|W|N|B|P} Generates specialized code to run exclusively

on processors with the extensions specified by
{K|W|N|B|P}.

-ax{K|W|N|B|P} Generates, in a single binary, code specialized
to the extensions specified by {K|W|N|B|P}
and also generic IA-32 code. The generic
code is usually slower.

-
vec_report{0|1|2|3|4|5}

Controls the diagnostic messages from the
vectorizer, see subsection that follows the
table.

Auto-parallelization, IA-32 and Itanium architectures
-parallel Enables the auto-parallelizer to generate

multithreaded code for loops that can be
safely executed in parallel. Default: OFF.

-par_threshold{n} Sets a threshold for the auto-parallelization of
loops based on the probability of profitable
execution of the loop in parallel, n=0 to 100.
n=0 implies "always." Default: n=75.

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic
levels.
Default: -par_report1.

OpenMP, IA-32 and Itanium architectures
-openmp Enables the parallelizer to generate

multithreaded code based on the OpenMP
directives. Default: OFF.

-openmp_report{0|1|2} Controls the OpenMP parallelizer's diagnostic
levels. Default: /Qopenmp_report1.

-openmp_stubs Enables compilation of OpenMP programs in
sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked.
Default: OFF.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

123

Note

When both -openmp and -parallel are specified on the command line,
the -parallel option is only honored in routines that do not contain
OpenMP Directives. For routines that contain OpenMP directives, only the
-openmp option is honored.

With the right choice of options, the programmers can:

• increase the performance of your application with minimum effort
• use compiler features to develop multithreaded programs faster

With a relatively small effort of adding the OpenMP directives to their code, the
programmers can transform a sequential program into a parallel program. The
following are examples of the OpenMP directives within the code:

!OMP$ PARALLEL PRIVATE(NUM), SHARED (X,A,B,C)
!Defines a parallel region

!OMP$ PARALLEL DO ! Specifies a parallel region that
! implicitly contains a single DO directive

DO I = 1, 1000
NUM = FOO(B(i), C(I))
X(I) = BAR(A(I), NUM)

! Assume FOO and BAR have no side effects
ENDDO

See examples of the Auto-parallelization and Auto-vectorization directives in the
respective sections.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

124

Auto-vectorization (IA-32 Only)

Vectorization Overview

The vectorizer is a component of the Intel® Fortran Compiler that automatically
uses SIMD instructions in the MMX(TM), SSE, and SSE2 instruction sets. The
vectorizer detects operations in the program that can be done in parallel, and
then converts the sequential operations like one SIMD instruction that processes
2, 4, 8 or up to 16 elements in parallel, depending on the data type.

This section provides options description, guidelines, and examples for Intel
Fortran Compiler vectorization implemented by IA-32 compiler only. For
additional information, see Publications on Compiler Optimizations.

The following list summarizes this section contents.

• Descriptions of compiler options to control vectorization
• Vectorization Key Programming Guidelines
• Discussion and general guidelines on vectorization levels:

—automatic vectorization

—vectorization with user intervention

• Examples demonstrating typical vectorization issues and resolutions

The Intel compiler supports a variety of directives that can help the compiler to
generate effective vector instructions. See compiler directives supporting
vectorization.

Vectorizer Options

Vectorization is an IA-32-specific feature and can be summarized by the
command line options described in the following tables. Vectorization depends
upon the compiler's ability to disambiguate memory references. Certain options
may enable the compiler to do better vectorization. These options can enable
other optimizations in addition to vectorization. When an -x{K|W|N|B|P} or
-ax{K|W|N|B|P} is used and -O2 (which is ON by default) is also in effect, the
vectorizer is enabled. The -x{K|W|N|B|P} or -ax{K|W|N|B|P} options
enable vectorizer with -O1 and -O3 options also.

-x{K|W|N|B|P} Generate specialized code to run
exclusively on the processors
supporting the extensions indicated by
{K|W|N|B|P}. See Processor-

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

125

Specific Exclusive Specialized Code
(IA-32 only) for details.

-ax{K|W|N|B|P} Generates, in a single binary, code
specialized to the extensions specified
by {K|W|N|B|P} and also generic IA-
32 code. The generic code is usually
slower. See Processor Automatic Non-
Exclusive Specialized Code (IA-32
only) for details.

-vec_report
{0|1|2|3|4|5}
Default:
-vec_report1

Controls the diagnostic messages from
the vectorizer, see subsection that
follows the table.

Vectorization Reports

The -vec_report{0|1|2|3|4|5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_report0: no diagnostic information is displayed

-vec_report1: display diagnostics indicating loops successfully vectorized
(default)

-vec_report2: same as -vec_report1, plus diagnostics indicating loops not
successfully vectorized

-vec_report3: same as -vec_report2, plus additional information about any
proven or assumed dependences
-vec_report4: indicate non-vectorized loops
-vec_report5: indicate non-vectorized loops and the reason why they were not
vectorized.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when
executable is generated. Therefore if you use the -c option and a -
vec_report{n} option in the command line, no report will be generated.

If you use -c, -ipo and -x{K|W|N|B|P} or -ax{K|W|N|B|P} and -
vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add
the -ipo_obj option. The combination of -c and -ipo_obj produces a single
file compilation, and hence does generate object code, and eventually a report is
generated.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

126

The following commands generate vectorization report:

ifort -x{K|W|N|B|P} -vec_report3 file.f

ifort -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.f

ifort -c -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.f

Loop Parallelization and Vectorization

Combining the -parallel and -x{K|W|N|B|P} options instructs the compiler
to attempt both automatic loop parallelization and automatic loop vectorization in
the same compilation. In most cases, the compiler will consider outermost loops
for parallelization and innermost loops for vectorization. If deemed profitable,
however, the compiler may even apply loop parallelization and vectorization to
the same loop. See Guidelines for Effective Auto-parallelization Usage and
Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically
or by means of OpenMP* directives) may affect the messages reported by the
compiler for a non-vectorizable loop in a non-intuitive way.

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data
(SIMD) processing automatically. Users can help however by supplying the
compiler with additional information; for example, directives. Review these
guidelines and restrictions, see code examples in further topics, and check them
against your code to eliminate ambiguities that prevent the compiler from
achieving optimal vectorization.

Guidelines

You will often need to make some changes to your loops.

For loop bodies -

Use:

• Straight-line code (a single basic block)
• Vector data only; that is, arrays and invariant expressions on the right

hand side of assignments. Array references can appear on the left hand
side of assignments.

• Only assignment statements

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

127

Avoid:

• Function calls
• Unvectorizable operations (other than mathematical)
• Mixing vectorizable types in the same loop
• Data-dependent loop exit conditions
• Loop unrolling (compiler does it)
• Decomposing one loop with several statements in the body into several

single-statement loops.

Restrictions

Vectorization depends on the two major factors:

• Hardware. The compiler is limited by restrictions imposed by the
underlying hardware. In the case of Streaming SIMD Extensions, the
vector memory operations are limited to stride-1 accesses with a
preference to 16-byte-aligned memory references. This means that if the
compiler abstractly recognizes a loop as vectorizable, it still might not
vectorize it for a distinct target architecture.

• Style. The style in which you write source code can inhibit optimization.
For example, a common problem with global pointers is that they often
prevent the compiler from being able to prove that two memory references
refer to distinct locations. Consequently, this prevents certain reordering
transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found
in loop structures. The ambiguity arises from the complexity of the keywords,
operators, data references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret
diagnostic messages, you can modify your program to overcome the known
limitations and enable effective vectorization. The following sections summarize
the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the
operations in serial loops. Because vectorization rearranges the order in which
operations are executed, any auto-vectorizer must have at its disposal some
form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In
this example, the value of each element of an array is dependent on the value of
its neighbor that was computed in the previous iteration.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

128

Data-dependent Loop
REAL DATA(0:N)
INTEGER I
DO I=1, N-1
DATA(I) =DATA(I-1)*0.25+DATA(I)*0.5+DATA(I+1)*0.25
END DO

The loop in the above example is not vectorizable because the WRITE to the
current element DATA(I) is dependent on the use of the preceding element
DATA(I-1), which has already been written to and changed in the previous
iteration. To see this, look at the access patterns of the array for the first two
iterations as shown below.

Data Dependence Vectorization
Patterns
I=1: READ DATA (0)
READ DATA (1)
READ DATA (2)
WRITE DATA (1)
I=2: READ DATA(1)
READ DATA (2)
READ DATA (3)
WRITE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from
during the second iteration was written to in the first iteration. For vectorization, it
must be possible to do the iterations in parallel, without changing the semantics
of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two
memory accesses may overlap. Given two references in a program, the
conditions are defined by:

• whether the referenced variables may be aliases for the same (or
overlapping) regions in memory, and, for array references

• the relationship between the subscripts

For IA-32, data dependence analyzer for array references is organized as a
series of tests, which progressively increase in power as well as in time and
space costs. First, a number of simple tests are performed in a dimension-by-
dimension manner, since independence in any dimension will exclude any
dependence relationship. Multidimensional arrays references that may cross their
declared dimension boundaries can be converted to their linearized form before
the tests are applied. Some of the simple tests that can be used are the fast
greatest common divisor (GCD) test and the extended bounds test. The GCD

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

129

test proves independence if the GCD of the coefficients of loop indices cannot
evenly divide the constant term. The extended bounds test checks for potential
overlap of the extreme values in subscript expressions. If all simple tests fail to
prove independence, we eventually resort to a powerful hierarchical dependence
solver that uses Fourier-Motzkin elimination to solve the data dependence
problem in all dimensions. For more details of data dependence theory and data
dependence analysis, refer to the Publications on Compiler Optimizations.

Loop Constructs

Loops can be formed with the usual DO-ENDDO and DO WHILE, or by using a
GOTO and a label. However, the loops must have a single entry and a single exit
to be vectorized. Following are the examples of correct and incorrect usages of
loop constructs.

Correct Usage
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100),
C(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
IF (A(I) .LT. 0.0) A(I) =
0.0
I = I + 1
ENDDO
RETURN
END

Incorrect Usage
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100),
C(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
C The next statement
allows early
C exit from the loop and
prevents
C vectorization of the
loop.
IF (A(I) .LT. 0.0) GOTO 10
I = I + 1
ENDDO
10 CONTINUE
RETURN
END

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

130

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For
example, fixed indexes for loops determine the iterations. The loop iterations
must be countable; that is, the number of iterations must be expressed as one of
the following:

• a constant
• a loop invariant term
• a linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below
show countable and non-countable loop constructs.

Correct Usage for Countable Loop,
Example 1
SUBROUTINE FOO (A, B, C, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER N, LB, I, COUNT
! Number of iterations is "N - LB
+ 1"
COUNT = N
DO WHILE (COUNT .GE. LB)
A(I) = B(I) * C(I)
COUNT = COUNT - 1
I = I + 1
ENDDO ! LB is not defined within
loop
RETURN
END

Correct Usage for Countable Loop,
Example 2
! Number of iterations is (N-M+2)
/2
SUBROUTINE FOO (A, B, C, M, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER I, L, M, N
I = 1;
DO L = M,N,2
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Incorrect Usage for Non-countable Loop
! Number of iterations is
dependent on A(I)
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100),C(100)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

131

INTEGER I
I = 1
DO WHILE (A(I) .GT. 0.0)
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD
Extensions (SSE) provide SIMD instructions for most arithmetic and logical
operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved.
A 32-bit shift-right operator, for instance, is not vectorized in 16-bit mode if the
final stored value is a 16-bit integer. Because the MMX(TM) and SSE instruction
sets are not fully orthogonal (shifts on byte operands, for instance, are not
supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision
floating-point numbers, SSE provides SIMD instructions for the arithmetic
operators '+', '-', '*', and '/'. In addition, SSE provides SIMD instructions for the
binary MIN and MAX and unary SQRT operators. SIMD versions of several other
mathematical operators (like the trigonometric functions SIN, COS, TAN) are
supported in software in a vector mathematical run-time library that is provided
with the Intel® Fortran Compiler, of which the compiler takes advantage.

Strip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique
for enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. By fragmenting a large loop into smaller segments or
strips, this technique transforms the loop structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data
are reusable in different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of
each "vector," or number of operations being performed per SIMD
operation. In the case of Streaming SIMD Extensions, this vector or strip-
length is reduced by 4 times: four floating-point data items per single
Streaming SIMD Extensions single-precision floating-point SIMD operation
are processed.

First introduced for vectorizers, this technique consists of the generation of code
when each vector operation is done for a size less than or equal to the maximum
vector length on a given vector machine.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

132

The compiler automatically strip-mines your loop and generates a cleanup loop.

Stripmining and Cleanup Loops
Before Vectorization

i = 1
do while (i<=n)
a(i) = b(i) + c(i) ! Original loop
code
i = i + 1
end do

After Vectorization

!The vectorizer generates the
following two loops
i = 1
do while (i < (n - mod(n,4)))
! Vector strip-mined loop.
a(i:i+3) = b(i:i+3) + c(i:i+3)
i = i + 4
end do
do while (i <= n)
a(i) = b(i) + c(i) !Scalar
clean-up loop
i = i + 1
end do

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions.
Loop blocking is a useful technique for memory performance optimization. The
main purpose of loop blocking is to eliminate as many cache misses as possible.
This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be
small enough to fit all the data for a given computation into the cache, thereby
maximizing data reuse.

Consider the following example. The two-dimensional array A is referenced in the
j (column) direction and then in the i (row) direction (column-major order); array
B is referenced in the opposite manner (row-major order). Assume the memory
layout is in column-major order; therefore, the access strides of array A and B for
the code would be 1 and MAX, respectively.

In the B. example: BS = block_size; MAX must be evenly divisible by BS.

Loop Blocking of Arrays
A. Original loop

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

133

REAL A(MAX,MAX), B(MAX,MAX)
DO I =1, MAX
DO J = 1, MAX
A(I,J) = A(I,J) + B(J,I)

ENDDO
ENDDO

B. Transformed Loop after blocking

REAL A(MAX,MAX), B(MAX,MAX)
DO I =1, MAX, BS
DO J = 1, MAX, BS
DO II = I, I+MAX, BS-1

DO J = J, J+MAX, BS-1
A(II,JJ) = A(II,JJ) +

B(JJ,II)
ENDDO

ENDDO
ENDDO
ENDDO

Statements in the Loop Body

The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on
arrays). Arithmetic operations supported are addition, subtraction, multiplication,
division, negation, square root, MAX, MIN, and mathematical functions such as
SIN and COS. Note that conversion to/from some types of floats is not valid.
Operation on DOUBLE PRECISION types is not valid, unless optimizing for an
Intel®
Pentium® 4 and Intel® Xeon(TM) processors' system, and Intel® Pentium® M
processor, using the -xW or -axW compiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations
(again, typically for arrays). Arithmetic operations are limited to such operations
as addition, subtraction, ABS, MIN, and MAX. Logical operations include bitwise
AND, OR and XOR operators. You can mix data types only if the conversion can be
done without a loss of precision. Some example operators where you can mix
data types are multiplication, shift, or unary operators.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

134

Other Operations

No statements other than the preceding floating-point and integer operations are
permitted. The loop body cannot contain any function calls other than the ones
described above.

Vectorization Examples

This section contains simple examples of some common issues in vector
programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because
the compiler cannot prove that DEST(A(I)) and DEST(B(I)) are distinct.

Unvectorizable Copy Due to
Unproven Distinction
SUBROUTINE
VEC_COPY(DEST,A,B,LEN)
DIMENSION DEST(*)
INTEGER A(*), B(*)
INTEGER LEN, I
DO I=1,LEN
DEST(A(I)) = DEST(B(I))
END DO
RETURN
END

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the
beginning of each structure or array element is aligned in a way that its base
address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a
data cache unit (DCU) split due to misaligned data. The code loads the
misaligned data across a 16-byte boundary, which results in an additional
memory access causing a six- to twelve-cycle stall. You can avoid the stalls if
you know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte
Boundary

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

135

After vectorization, the loop is executed as shown in figure below.

Vector and Scalar Clean-up Iterations

Both the vector iterations A(1:4) = B(1:4); and A(5:8) = B(5:8); can be
implemented with aligned moves if both the elements A(1) and B(1) are 16-
byte aligned.

Caution
If you specify the vectorizer with incorrect alignment options, the compiler
will generate code with unexpected behavior. Specifically, using aligned
moves on unaligned data, will result in an illegal instruction exception!

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the
alignment of data structures is not known at compile-time. A simple example is
shown below (several other strategies are supported as well). If in the loop
shown below the alignment of A is unknown, the compiler will generate a prelude
loop that iterates until the array reference, that occurs the most, hits an aligned
address. This makes the alignment properties of A known, and the vector loop is
optimized accordingly. In this case, the vectorizer applies dynamic loop peeling,
a specific Intel® Fortran feature.

Data Alignment Example
Original loop:
SUBROUTINE DOIT(A)
REAL A(100) ! alignment of argument
A is unknown
DO I = 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

Aligning Data

! The vectorizer will apply dynamic loop
peeling as follows:
SUBROUTINE DOIT(A)
REAL A(100)
! let P be (A%16)where A is address of
A(1)
IF (P .NE. 0) THEN
P = (16 - P) /4 ! determine run-time

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

136

peeling
! factor

DO I = 1, P
A(I) = A(I) + 1.0
ENDDO
ENDIF
! Now this loop starts at a 16-byte
boundary,
! and will be vectorized accordingly
DO I = P + 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

DO I=1, N
DO J=1, N
DO K=1, N
C(I,J) = C(I,J) +
A(I,K)*B(K,J)
END DO
END DO
END DO

The use of B(K,J), is not a stride-1 reference and therefore will not normally
be vectorizable. If the loops are interchanged, however, all the references will
become stride-1 as in the Matrix Multiplication with Stride-1 example that
follows.

Note
Interchanging is not always possible because of dependencies, which can
lead to different results.

Matrix Multiplication with Stride-1
DO J=1,N
DO K=1,N
DO I=1,N
C(I,J) = C(I,J) +
A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO

For additional information, see Publications on Compiler Optimizations.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

137

Auto-parallelization

Auto-parallelization Overview

The auto-parallelization feature of the Intel® Fortran Compiler automatically
translates serial portions of the input program into equivalent multithreaded code.
The auto-parallelizer analyzes the dataflow of the program’s loops and generates
multithreaded code for those loops which can be safely and efficiently executed
in parallel. This enables the potential exploitation of the parallel architecture
found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

• having to deal with the details of finding loops that are good worksharing
candidates

• performing the dataflow analysis to verify correct parallel execution
• partitioning the data for threaded code generation as is needed in

programming with OpenMP* directives.

The parallel run-time support provides the same run-time features as found in
OpenMP, such as handling the details of loop iteration modification, thread
scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel
applications quickly, the programmer must explicitly identify specific portions of
the application code that contain parallelism and add the appropriate compiler
directives. Auto-parallelization triggered by the -parallel option automatically
identifies those loop structures, which contain parallelism. During compilation, the
compiler automatically attempts to decompose the code sequences into separate
threads for parallel processing. No other effort by the programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so
that it can be executed concurrently on two threads:

Original Serial Code

do i=1,100
a(i) = a(i) + b(i) * c(i)

enddo

Transformed Parallel Code

Thread 1
do i=1,50
a(i) = a(i) + b(i) * c(i)
enddo

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

138

Thread 2
do i=50,100
a(i) = a(i) + b(i) * c(i)
enddo

Programming with Auto-parallelization

Auto-parallelization feature implements some concepts of OpenMP, such as
worksharing construct (with the PARALLEL DO directive). See Programming with
OpenMP for worksharing construct. This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization Usage

A loop is parallelizable if:

• The loop is countable at compile time: this means that an expression
representing how many times the loop will execute (also called "the loop
trip count") can be generated just before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after READ) or
ANTI (WRITE after READ) loop-carried data dependences. A loop-carried
data dependence occurs when the same memory location is referenced in
different iterations of the loop. At the compiler's discretion, a loop may be
parallelized if any assumed inhibiting loop-carried dependencies can be
resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in
parallel for loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these
coding guidelines:

• Expose the trip count of loops whenever possible; specifically use constants
where the trip count is known and save loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to
carry dependent data, for example, procedure calls, ambiguous indirect
references or global references.

• Insert the !DEC$ PARALLEL directive to disambiguate assumed data
dependencies.

• Insert the !DEC$ NOPARALLEL directive before loops known to have
insufficient work to justify the overhead of sharing among threads.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

139

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classification ---> Dependence analysis --->
High-level parallelization --> Data partitioning ---> Multi-threaded code
generation.

These steps include:

• Data flow analysis: compute the flow of data through the program
• Loop classification: determine loop candidates for parallelization based on

correctness and efficiency as shown by threshold analysis
• Dependence analysis: compute the dependence analysis for references in

each loop nest
• High-level parallelization:

- analyze dependence graph to determine loops which can execute in
parallel.

- compute run-time dependency

• Data partitioning: examine data reference and partition based on the
following types of access: SHARED, PRIVATE, and FIRSTPRIVATE

• Multi-threaded code generation:

- modify loop parameters

- generate entry/exit per threaded task

- generate calls to parallel run-time routines for thread creation and
synchronization

Auto-parallelization: Enabling, Options, Directives, and
Environment Variables

To enable the auto-parallelizer, use the -parallel option. The -parallel
option detects parallel loops capable of being executed safely in parallel and
automatically generates multithreaded code for these loops. An example of the
command using auto-parallelization is as follows:

ifort -c -parallel myprog.f

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

140

Auto-parallelization Options

The -parallel option enables the auto-parallelizer if the -O2 (or -O3)
optimization option is also on (the default is -O2). The -parallel option detects
parallel loops capable of being executed safely in parallel and automatically
generates multithreaded code for these loops.

-parallel Enables the auto-parallelizer
-par_threshold{1-
100}

Controls the work threshold
needed for auto-parallelization,
see later subsection.

-
par_report{1|2|3}

Controls the diagnostic
messages from the auto-
parallelizer, see later
subsection.

Auto-parallelization Directives

Auto-parallelization uses two specific directives,
!DEC$ PARALLEL and !DEC$ NOPARALLEL.

Auto-parallelization Directives Format and Syntax

The format of Intel Fortran auto-parallelization compiler directive is:

<prefix> <directive>

where the brackets above mean:

• <xxx>: the prefix and directive are required

For fixed form source input, the prefix is !DEC$ or CDEC$

For free form source input, the prefix is !DEC$ only.

The prefix is followed by the directive name; for example:

!DEC$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the
directives take the form of comments if you omit the -parallel option.

Examples

The !DEC$ PARALLEL directive instructs the compiler to ignore dependencies
which it assumes may exist and which would prevent correct parallelization in the

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

141

immediately following loop. However, if dependencies are proven, they are not
ignored.

The !DEC$ NOPARALLEL directive disables auto-parallelization for the
immediately following loop.

program main
parameter (n=100)
integer x(n),a(n)

!DEC$ NOPARALLEL
do i=1,n
x(i) = i
enddo

!DEC$ PARALLEL
do i=1,n
a(x(i)) = i
enddo
end

Auto-parallelization Environment Variables

Option Description Default
OMP_NUM_THREADS Controls the number of

threads used.
Number of processors
currently installed in the
system while
generating the
executable

OMP_SCHEDULE Specifies the type of run-
time scheduling.

static

Auto-parallelization Threshold Control and Diagnostics

Threshold Control

The -par_threshold{n} option sets a threshold for auto-parallelization of
loops based on the probability of profitable execution of the loop in parallel. The
value of n can be from 0 to 100. The default value is 100. The -
par_threshold{n} option should be used when the computation work in loops
cannot be determined at compile-time.

The meaning for various values of n is as follows:

• n = 100. Parallelization will only proceed when performance gains are
predicted based on the compiler analysis data. This is the default. This

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

142

value is used when -par_threshold{n} is not specified on the command
line or is used without specifying a value of n.

• n = 0, -par_threshold0 is specified. The loops get auto-parallelized
regardless of computation work volume, that is, parallelize always.

• The intermediate 1 to 99 values represent the percentage probability for
profitable speed-up. For example, n=50 would mean: parallelize only if there
is a 50% probability of the code speeding up if executed in parallel.

The compiler applies a heuristic that tries to balance the overhead of creating
multiple threads versus the amount of work available to be shared amongst the
threads.

Diagnostics

The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic
levels 0, 1, 2, or 3 as follows:

-par_report0 = no diagnostic information is displayed.

-par_report1 = indicates loops successfully auto-parallelized (default). Issues
a "LOOP AUTO-PARALLELIZED" message for parallel loops.

-par_report2 = indicates successfully auto-parallelized loops as well as
unsuccessful loops.

-par_report3 = same as 2 plus additional information about any proven or
assumed dependences inhibiting auto-parallelization (reasons for not
parallelizing).

Example of Parallelization Diagnostics Report

Example below shows an output generated by -par_report3 as a result from
the command:

ifort -c -parallel -par_report3 myprog.f90

where the program myprog.f90 is as follows:

program myprog
integer a(10000), q

C Assumed side effects
do i=1,10000

a(i) = foo(i)
enddo

C Actual dependence
do i=1,10000

a(i) = a(i-1) + i

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

143

enddo
end

Example of -par_report Output
program myprog
procedure: myprog
serial loop: line 5: not a parallel candidate

due to statement at line 6
serial loop: line 9

flow data dependence from line 10 to line
10, due to "a"
12 Lines Compiled

Troubleshooting Tips

• Use -par_threshold0 to see if the compiler assumed there was not
enough computational work

• Use -par_report3 to view diagnostics
• Use !DIR$ PARALLEL directive to eliminate assumed data dependencies
• Use -ipo to eliminate assumed side-effects done to function calls.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

144

Parallelization with OpenMP*

Parallelization with OpenMP* Overview

The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API
specification, except for the WORKSHARE directive. OpenMP provides symmetric
multiprocessing (SMP) with the following major features:

• Relieves the user from having to deal with the low-level details of iteration
space partitioning, data sharing, and thread scheduling and
synchronization.

• Provides the benefit of the performance available from shared memory,
multiprocessor systems; and, for IA-32 systems, from Hyper-Threading
Technology-enabled systems (for Hyper-Threading Technology, refer to
the IA-32 Intel® Architecture Optimization Reference Manual).

The Intel Fortran Compiler performs transformations to generate multithreaded
code based on the user's placement of OpenMP directives in the source program
making it easy to add threading to existing software. The Intel compiler supports
all of the current industry-standard OpenMP directives, except workshare, and
compiles parallel programs annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the
OpenMP Fortran version 2.0 specification including run-time library routines and
environment variables.

Note

As with many advanced features of compilers, you must properly
understand the functionality of the OpenMP directives in order to use them
effectively and avoid unwanted program behavior.

See parallelization options summary for all options of the OpenMP feature in the
Intel Fortran Compiler. For complete information on the OpenMP standard, visit
the www.openmp.org web site. For complete Fortran language specifications,
see the OpenMP Fortran version 2.0 specifications.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the
code with OpenMP directives in the form of the Fortran program comments. The
Intel Fortran Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a Fortran
executable with the parallelism implemented by threads that execute parallel
regions or constructs. See Programming with OpenMP.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

145

Performance Analysis

For performance analysis of your program, you can use the VTune(TM) analyzer
and/or the Intel® Threading Tools to show performance information. You can
obtain detailed information about which portions of the code that require the
largest amount of time to execute and where parallel performance problems are
located.

Programming with OpenMP

The Intel® Fortran Compiler accepts a Fortran program containing OpenMP
directives as input and produces a multithreaded version of the code. When the
parallel program begins execution, a single thread exists. This thread is called
the master thread. The master thread will continue to process serially until it
encounters a parallel region.

Parallel Region

A parallel region is a block of code that must be executed by a team of threads in
parallel. In the OpenMP Fortran API, a parallel construct is defined by placing
OpenMP directives parallel at the beginning and end parallel at the end
of the code segment. Code segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements
with a single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs.
Each of these constructs consists of one or two specific OpenMP directives and
sometimes the enclosed or following structured block of code. For complete
definitions of constructs, see the OpenMP Fortran version 2.0 specifications.

At the end of the parallel region, threads wait until all team members have
arrived. The team is logically disbanded (but may be reused in the next parallel
region), and the master thread continues serial execution until it encounters the
next parallel region.

Worksharing Construct

A worksharing construct divides the execution of the enclosed code region
among the members of the team created on entering the enclosing parallel
region. When the master thread enters a parallel region, a team of threads is
formed. Starting from the beginning of the parallel region, code is replicated
(executed by all team members) until a worksharing construct is encountered.
A worksharing construct divides the execution of the enclosed code among the
members of the team that encounter it.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

146

The OpenMP sections or do constructs are defined as worksharing
constructs because they distribute the enclosed work among the threads of the
current team. A worksharing construct is only distributed if it is encountered
during dynamic execution of a parallel region. If the worksharing construct
occurs lexically inside of the parallel region, then it is always executed by
distributing the work among the team members. If the worksharing construct is
not lexically (explicitly) enclosed by a parallel region (that is, it is orphaned),
then the worksharing construct will be distributed among the team members of
the closest dynamically-enclosing parallel region, if one exists. Otherwise, it will
be executed serially.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is finished, the team exits the
worksharing construct and continues executing the code that follows.

A combined parallel/worksharing construct denotes a parallel region that contains
only one worksharing construct.

Parallel Processing Directive Groups

The parallel processing directives include the following groups:

Parallel Region

• PARALLEL and END PARALLEL

Worksharing Construct

• The DO and END DO directives specify parallel execution of loop iterations.
• The SECTIONS and END SECTIONS directives specify parallel execution for

arbitrary blocks of sequential code. Each SECTION is executed once by a
thread in the team.

• The SINGLE and END SINGLE directives define a section of code where
exactly one thread is allowed to execute the code; threads not chosen to
execute this section ignore the code.

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO and END PARALLEL DO
• PARALLEL SECTIONS and END PARALLEL SECTIONS

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

147

Synchronization and MASTER

Synchronization is the interthread communication that ensures the consistency of
shared data and coordinates parallel execution among threads. Shared data is
consistent within a team of threads when all threads obtain the identical value
when the data is accessed. A synchronization construct is used to insure this
consistency of the shared data.

• The OpenMP synchronization directives are CRITICAL, ORDERED, ATOMIC,
FLUSH, and BARRIER.

• Within a parallel region or a worksharing construct only one
thread at a time is allowed to execute the code within a CRITICAL
construct.

• The ORDERED directive is used in conjunction with a DO or
SECTIONS construct to impose a serial order on the execution of a
section of code.

• The ATOMIC directive is used to update a memory location in an
uninterruptable fashion.

• The FLUSH directive is used to insure that all threads in a team
have a consistent view of memory.

• A BARRIER directive forces all team members to gather at a
particular point in code. Each team member that executes a
BARRIER waits at the BARRIER until all of the team members have
arrived. A BARRIER cannot be used within worksharing or other
synchronization constructs due to the potential for deadlock.

• The MASTER directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing
construct by using the shared and private clauses. All variables in the
shared clause are shared among the members of a team. It is the application’s
responsibility to:

• synchronize access to these variables. All variables in the private
clause are private to each team member. For the entire parallel region,
assuming t team members, there are t+1 copies of all the variables in the
private clause: one global copy that is active outside parallel regions
and a private copy for each team member.

• initialize private variables at the start of a parallel region, unless the
firstprivate clause is specified. In this case, the private copy is
initialized from the global copy at the start of the construct at which the
firstprivate clause is specified.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

148

• update the global copy of a private variable at the end of a parallel
region. However, the lastprivate clause of a DO directive enables
updating the global copy from the team member that executed serially the
last iteration of the loop.

In addition to shared and private variables, individual variables and entire
common blocks can be privatized using the threadprivate directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives
related to a parallel region are not required to occur lexically within a single
program unit. Directives such as critical, barrier, sections, single,
master, and do, can occur by themselves in a program unit, dynamically
“binding” to the enclosing parallel region at run time.

Orphaned directives enable parallelism to be inserted into existing code with a
minimum of code restructuring. Orphaning can also improve performance by
enabling a single parallel region to bind with multiple do directives located within
called subroutines. Consider the following code segment:

...
!$omp parallel
call phase1
call phase2
!$omp end parallel
...

subroutine phase1
!$omp do private(i)
shared(n)
do i = 1, n
call some_work(i)
end do
!$omp end do
end

subroutine phase2
!$omp do private(j)
shared(n)
do j = 1, n
call more_work(j)
end do
!$omp end do
end

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

149

Orphaned Directives Usage Rules

• An orphaned worksharing construct (section, single, do) is
executed by a team consisting of one thread, that is, serially.

• Any collective operation (worksharing construct or barrier) executed
inside of a worksharing construct is illegal.

• It is illegal to execute a collective operation (worksharing construct or
barrier) from within a synchronization region (critical/ordered).

• The opening and closing directives of a directive pair (for example, do -
end do) must occur in a single block of the program.

• Private scoping of a variable can be specified at a worksharing
construct. Shared scoping must be specified at the parallel region. For
complete details, see the OpenMP Fortran version 2.0 specifications.

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using
OpenMP. Typically, the first two stages can be done on uniprocessor or
multiprocessor systems; later stages are typically done only on multiprocessor
systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for
parallel execution by doing the following:

• Place local variables on the stack. This is the default behavior of the Intel
Fortran Compiler when -openmp is used.

• Use -auto or similar (-auto_scalar) compiler option to make the locals
automatic. This is the default behavior of the Intel Fortran Compiler when
-openmp is used. Avoid using compiler options that inhibit stack allocation
of local variables. By default
(-auto_scalar) local scalar variables become shared across threads,
so you may need to add synchronization code to ensure proper access by
threads.

Analyze

The analysis includes the following major actions:

• Profile the program to find out where it spends most of its time. This is the
part of the program that benefits most from parallelization efforts. This
stage can be accomplished using VTune(TM) analyzer or basic PGO
options.

• Wherever the program contains nested loops, choose the outer-most loop,
which has very few cross-iteration dependencies.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

150

Restructure

• To restructure your program for successful OpenMP implementation, you
can perform some or all of the following actions:
1. If a chosen loop is able to execute iterations in parallel, introduce a

parallel do construct around this loop.
2. Try to remove any cross-iteration dependencies by rewriting the

algorithm.
3. Synchronize the remaining cross-iteration dependencies by placing

critical constructs around the uses and assignments to variables
involved in the dependencies.

4. List the variables that are present in the loop within appropriate
shared, private, lastprivate, firstprivate, or reduction
clauses.

5. List the do index of the parallel loop as private. This step is optional.
6. common block elements must not be placed on the private list if their

global scope is to be preserved. The threadprivate directive can be
used to privatize to each thread the common block containing those
variables with global scope. threadprivate creates a copy of the
common block for each of the threads in the team.

7. Any I/O in the parallel region should be synchronized.
8. Identify more parallel loops and restructure them.
9. If possible, merge adjacent parallel do constructs into a single

parallel region containing multiple do directives to reduce execution
overhead.

Tune

The tuning process should include minimizing the sequential code in critical
sections and load balancing by using the schedule clause or the
omp_schedule environment variable.

Note

This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more
definitions of the terms used in the parallel programming.

The Execution Flow

As mentioned in previous topic, a program containing OpenMP Fortran API
compiler directives begins execution as a single process, called the master

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

151

thread of execution. The master thread executes sequentially until the first
parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define
the parallel construct. When the master thread encounters a parallel construct, it
creates a team of threads, with the master thread becoming the master of the
team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called
from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of
the construct. The dynamic extent includes the static extent as well as the
routines called from within the construct. When the END PARALLEL directive is
encountered, the threads in the team synchronize at that point, the team is
dissolved, and only the master thread continues execution. The other threads in
the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a
result, thread teams can be created and dissolved many times during program
execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives.
Directives that are not in the lexical extent of the parallel construct, but are in the
dynamic extent, are called orphaned directives. Orphaned directives allow you to
execute major portions of your program in parallel with only minimal changes to
the sequential version of the program. Using this functionality, you can code
parallel constructs at the top levels of your program call tree and use directives to
control execution in any of the called routines. For example:

subroutine F
...
!$OMP
parallel...
...

call G
...
subroutine G
...
!$OMP DO...
...

The !$OMP DO is an orphaned directive because the parallel region it will
execute in is not lexically present in G.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

152

Data Environment Directive

A data environment directive controls the data environment during the execution
of parallel constructs.

You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

• Privatize named common blocks by using THREADPRIVATE directive
• Control data scope attributes by using the THREADPRIVATE directive's

clauses.

The data scope attribute clauses are:

o COPYIN
o DEFAULT
o PRIVATE
o FIRSTPRIVATE
o LASTPRIVATE
o REDUCTION
o SHARED

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0
specifications.

Pseudo Code of the Parallel Processing Model

A sample program using some of the more common OpenMP directives is shown
in the code example that follows. This example also indicates the difference
between serial regions and parallel regions.

program main ! Begin Serial Execution

... ! Only the master thread executes

!$omp parallel ! Begin a Parallel Construct,
form a team

... ! This is Replicated Code where
each team ! member executes the
same code

!$omp sections ! Begin a Worksharing Construct

!$omp section ! One unit of work

... !

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

153

!$omp section ! Another unit of work

... !

!$omp end
sections

! Wait until both units of work
complete

... ! More Replicated Code

!$omp do ! Begin a Worksharing Construct,

do ! each iteration is a unit of work

... ! Work is distributed among the
team

end do !

!$omp end do
nowait

! End of Worksharing Construct,
nowait is
! specified

... ! More Replicated Code

!$omp end
parallel

! End of Parallel Construct,
disband team ! and continue with
serial execution

... ! Possibly more Parallel
Constructs

end ! End serial execution

Compiling with OpenMP, Directive Format, and Diagnostics

To run the Intel® Fortran Compiler in OpenMP mode, you need to invoke the
Intel compiler with the
-openmp option:

ifort -openmp input_file(s)

Before you run the multithreaded code, you can set the number of desired
threads to the OpenMP environment variable, OMP_NUM_THREADS. See the
OpenMP Environment Variables section for further information. The Intel
Extensjon Routines topic describes the OpenMP extensions to the specification
that have been added by Intel in the Intel® Fortran Compiler.

-openmp Option

The -openmp option enables the parallelizer to generate multithreaded code
based on the OpenMP directives. The code can be executed in parallel on both
uniprocessor and multiprocessor systems.

The -openmp option works with both -O0 (no optimization) and any optimization
level of -O1,
-O2 (default) and -O3. Specifying -O0 with -openmp helps to debug OpenMP
applications.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

154

When you use the -openmp option, the compiler sets the -auto option (causes
all variables to be allocated on the stack, rather than in local static storage.) for
the compiler unless you specified it on the command line.

OpenMP Directive Format and Syntax

The OpenMP directives use the following format:

<prefix> <directive> [<clause> [[,] <clause> . . .]]

where the brackets above mean:

• <xxx>: the prefix and directive are required
• [<xxx>]: if a directive uses one clause or more, the clause(s) is

required
• [,]: commas between the <clause>s are optional.

For fixed form source input, the prefix is !$omp or c$omp

For free form source input, the prefix is !$omp only.

The prefix is followed by the directive name; for example:

!$omp parallel

Since OpenMP directives begin with an exclamation point, the directives take the
form of comments if you omit the -openmp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following
syntax forms:

!$omp <directive>
<structured block of code>
!$omp end <directive>

or
!$omp <directive>
<structured block of code>

or
!$omp <directive>
where <directive> is the name of a particular OpenMP directive.

OpenMP Diagnostic Reports

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

155

The -openmp_report{0|1|2} option controls the OpenMP parallelizer's
diagnostic levels 0, 1, or 2 as follows:

-openmp_report0 = no diagnostic information is displayed.

-openmp_report1 = display diagnostics indicating loops, regions, and
sections successfully parallelized.

-openmp_report2 = same as -openmp_report1 plus diagnostics indicating
master constructs, single constructs, critical constructs, ordered
constructs, atomic directives, etc. successfully handled.

The default is -openmp_report1.

OpenMP Directives and Clauses Summary

This topic provides a summary of the OpenMP directives and clauses. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

Directive Description
parallel
end parallel

Defines a parallel region.

do
end do

Identifies an iterative worksharing construct in
which the iterations of the associated loop should
be executed in parallel.

sections
end sections

Identifies a non-iterative worksharing construct
that specifies a set of structured blocks that are to
be divided among threads in a team.

section Indicates that the associated structured block
should be executed in parallel as part of the
enclosing sections construct.

single
end single

Identifies a construct that specifies that the
associated structured block is executed by only
one thread in the team.

parallel do
end parallel
do

A shortcut for a parallel region that contains a
single do directive.

Note
The parallel do or do OpenMP directive
must be immediately followed by a do
statement (do-stmt as defined by R818 of
the ANSI Fortran standard). If you place
another statement or an OpenMP directive

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

156

between the parallel do or do directive
and the do statement, the Intel Fortran
Compiler issues a syntax error.

parallel
sections
end parallel
sections

Provides a shortcut form for specifying a parallel
region containing a single sections construct.

master
end master

Identifies a construct that specifies a structured
block that is executed by only the master thread
of the team.

critical[lock]
end
critical[lock]

Identifies a construct that restricts execution of
the associated structured block to a single thread
at a time. Each thread waits at the beginning of
the critical construct until no other thread is
executing a critical construct with the same lock
argument.

barrier Synchronizes all the threads in a team. Each
thread waits until all of the other threads in that
team have reached this point.

atomic Ensures that a specific memory location is
updated atomically, rather than exposing it to the
possibility of multiple, simultaneously writing
threads.

flush [(list)] Specifies a "cross-thread" sequence point at
which the implementation is required to ensure
that all the threads in a team have a consistent
view of certain objects in memory. The optional
list argument consists of a comma-separated
list of variables to be flushed.

ordered
end ordered

The structured block following an ordered
directive is executed in the order in which
iterations would be executed in a sequential loop.

threadprivate
(list)

Makes the named common blocks or variables
private to a thread. The list argument consists
of a comma-separated list of common blocks or
variables.

OpenMP Clauses

Clause Description
private (list) Declares variables in list to be

private To each thread in a team.
firstprivate (list) Same as private, but the copy of

each variable in the list is
initialized using the value of the

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

157

original variable existing before the
construct.

lastprivate (list) Same as private, but the original
variables in list are updated
using the values assigned to the
corresponding private variables
in the last iteration in the do
construct loop or the last section
construct.

copyprivate (list) Uses private variables in list to
broadcast values, or pointers to
shared objects, from one member
of a team to the other members at
the end of a single construct.

nowait Specifies that threads need not wait
at the end of worksharing
constructs until they have
completed execution. The threads
may proceed past the end of the
worksharing constructs as soon
as there is no more work available
for them to execute.

shared (list) Shares variables in list among all
the threads in a team.

default (mode) Determines the default data-scope
attributes of variables not explicitly
specified by another clause.
Possible values for mode are
private, shared, or none.

reduction
({operator|intrinsic}:list)

Performs a reduction on variables
that appear in list with the
operator operator or the intrinsic
procedure name intrinsic;
operator is one of the following:
+, *, .and., .or., .eqv.,
.neqv.; intrinsic refers to one
of the following: max, min, iand,
ior, or ieor.

ordered
end ordered

Used in conjunction with a do or
sections construct to impose a
serial order on the execution of a
section of code. If ordered
constructs are contained in the
dynamic extent of the do construct,
the ordered clause must be present

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

158

on the do directive.
if (scalar_logical_expression) The enclosed parallel region is

executed in parallel only if the
scalar_logical_expression
evaluates to .true.; otherwise the
parallel region is serialized.

num_threads(scalar_integer_expr
ession)

Requests the number of threads
specified by
scalar_integer_expression
for the parallel region.

schedule (type[,chunk]) Specifies how iterations of the do
construct are divided among the
threads of the team. Possible
values for the type argument are
static, dynamic, guided, and
runtime. The optional chunk
argument must be a positive scalar
integer expression.

copyin (list) Specifies that the master thread's
data values be copied to the
threadprivate's copies of the
common blocks or variables
specified in list at the beginning
of the parallel region.

Directives and Clauses Cross-reference

Directive Uses These Clauses
PARALLEL
END PARALLEL

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, REDUCTION, SHARED

DO
END DO

PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, SCHEDULE

SECTIONS
END SECTIONS

PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION

SECTION PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION

SINGLE
END SINGLE

PRIVATE, FIRSTPRIVATE

PARALLEL DO
END PARALLEL DO

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, REDUCTION,
SHARED, SCHEDULE

PARALLEL SECTIONS
END PARALLEL
SECTIONS

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, REDUCTION,
SHARED

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

159

MASTER
END MASTER

None

CRITICAL[lock]
END CRITICAL[lock]

None

BARRIER None
ATOMIC None
FLUSH [(list)] None
ORDERED
END ORDERED

None

THREADPRIVATE (list) None

OpenMP Directive Descriptions

Parallel Region Directives

The PARALLEL and END PARALLEL directives define a parallel region as
follows:

!$OMP PARALLEL
! parallel region
!$OMP END PARALLEL

When a thread encounters a parallel region, it creates a team of threads and
becomes the master of the team. You can control the number of threads in a
team by the use of an environment variable or a run-time library call, or both.

Clauses Used

The PARALLEL directive takes an optional comma-separated list of clauses that
specify as follows:

• IF: whether the statements in the parallel region are executed in parallel
by a team of threads or serially by a single thread.

• PRIVATE, FIRSTPRIVATE, SHARED, or REDUCTION: variable types
• DEFAULT: variable data scope attribute
• COPYIN: master thread common block values are copied to

THREADPRIVATE copies of the common block

Changing the Number of Threads

Once created, the number of threads in the team remains constant for the
duration of that parallel region. To explicitly change the number of threads used
in the next parallel region, call the OMP_SET_NUM_THREADS run-time library
routine from a serial portion of the program. This routine overrides any value you
may have set using the OMP_NUM_THREADS environment variable.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

160

Assuming you have used the OMP_NUM_THREADS environment variable to set
the number of threads to 6, you can change the number of threads between
parallel regions as follows:

CALL OMP_SET_NUM_THREADS(3)
!$OMP PARALLEL
. . .
!$OMP END PARALLEL
CALL OMP_SET_NUM_THREADS(4)
!$OMP PARALLEL DO
. . .
!$OMP END PARALLEL DO

Setting Units of Work

Use the worlsharing directives such as DO, SECTIONS, and SINGLE to divide the
statements in the parallel region into units of work and to distribute those units so
that each unit is executed by one thread.

In the following example, the !$OMP DO and !$OMP END DO directives and all
the statements enclosed by them comprise the static extent of the parallel region:

!$OMP PARALLEL
!$OMP DO
DO I=1,N

B(I) = (A(I) + A(I-1))/ 2.0
END DO
!$OMP END DO
!$OMP END PARALLEL

In the following example, the !$OMP DO and !$OMP END DO directives and all
the statements enclosed by them, including all statements contained in the
WORK subroutine, comprise the dynamic extent of the parallel region:

!$OMP PARALLEL
DEFAULT(SHARED)
!$OMP DO
DO I=1,N

CALL WORK(I,N)
END DO
!$OMP END DO
!$OMP END PARALLEL

Setting Conditional Parallel Region Execution

When an IF clause is present on the PARALLEL directive, the enclosed code
region is executed in parallel only if the scalar logical expression evaluates to

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

161

.TRUE.. Otherwise, the parallel region is serialized. When there is no IF clause,
the region is executed in parallel by default.

In the following example, the statements enclosed within the !$OMP DO and
!$OMP END DO directives are executed in parallel only if there are more than
three processors available. Otherwise the statements are executed serially:

!$OMP PARALLEL IF (OMP_GET_NUM_PROCS() .GT.
3)
!$OMP DO
DO I=1,N

Y(I) = SQRT(Z(I))
END DO
!$OMP END DO
!$OMP END PARALLEL

If a thread executing a parallel region encounters another parallel region, it
creates a new team and becomes the master of that new team. By default,
nested parallel regions are always executed by a team of one thread.

Note

To achieve better performance than sequential execution, a parallel region
must contain one or more worksharing constructs so that the team of
threads can execute work in parallel. It is the contained worksharing
constructs that lead to the performance enhancements offered by parallel
processing.

Worksharing Construct Directives

A worksharing construct must be enclosed dynamically within a parallel region if
the worksharing directive is to execute in parallel. No new threads are launched
and there is no implied barrier on entry to a worksharing construct.

The worksharing constructs are:

• DO and END DO directives
• SECTIONS, SECTION, and END SECTIONS directives
• SINGLE and END SINGLE directives

DO and END DO

The DO directive specifies that the iterations of the immediately following DO loop
must be dispatched across the team of threads so that each iteration is executed
by a single thread. The loop that follows a DO directive cannot be a DO WHILE or
a DO loop that does not have loop control. The iterations of the DO loop are
dispatched among the existing team of threads.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

162

The DO directive optionally lets you:

• Control data scope attributes (see Controlling Data Scope Attributes)
• Use the SCHEDULE clause to specify schedule type and chunk size (see

Specifying Schedule Type and Chunk Size)

Clauses Used

The clauses for DO directive specify:

• Whether variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION

• How loop iterations are SCHEDULEd onto threads
• In addition, the ORDERED clause must be specified if the ORDERED directive

appears in the dynamic extent of the DO directive.
• If you do not specify the optional NOWAIT clause on the END DO directive,

threads syncronize at the END DO directive. If you specify NOWAIT, threads
do not synchronize, and threads that finish early proceed directly to the
instructions following the END DO directive.

Usage Rules

• You cannot use a GOTO statement, or any other statement, to transfer
control onto or out of the DO construct.

• If you specify the optional END DO directive, it must appear immediately
after the end of the DO loop. If you do not specify the END DO directive, an
END DO directive is assumed at the end of the DO loop, and threat=ds
synchronize at that point.

• The loop iteration variable is private by default, so it is not necessary to
declare it explicitly.

SECTIONS, SECTION and END SECTIONS

Use the noniterative worksharing SECTIONS directive to divide the enclosed
sections of code among the team. Each section is executed just one time by one
thread.

Each section should be preceded with a SECTION directive, except for the first
section, in which the SECTION directive is optional. The SECTION directive
must appear within the lexical extent of the SECTIONS and END SECTIONS
directives.

The last section ends at the END SECTIONS directive. When a thread completes
its section and there are no undispatched sections, it waits at the END SECTION
directive unless you specify NOWAIT.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

163

The SECTIONS directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION.

The following example shows how to use the SECTIONS and SECTION directives
to execute subroutines X_AXIS, Y_AXIS, and Z_AXIS in parallel. The first
SECTION directive is optional:

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION
CALL X_AXIS
!$OMP SECTION
CALL Y_AXIS
!$OMP SECTION
CALL Z_AXIS
!$OMP END SECTIONS
!$OMP END PARALLEL

SINGLE and END SINGLE

Use the SINGLE directive when you want just one thread of the team to execute
the enclosed block of code.

Threads that are not executing the SINGLE directive wait at the END SINGLE
directive unless you specify NOWAIT.

The SINGLE directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE or FIRSTPRIVATE.

When the END SINGLE directive is encountered, an implicit barrier is erected
and threads wait until all threads have finished. This can be overridden by using
the NOWAIT option.

In the following example, the first thread that encounters the SINGLE directive
executes subroutines OUTPUT and INPUT:

!$OMP PARALLEL
DEFAULT(SHARED)
CALL WORK(X)
!$OMP BARRIER
!$OMP SINGLE
CALL OUTPUT(X)
CALL INPUT(Y)
!$OMP END SINGLE
CALL WORK(Y)
!$OMP END PARALLEL

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

164

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO
• PARALLEL SECTIONS

PARALLEL DO and END PARALLEL DO

Use the PARALLEL DO directive to specify a parallel region that implicitly
contains a single DO directive.

You can specify one or more of the clauses for the PARALLEL and the DO
directives.

The following example shows how to parallelize a simple loop. The loop iteration
variable is private by default, so it is not necessary to declare it explicitly. The
END PARALLEL DO directive is optional:

!$OMP PARALLEL DO
DO I=1,N

B(I) = (A(I) + A(I-1)) / 2.0
END DO

!$OMP END PARALLEL DO

PARALLEL SECTIONS and END PARALLEL SECTIONS

Use the PARALLEL SECTIONS directive to specify a parallel region that implicitly
contains a single SECTIONS directive.

You can specify one or more of the clauses for the PARALLEL and the
SECTIONS directives.

The last section ends at the END PARALLEL SECTIONS directive.

In the following example, subroutines X_AXIS, Y_AXIS, and Z_AXIS can be
executed concurrently. The first SECTION directive is optional. Note that all
SECTION directives must appear in the lexical extent of the PARALLEL
SECTIONS/END PARALLEL SECTIONS construct:

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL X_AXIS
!$OMP SECTION

CALL Y_AXIS

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

165

!$OMP SECTION
CALL Z_AXIS

!$OMP END PARALLEL SECTIONS

Synchronization Constructs

Synchronization constructs are used to ensure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

• ATOMIC directive
• BARRIER directive
• CRITICAL directive
• FLUSH directive
• MASTER directive
• ORDERED directive

ATOMIC Directive

Use the ATOMIC directive to ensure that a specific memory location is updated
atomically instead of exposing the location to the possibility of multiple,
simultaneously writing threads.

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

In the preceding statements:

• x is a scalar variable of intrinsic type
• expr is a scalar expression that does not reference x
• intrinsic is either MAX, MIN, IAND, IOR, or IEOR
• operator is either +, *, -, /, .AND., .OR., .EQV., or .NEQV.

This directive permits optimization beyond that of a critical section around the
assignment. An implementation can replace all ATOMIC directives by enclosing
the statement in a critical section. All of these critical sections must use the same
unique name.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

166

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected by
using the ATOMIC directive, except those that are known to be free of race
conditions. The function intrinsic, the operator operator, and the
assignment must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOMIC directive: All references to storage location
x must have the same type parameters.

In the following example, the collection of Y locations is updated atomically:

!$OMP ATOMIC
Y = Y + B(I)

BARRIER Directive

To synchronize all threads within a parallel region, use the BARRIER directive.
You can use this directive only within a parallel region defined by using the
PARALLEL directive. You cannot use the BARRIER directive within the DO,
PARALLEL DO, SECTIONS, PARALLEL SECTIONS, and SINGLE directives.

When encountered, each thread waits at the BARRIER directive until all threads
have reached the directive.

In the following example, the BARRIER directive ensures that all threads have
executed the first loop and that it is safe to execute the second loop:

c$OMP PARALLEL
c$OMP DO PRIVATE(i)

DO i = 1, 100
b(i) = i

END DO
c$OMP BARRIER
c$OMP DO PRIVATE(i)

DO i = 1, 100
a(i) = b(101-i)

END DO
c$OMP END PARALLEL

CRITICAL and END CRITICAL

Use the CRITICAL and END CRITICAL directives to restrict access to a block of
code, referred to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section having the same name.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

167

When a thread enters the critical section, a latch variable is set to closed and all
other threads are locked out. When the thread exits the critical section at the END
CRITICAL directive, the latch variable is set to open, allowing another thread
access to the critical section.

If you specify a critical section name in the CRITICAL directive, you must specify
the same name in the END CRITICAL directive. If you do not specify a name for
the CRITICAL directive, you cannot specify a name for the END CRITICAL
directive.

All unnamed CRITICAL directives map to the same name. Critical section names
are global to the program.

The following example includes several CRITICAL directives, and illustrates a
queuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must be in a
critical section. Because there are two independent queues in this example, each
queue is protected by CRITICAL directives having different names, X_AXIS and
Y_AXIS, respectively:

!$OMP PARALLEL
DEFAULT(PRIVATE,SHARED(X,Y)
!$OMP CRITICAL(X_AXIS)

CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(X_AXIS)

CALL WORK(IX_NEXT, X)
!$OMP CRITICAL(Y_AXIS)

CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(Y_AXIS)

CALL WORK(IY_NEXT, Y)
!$OMP END PARALLEL

Unnamed critical sections use the global lock from the Pthread package. This
allows you to synchronize with other code by using the same lock. Named locks
are created and maintained by the compiler and can be significantly more
efficient.

FLUSH Directive

Use the FLUSH directive to identify a synchronization point at which a consistent
view of memory is provided. Thread-visible variables are written back to memory
at this point.

To avoid flushing all thread-visible variables at this point, include a list of comma-
separated named variables to be flushed.

The following example uses the FLUSH directive for point-to-point
synchronization between thread 0 and thread 1 for the variable ISYNC:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

168

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

!$OMP BARRIER
CALL WORK()

! I Am Done With My Work, Synchronize With My
Neighbor

ISYNC(IAM) = 1
!$OMP FLUSH(ISYNC)
! Wait Till Neighbor Is Done

DO WHILE (ISYNC(NEIGH) .EQ. 0)
!$OMP FLUSH(ISYNC)

END DO
!$OMP END PARALLEL

MASTER and END MASTER

Use the MASTER and END MASTER directives to identify a block of code that is
executed only by the master thread.

The other threads of the team skip the code and continue execution. There is no
implied barrier at the END MASTER directive.

In the following example, only the master thread executes the routines OUTPUT
and INPUT:

!$OMP PARALLEL
DEFAULT(SHARED)

CALL WORK(X)
!$OMP MASTER

CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END MASTER
CALL WORK(Y)

!$OMP END PARALLEL

ORDERED and END ORDERED

Use the ORDERED and END ORDERED directives within a DO construct to allow
work within an ordered section to execute sequentially while allowing work
outside the section to execute in parallel.

When you use the ORDERED directive, you must also specify the ORDERED clause
on the DO directive.

Only one thread at a time is allowed to enter the ordered section, and then only
in the order of loop iterations.

In the following example, the code prints out the indexes in sequential order:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

169

!$OMP DO ORDERED,SCHEDULE(DYNAMIC)
DO I=LB,UB,ST

CALL WORK(I)
END DO
SUBROUTINE WORK(K)

!$OMP ORDERED
WRITE(*,*) K

!$OMP END ORDERED

THREADPRIVATE Directive

You can make named common blocks private to a thread, but global within the
thread, by using the THREADPRIVATE directive.

Each thread gets its own copy of the common block with the result that data
written to the common block by one thread is not directly visible to other threads.
During serial portions and MASTER sections of the program, accesses are to the
master thread copy of the common block.

You cannot use a thread private common block or its constituent variables in any
clause other than the COPYIN clause.

In the following example, common blocks BLK1 and FIELDS are specified as
thread private:

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD,

ZFIELD
!$OMP THREADPRIVATE(/BLK1/,/FIELDS/)

OpenMP Clause Descriptions

Controlling Data Scope

Data Scope Attribute Clauses Overview

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must appear
between slashes (/name/).

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

170

Not all of the clauses are allowed on all directives, but the directives to which
each clause applies are listed in the clause descriptions.

The data scope attribute clauses are:

• COPYIN
• DEFAULT
• PRIVATE
• FIRSTPRIVATE
• LASTPRIVATE
• REDUCTION
• SHARED

COPYIN Clause

Use the COPYIN clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to copy the data in the master thread common block to the
thread private copies of the common block. The copy occurs at the beginning of
the parallel region. The COPYIN clause applies only to common blocks that have
been declared THREADPRIVATE.

You do not have to specify a whole common block to be copied in; you can
specify named variables that appear in the THREADPRIVATE common block. In
the following example, the common blocks BLK1 and FIELDS are specified as
thread private, but only one of the variables in common block FIELDS is
specified to be copied in:

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)
!$OMP PARALLEL
DEFAULT(PRIVATE),COPYIN(/BLK1/,ZFIELD)

DEFAULT Clause

Use the DEFAULT clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to specify a default data scope attribute for all variables
within the lexical extent of a parallel region. Variables in THREADPRIVATE
common blocks are not affected by this clause. You can specify only one
DEFAULT clause on a directive. The default data scope attribute can be one of
the following:

• PRIVATE

Makes all named objects in the lexical extent of the parallel region private to a
thread. The objects include common block variables, but exclude
THREADPRIVATE variables.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

171

• SHARED

Makes all named objects in the lexical extent of the parallel region shared
among all the threads in the team.

• NONE

Declares that there is no implicit default as to whether variables are PRIVATE
or SHARED. You must explicitly specify the scope attribute for each variable in
the lexical extent of the parallel region.

If you do not specify the DEFAULT clause, the default is DEFAULT(SHARED).
However, loop control variables are always PRIVATE by default.

You can exempt variables from the default data scope attribute by using other
scope attribute clauses on the parallel region as shown in the following example:

!$OMP PARALLEL DO DEFAULT(PRIVATE),
FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

PRIVATE

Use the PRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE, PARALLEL
DO, and PARALLEL SECTIONS directives to declare variables to be private to
each thread in the team.

The behavior of variables declared PRIVATE is as follows:

• A new object of the same type and size is declared once for each thread
in the team, and the new object is no longer storage associated with the
original object.

• All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering
the construct, and the corresponding shared variable is undefined on exit
from a parallel construct.

• Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical
extent, but inside the dynamic extent, of the construct unless they are
passed as actual arguments to called routines.

In the following example, the values of I and J are undefined on exit from the
parallel region:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

172

INTEGER I,J
I =1
J =2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
I =3
J =J+ 2

!$OMP END PARALLEL
PRINT *, I, J

FIRSTPRIVATE

Use the FIRSTPRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to provide a superset of
the PRIVATE clause functionality.

In addition to the PRIVATE clause functionality, private copies of the variables
are initialized from the original object existing before the parallel construct.

LASTPRIVATE

Use the LASTPRIVATE clause on the DO, SECTIONS, PARALLEL DO, and
PARALLEL SECTIONS directives to provide a superset of the PRIVATE clause
functionality.

When the LASTPRIVATE clause appears on a DO or PARALLEL DO directive, the
thread that executes the sequentially last iteration updates the version of the
object it had before the construct.

When the LASTPRIVATE clause appears on a SECTIONS or PARALLEL
SECTIONS directive, the thread that executes the lexically last section updates
the version of the object it had before the construct.

Subobjects that are not assigned a value by the last iteration of the DO loop or
the lexically last SECTION directive are undefined after the construct.

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. You must list all such variables as arguments to a
LASTPRIVATE clause so that the values of the variables are the same as when
the loop is executed sequentially. As shown in the following example, the value
of I at the end of the parallel region is equal to N+1, as it would be with sequential
execution.

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

END DO
!$OMP END PARALLEL

CALL REVERSE(I)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

173

REDUCTION Clause

Use the REDUCTION clause on the PARALLEL, DO, SECTIONS, PARALLEL DO,
and PARALLEL SECTIONS directives to perform a reduction on the specified
variables by using an operator or intrinsic as shown:

REDUCTION (
operator
or
intrinsic
:list)

Operator can be one of the following: +, *, -, .AND., .OR., .EQV., or
.NEQV..

Intrinsic can be one of the following: MAX, MIN, IAND, IOR, or IEOR.

The specified variables must be named scalar variables of intrinsic type and must
be SHARED in the enclosing context. A private copy of each specified variable is
created for each thread as if you had used the PRIVATE clause. The private copy
is initialized to a value that depends on the operator or intrinsic as shown in the
Table Operators/Intrinsics and Initialization Values for Reduction Variables. The
actual initialization value is consistent with the data type of the reduction variable.

Operators/Intrinsics and Initialization Values for Reduction Variables

Operator/Intrinsic Initialization
Value

+ 0
* 1
- 0
.AND. .TRUE.
.OR. .FALSE.
.EQV. .TRUE.
.NEQV. .FALSE.
MAX Largest

representable
number

MIN Smallest
representable
number

IAND All bits on
IOR 0
IEOR 0

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

174

At the end of the construct to which the reduction applies, the shared variable is
updated to reflect the result of combining the original value of the SHARED
reduction variable with the final value of each of the private copies using the
specified operator.

Except for subtraction, all of the reduction operators are associative and the
compiler can freely reassociate the computation of the final value. The partial
results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread
reaches the clause containing the reduction, and it remains undefined until the
reduction computation is complete. Normally, the computation is complete at the
end of the REDUCTION construct. However, if you use the REDUCTION clause on
a construct to which NOWAIT is also applied, the shared variable remains
undefined until a barrier synchronization has been performed. This ensures that
all of the threads have completed the REDUCTION clause.

The REDUCTION clause is intended to be used on a region or worksharing
construct in which the reduction variable is used only in reduction statements
having one of the following forms:

x = x operator expr
x = expr operator x (except for subtraction)
x = intrinsic (x,expr)
x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX reduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. Be careful
that the operator specified in the REDUCTION clause matches the reduction
operation.

Any number of reduction clauses can be specified on the directive, but a variable
can appear only once in a REDUCTION clause for that directive as shown in the
following example:

!$OMP DO REDUCTION(+: A, Y),REDUCTION(.OR.: AM)

The following example shows how to use the REDUCTION clause:

!$OMP PARALLEL DO
DEFAULT(PRIVATE),SHARED(A,B,REDUCTION(+: A,B)

DO I=1,N
CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

175

B = B + BLOCAL
END DO

!$OMP END PARALLEL DO

SHARED Clause

Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to make variables shared among all the threads in a team.

In the following example, the variables X and NPOINTS are shared among all the
threads in the team:

!$OMP PARALLEL
DEFAULT(PRIVATE),SHARED(X,NPOINTS)

IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

Specifying Schedule Type and Chunk Size

The SCHEDULE clause of the DO or PARALLEL DO directive specifies a
scheduling algorithm that determines how iterations of the DO loop are divided
among and dispatched to the threads of the team. The SCHEDULE clause applies
only to the current DO or PARALLEL DO directive.

Within the SCHEDULE clause, you must specify a schedule type and, optionally,
a chunk size. A chunk is a contiguous group of iterations dispatched to a
thread. Chunk size must be a scalar integer expression.

The following list describes the schedule types and how the chunk size affects
scheduling:

• STATIC

The iterations are divided into pieces having a size specified by chunk. The
pieces are statically dispatched to threads in the team in a round-robin
manner in the order of thread number.

When chunk is not specified, the iterations are first divided into contiguous
pieces by dividing the number of iterations by the number of threads in the
team. Each piece is then dispatched to a thread before loop execution
begins.

• DYNAMIC

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

176

The iterations are divided into pieces having a size specified by chunk. As
each thread finishes its currently dispatched piece of the iteration space,
the next piece is dynamically dispatched to the thread.

When no chunk is specified, the default is 1.

• GUIDED

The chunk size is decreased exponentially with each succeeding dispatch.
Chunk specifies the minimum number of iterations to dispatch each time. If
there are less than chunk number of iterations remaining, the rest are
dispatched.

When no chunk is specified, the default is 1.

• RUNTIME

The decision regarding scheduling is deferred until run time. The schedule
type and chunk size can be chosen at run time by using the
OMP_SCHEDULE environment variable.

When you specify RUNTIME, you cannot specify a chunk size.

The following list shows which schedule type is used, in priority order:

1. The schedule type specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. If the schedule type for the current DO or PARALLEL DO directive is
RUNTIME, the default value specified in the OMP_SCHEDULE environment
variable

3. The compiler default schedule type of STATIC

The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. For RUNTIME schedule type, the value specified in the OMP_SCHEDULE
environment variable

3. For DYNAMIC and GUIDED schedule types, the default value 1
4. If the schedule type for the current DO or PARALLEL DO directive is

STATIC, the loop iteration space divided by the number of threads in the
team.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

177

OpenMP Support Libraries

The Intel Fortran Compiler with OpenMP support provides a production support
library, libguide.a. This library enables you to run an application under
different execution modes. It is used for normal or performance-critical runs on
applications that have already been tuned.

Execution modes

The compiler with OpenMP enables you to run an application under different
execution modes that can be specified at run time. The libraries support the
serial, turnaround, and throughput modes. These modes are selected by using
the kmp_library environment variable at run time.

Turnaround

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads will yield to other threads while
waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment
(that is, the system load) and to adjust its resource usage to produce efficient
execution in a dynamic environment. This mode is the default.

After completing the execution of a parallel region, threads wait for new parallel
work to become available. After a certain period of time has elapsed, they stop
waiting and sleep. Sleeping allows the threads to be used, until more parallel
work becomes available, by non-OpenMP threaded code that may execute
between parallel regions, or by other applications. The amount of time to wait
before sleeping is set either by the KMP_BLOKTIME environment variable or by
the kmp_set_blocktime() function. A small KMP_BLOCKTIME value may offer
better overall performance if your application contains non-OpenMP threaded
code that executes between parallel regions. A larger KMP_BLOCKTIME value
may be more appropriate if threads are to be reserved solely for use for OpenMP
execution, but may penalize other concurrently-running OpenMP or threaded
applications.

Throughput

In a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important to
effectively utilize all of the processors all of the time. The turnaround mode is
designed to keep active all of the processors involved in the parallel computation

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

178

in order to minimize the execution time of a single job. In this mode, the worker
threads actively wait for more parallel work, without yielding to other threads.

Note

Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run
time. If system resources are over-allocated, this mode will cause poor
performance. The throughput mode should be used instead if this occurs.

OpenMP Environment Variables

This topic describes the standard OpenMP environment variables (with the
OMP_ prefix) and Intel-specific environment variables (with the KMP_ prefix) that
are Intel extensions to the standard Fortran Compiler .

Standard Environment Variables

Variable Description Default
OMP_SCHEDULE Sets the run-time schedule

type and chunk size.
static,
no chunk
size
specified

OMP_NUM_THREADS Sets the number of threads
to use during execution.

Number of
processors

OMP_DYNAMIC Enables (true) or disables
(false) the dynamic
adjustment of the number of
threads.

false

OMP_NESTED Enables (true) or disables
(false)nested parallelism.

false

Intel Extension Environment Variables

Environment Variable Description Default

KMP_ALL_THREADS Sets the
maximum
number of
threads that can
be used by any
parallel region.

max(32, 4 *
OMP_NUM_THREADS,
4 * number of
processors)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

179

KMP_BLOCKTIME Sets the time, in
milliseconds,
that a thread
should wait,
after completing
the execution of
a parallel region,
before sleeping.

See also the
throughput
execution mode
and the
KMP_LIBRARY
environment
variable. Use the
optional
character suffix
s, m, h, or d, to
specify seconds,
minutes, hours,
or days.

200 milliseconds

KMP_LIBRARY Selects the
OpenMP run-
time library
throughput. The
options for the
variable value
are: serial,
turnaround, or
throughput
indicating the
execution mode.
The default
value of
throughput is
used if this
variable is not
specified.

throughput
(execution mode)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

180

KMP_MONITOR_STACKSIZE Sets the number
of bytes to
allocate for the
monitor thread,
which is used for
book-keeping
during program
execution. Use
the optional
suffix b, k, m, g,
or t, to specify
bytes, kilobytes,
megabytes,
gigabytes, or
terabytes.

max(32k, system
minimum thread
stack size)

KMP_STACKSIZE Sets the number
of bytes to
allocate for each
parallel thread to
use as its private
stack. Use the
optional suffix b,
k, m, g, or t, to
specify bytes,
kilobytes,
megabytes,
gigabytes, or
terabytes.

IA-32: 2m
Itanium compiler: 4m

KMP_VERSION Enables (set) or
disables (unset)
the printing of
OpenMP run-
time library
version
information
during program
execution.

Disabled

OpenMP Run-time Library Routines

OpenMP provides several run-time library routines to assist you in managing
your program in parallel mode. Many of these run-time library routines have
corresponding environment variables that can be set as defaults. The run-time
library routines enable you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run-time library routine overrides
any corresponding environment variable.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

181

The following table specifies the interface to these routines. The names for the
routines are in user name space. The omp_lib.f, omp_lib.h and
omp_lib.mod header files are provided in the include directory of your
compiler installation. The omp_lib.h header file is provided in the include
directory of your compiler installation for use with the Fortran INCLUDE
statement. The omp_lib.mod file is provided in the Include directory for use with
the Fortran USE statement.

There are definitions for two different locks, omp_lock_t and
omp_nest_lock_t, which are used by the functions in the table that follows.

This topic provides a summary of the OpenMP run-time library routines. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

Function Description

Execution Environment Routines
subroutine
omp_set_num_threads(num_threads)
integer num_threads

Sets the number of
threads to use for
subsequent parallel
regions.

integer function omp_get_num_threads() Returns the number of
threads that are being
used in the current
parallel region.

integer function omp_get_max_threads() Returns the maximum
number of threads that
are available for parallel
execution.

integer function omp_get_thread_num() Determines the unique
thread number of the
thread currently
executing this section of
code.

integer function omp_get_num_procs() Determines the number
of processors available
to the program.

logical function omp_in_parallel() Returns .true. if called
within the dynamic extent
of a parallel region
executing in parallel;
otherwise returns
.false..

subroutine
omp_set_dynamic(dynamic_threads)
logical dynamic_threads

Enables or disables
dynamic adjustment of
the number of threads

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

182

used to execute a
parallel region. If
dynamic_threads is
.true., dynamic
threads are enabled. If
dynamic_threads is
.false., dynamic
threads are disabled.
Dynamics threads are
disabled by default.

logical function omp_get_dynamic() Returns .true. if
dynamic thread
adjustment is enabled,
otherwise returns
.false..

subroutine omp_set_nested(nested)
integer nested

Enables or disables
nested parallelism. If
nested is .true.,
nested parallelism is
enabled. If nested is
.false., nested
parallelism is disabled.
Nested parallelism is
disabled by default.

logical function omp_get_nested() Returns .true. if
nested parallelism is
enabled, otherwise
returns .false..

Lock Routines
subroutine omp_init_lock(lock)
integer (kind=omp_lock_kind)::lock

Initializes the lock
associated with lock for
use in subsequent calls.

subroutine omp_destroy_lock(lock)
integer (kind=omp_lock_kind)::lock

Causes the lock
associated with lock to
become undefined.

subroutine omp_set_lock(lock)
integer (kind=omp_lock_kind)::lock

Forces the executing
thread to wait until the
lock associated with
lock is available. The
thread is granted
ownership of the lock
when it becomes
available.

subroutine omp_unset_lock(lock)
integer (kind=omp_lock_kind)::lock

Releases the executing
thread from ownership of

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

183

the lock associated with
lock. The behavior is
undefined if the
executing thread does
not own the lock
associated with lock.

logical omp_test_lock(lock)
integer (kind=omp_lock_kind)::lock

Attempts to set the lock
associated with lock. If
successful, returns
.true., otherwise
returns .false..

subroutine omp_init_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Initializes the nested
lock associated with
lock for use in the
subsequent calls.

subroutine omp_destroy_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Causes the nested lock
associated with lock to
become undefined.

subroutine omp_set_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Forces the executing
thread to wait until the
nested lock associated
with lock is available.
The thread is granted
ownership of the nested
lock when it becomes
available.

subroutine omp_unset_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Releases the executing
thread from ownership of
the nested lock
associated with lock if
the nesting count is zero.
Behavior is undefined if
the executing thread
does not own the nested
lock associated with
lock.

integer omp_test_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Attempts to set the
nested lock associated
with lock. If successful,
returns the nesting
count, otherwise returns
zero.

Timing Routines
double-precision function
omp_get_wtime()

Returns a double-
precision value equal to

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

184

the elapsed wallclock
time (in seconds) relative
to an arbitrary reference
time. The reference time
does not change during
program execution.

double-precision function
omp_get_wtick()

Returns a double-
precision value equal to
the number of seconds
between successive
clock ticks.

Intel Extension Routines

The Intel® Fortran Compiler implements the following group of routines as an
extension to the OpenMP run-time library: getting and setting stack size for
parallel threads and memory allocation.

The Intel extension routines described in this section can be used for low-level
debugging to verify that the library code and application are functioning as
intended. It is recommended to use these routines with caution because using
them requires the use of the -openmp_stubs command-line option to execute
the program sequentially. These routines are also generally not recognized by
other vendor's OpenMP-compliant compilers, which may cause the link stage to
fail for these other compilers.

Stack Size

In most cases, environment variables can be used in place of the extension
library routines. For example, the stack size of the parallel threads may be set
using the KMP_STACKSIZE environment variable rather than the
kmp_set_stacksize() library routine.

Note

A run-time call to an Intel extension routine takes precedence over the
corresponding environment variable setting.

The routines kmp_set_stacksize() and kmp_get_stacksize() take a 32-
bit argument only. The routines kmp_set_stacksize_s() and
kmp_get_stacksize_s() take a size_t argument, which can hold 64-bit
integers.

On Itanium-based systems, it is recommended to always use
kmp_set_stacksize() and kmp_get_stacksize(). These _s() variants
must be used if you need to set a stack size 2**32 bytes (4 gigabytes).

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

185

See the definitions of stack size routines in the table that follows.

Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines
as an extension to the OpenMP* run-time library to enable threads to allocate
memory from a heap local to each thread. These routines are: kmp_malloc,
kmp_calloc, and kmp_realloc.

The memory allocated by these routines must also be freed by the kmp_free
routine. While it is legal for the memory to be allocated by one thread and
kmp_free'd by a different thread, this mode of operation has a slight
performance penalty.

See the definitions of these routines in the table that follows.

Function/Routine Description
Stack Size

function kmp_get_stacksize_s()
integer(kind=kmp_size_t_kind)kmp_ge
t
_stacksize_s

Returns the number of bytes
that will be allocated for each
parallel thread to use as its
private stack. This value can
be changed via the
kmp_get_stacksize_s
routine, prior to the first
parallel region or via the
KMP_STACKSIZE
environment variable.

function kmp_get_stacksize()
integer kmp_get_stacksize

This routine is provided for
backwards compatibility only;
use
kmp_get_stacksize_s
routine for compatibility
across different families of
Intel processors.

subroutine
kmp_set_stacksize_s(size)
integer (kind=kmp_size_t_kind) size

Sets to size the number of
bytes that will be allocated for
each parallel thread to use as
its private stack. This value
can also be set via the
KMP_STACKSIZE
environment variable. In
order for
kmp_set_stacksize_s to
have an effect, it must be
called before the beginning of

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

186

the first (dynamically
executed) parallel region in
the program.

subroutine kmp_set_stacksize(size)
integer size

This routine is provided for
backward compatibility only;
use
kmp_set_stacksize_s(s
ize) for compatibility across
different families of Intel
processors.

Memory Allocation
function kmp_malloc(size)
integer(kind=kmp_pointer_kind)kmp_m
alloc
integer(kind=kmp_size_t_kind)size

Allocate memory block of
size bytes from thread-local
heap.

function kmp_calloc(nelem,elsize)
integer(kind=kmp_pointer_kind)kmp_c
alloc
integer(kind=kmp_size_t_kind)nelem
integer(kind=kmp_size_t_kind)elsize

Allocate array of nelem
elements of size elsize
from thread-local heap.

function kmp_realloc(ptr, size)
integer(kind=kmp_pointer_kind)kmp_r
ealloc
integer(kind=kmp_pointer_kind)ptr
integer(kind=kmp_size_t_kind)size

Reallocate memory block at
address ptr and size bytes
from thread-local heap.

subroutine kmp_free(ptr)
integer (kind=kmp_pointer_kind) ptr

Free memory block at
address ptr from thread-
local heap. Memory must
have been previously
allocated with
kmp_malloc, kmp_calloc,
or kmp_realloc.

Examples of OpenMP Usage

The following examples show how to use the OpenMP feature. See more
examples in the OpenMP Fortran version 2.0 specifications.

do: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a
different number of instructions. To get good load balancing, dynamic scheduling
is used. The end do has a nowait because there is an implicit barrier at the
end of the parallel region.

subroutine do_1 (a,b,n)
real a(n,n), b(n,n)
c$omp parallel

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

187

c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

do: Two Difference Operators

This example shows two parallel regions fused to reduce fork/join overhead.
The first end do has a nowait because all the data used in the second loop is
different than all the data used in the first loop.

subroutine do_2
(a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m),
d(m,m)
c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp do schedule(dynamic,1)
do i = 2, m
do j = 1, i
d(j,i) = (c(j,i) + c(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

sections: Two Difference Operators

This example demonstrates the use of the sections directive. The logic is
identical to the preceding do example, but uses sections instead of do. Here
the speedup is limited to 2 because there are only two units of

work whereas in do: Two Difference Operators above there are n-1 + m-1
units of work.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

188

subroutine sections_1
(a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m),
d(m,m)
!$omp parallel
!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp sections
!$omp section
do i = 2, n
do j = 1, i
b(j,i)=(a(j,i) + a(j,i-1)) /
2
enddo
enddo

!$omp section
do i = 2, m
do j = 1, i
d(j,i)=(c(j,i) + c(j,i-1)) /
2
enddo
enddo
!$omp end sections nowait
!$omp end parallel
end

single: Updating a Shared Scalar

This example demonstrates how to use a single construct to update an
element of the shared array a. The optional nowait after the first loop is omitted
because it is necessary to wait at the end of the loop before proceeding into the
single construct.

subroutine sp_1a
(a,b,n)
real a(n), b(n)
!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
do i = 1, n
a(i) = 1.0 / a(i)
enddo
!$omp single
a(1) = min(a(1), 1.0
)
!$omp end single
!$omp do
do i = 1, n
b(i) = b(i) / a(i)
enddo

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

189

!$omp end do nowait
!$omp end parallel
end

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

190

Debugging Multithreaded Programs

Debugging Multithread Programs Overview

The debugging of multithreaded program discussed in this section applies to both
the OpenMP Fortran API and the Intel Fortran parallel compiler directives. When
a program uses parallel decomposition directives, you must take into
consideration that the bug might be caused either by an incorrect program
statement or it might be caused by an incorrect parallel decomposition directive.
In either case, the program to be debugged can be executed by multiple threads
simultaneously.

To debug the multithreaded programs, you can use:

• Intel Debugger for IA-32 and Intel Debugger for Itanium-based applications
(idb)

• Intel Fortran Compiler debugging options and methods; in particular,
Compiling Source Lines with Debugging Statements.

• Intel parallelization extension routines for low-level debugging.
• VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:

• Correct the program in single-threaded, uni-processor environment
• Statically analyze locks
• Use trace statement (such as print statement)
• Think in parallel, make very few assumptions
• Step through your code
• Make sense of threads and callstack information
• Identify the primary thread
• Know what thread you are debugging

• Single stepping in one thread does not mean single stepping in others

• Watch out for context switch

Debugger Limitations for Multithread Programs

Debuggers such as Intel Debugger for IA-32 and Intel Debugger for Itanium-
based applications support the debugging of programs that are executed by
multiple threads. However, the currently available versions of such debuggers do
not directly support the debugging of parallel decomposition directives, and
therefore, there are limitations on the debugging features.

Some of the new features used in OpenMP are not yet fully supported by the
debuggers, so it is important to understand how these features work to know how
to debug them. The two problem areas are:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

191

• Multiple entry points
• Shared variables

You can use routine names (for example, padd) and entry names (for example,
_PADD, ___PADD_6__par_loop0). Fortran Compiler, by default, first mangles
lower/mixed case routine names to upper case. For example, pAdD() becomes
PADD(), and this becomes entry name by adding one underscore. The
secondary entry name mangling happens after that. That's why "__par_loop"
part of the entry name stays as lower case. Debugger for some reason didn't
take the upper case routine name "PADD" to set the breakpoint. Instead, it
accepted the lower case routine name "padd".

Debugging Parallel Regions

Debugging Parallel Regions

The compiler implements a parallel region by enabling the code in the region and
putting it into a separate, compiler-created entry point. Although this is different
from outlining – the technique employed by other compilers, that is, creating a
subroutine, – the same debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

• "__" character
• entry point name for the original routine (for example, _parallel)
• "_" character
• line number of the parallel region
• __par_region for OpenMP parallel regions (!$OMP PARALLEL)

__par_loop for OpenMP parallel loops (!$OMP PARALLEL DO),

__par_section for OpenMP parallel sections (!$OMP PARALLEL
SECTIONS)

• sequence number of the parallel region (for each source file, sequence
number starts from zero.)

Debugging Code with Parallel Region

Example 1 illustrates the debugging of the code with parallel region. Example 1 is
produced by this command:

ifort -openmp -g -O0 -S file.f90

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

192

Let us consider the code of subroutine parallel in Example 1.

Subroutine PARALLEL() source listing
1 subroutine parallel
2 integer id,OMP_GET_THREAD_NUM
3 !$OMP PARALLEL PRIVATE(id)
4 id = OMP_GET_THREAD_NUM()
5 !$OMP END PARALLEL
6 end

The parallel region is at line 3. The compiler created two entry points:
parallel_ and ___parallel_3__par_region0. The first entry point
corresponds to the subroutine parallel(), while the second entry point
corresponds to the OpenMP parallel region at line 3.

Example 1 Debuging Code with Parallel Region

Machine Code Listing of the Subroutine parallel()
.globl parallel_

parallel_:
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
movl %esp, %ebp #1.0
subl $44, %esp #1.0
pushl %edi #1.0
...

..B1.13: # Preds ..B1.9
addl $-12, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
movl $0, 4(%esp) #6.0
movl $_parallel__6__par_region1, 8(%esp) #6.0
call __kmpc_fork_call #6.0

LOE
..B1.31: # Preds ..B1.13
addl $12, %esp #6.0

LOE
..B1.14: # Preds ..B1.31 ..B1.30
..LN4:
leave #9.0
ret #9.0

LOE
.type parallel_,@function
.size parallel_,.-parallel_
.globl _parallel__3__par_region0
_parallel__3__par_region0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.15: # Preds ..B1.0
pushl %ebp #9.0

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

193

movl %esp, %ebp #9.0
subl $44, %esp #9.0
..LN5:
call omp_get_thread_num_ #4.0

LOE eax
..B1.32: # Preds ..B1.15
movl %eax, -32(%ebp) #4.0

LOE
..B1.16: # Preds ..B1.32
movl -32(%ebp), %eax #4.0
movl %eax, -20(%ebp) #4.0
..LN6:
leave #9.0
ret #9.0

LOE
.type _parallel__3__par_region0,@function
.size
_parallel__3__par_region0,._parallel__3__par_region0
.globl _parallel__6__par_region1
_parallel__6__par_region1:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.17: # Preds ..B1.0
pushl %ebp #9.0
movl %esp, %ebp #9.0
subl $44, %esp #9.0
..LN7:
call omp_get_thread_num_ #7.0

LOE eax
..B1.33: # Preds ..B1.17
movl %eax, -28(%ebp) #7.0

LOE
..B1.18: # Preds ..B1.33
movl -28(%ebp), %eax #7.0
movl %eax, -16(%ebp) #7.0
..LN8:
leave #9.0
ret #9.0
.align 4,0x90
mark_end;

Debugging the program at this level is just like debugging a program that uses
POSIX threads directly. Breakpoints can be set in the threaded code just like any
other routine. With GNU debugger, breakpoints can be set to source-level routine
names (such as parallel). Breakpoints can also be set to entry point names (such
as parallel_ and _parallel__3__par_region0). Note that Intel Fortran Compiler for
Linux converted the upper case Fortran subroutine name to the lower case one.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

194

Debugging Multiple Threads

When in a debugger, you can switch from one thread to another. Each thread
has its own program counter so each thread can be in a different place in the
code. Example 2 shows a Fortran subroutine PADD(). A breakpoint can be set at
the entry point of OpenMP parallel region.

Source listing of the Subroutine PADD()
12. SUBROUTINE PADD(A, B, C, N)
13. INTEGER N
14. INTEGER A(N), B(N), C(N)
15. INTEGER I, ID, OMP_GET_THREAD_NUM
16. !$OMP PARALLEL DO SHARED (A, B, C, N)
PRIVATE(ID)
17. DO I = 1, N
18. ID = OMP_GET_THREAD_NUM()
19. C(I) = A(I) + B(I) + ID
20. ENDDO
21. !$OMP END PARALLEL DO
22. END

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD
using GNU debugger. At this point, the program has not executed any OpenMP
regions, and therefore has only one thread. The call stack shows a system run-
time __libc_start_main function calling the Fortran main program
parallel(), and parallel() calls subroutine padd(). When the program is
executed by more than one thread, you can switch from one thread to another.
The second and the third call stacks are obtained by breaking at the entry to the
parallel region. The call stack of master contains the complete call sequence. At
the top of the call stack is _padd__6__par_loop0(). Invocation of a threaded
entry point involves a layer of Intel OpenMP library function calls (that is,
functions with __kmp prefix). The call stack of the worker thread contains a
partial call sequence that begins with a layer of Intel OpenMP library function
calls.

ERRATA: GNU debugger sometimes fails to properly unwind the call stack of the
immediate caller of Intel OpenMP library function __kmpc_fork_call().

Call Stack Dump of Master Thread upon Entry to Subroutine PADD

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

195

Switching from One Thread to Another

Call Stack Dump of Master Thread upon Entry to Parallel Region

Call Stack Dump of Worker Thread upon Entry to Parallel Region

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subroutine PADD() Machine Code Listing
.globl padd_

padd_:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4(n): 20 + %ebp
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
...

..B1.19: # Preds ..B1.15
addl $-28, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl $4, 4(%esp) #6.0
movl $_padd__6__par_loop0, 8(%esp) #6.0
movl -196(%ebp), %eax #6.0
movl %eax, 12(%esp) #6.0
movl -152(%ebp), %eax #6.0
movl %eax, 16(%esp) #6.0

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

196

movl -112(%ebp), %eax #6.0
movl %eax, 20(%esp) #6.0
lea 20(%ebp), %eax #6.0
movl %eax, 24(%esp) #6.0
call __kmpc_fork_call #6.0

LOE
..B1.39: # Preds ..B1.19
addl $28, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LOE
..B1.20: # Preds ..B1.30
...

call __kmpc_for_static_init_4 #6.0
LOE

..B1.40: # Preds ..B1.20
addl $36, %esp #6.0

LOE
...

..B1.26: # Preds ..B1.28 ..B1.21
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -8(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_for_static_fini #6.0

LOE
..B1.41: # Preds ..B1.26
addl $8, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LOE
..B1.27: # Preds ..B1.28 ..B1.25
..LN7:
call omp_get_thread_num_ #8.0

LOE eax
..B1.42: # Preds ..B1.27
...

cmpl %edx, %eax #10.0
jle ..B1.27 # Prob 50% #10.0
jmp ..B1.26 # Prob 100% #10.0

LOE
.type padd_,@function
.size padd_,.-padd_
.globl _padd__6__par_loop0
_padd__6__par_loop0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4: 20 + %ebp
parameter 5: 24 + %ebp
parameter 6: 28 + %ebp
..B1.30: # Preds ..B1.0

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

197

..LN16:
pushl %ebp #13.0
movl %esp, %ebp #13.0
subl $208, %esp #13.0
movl %ebx, -4(%ebp) #13.0
..LN17:
movl 8(%ebp), %eax #6.0
movl (%eax), %eax #6.0
movl %eax, -8(%ebp) #6.0
movl 28(%ebp), %eax #6.0
..LN18:
movl (%eax), %eax #7.0
movl (%eax), %eax #7.0
movl %eax, -80(%ebp) #7.0
movl $1, -76(%ebp) #7.0
movl -80(%ebp), %eax #7.0
testl %eax, %eax #7.0
jg ..B1.20 # Prob 50% #7.0

LOE
..B1.31: # Preds ..B1.41 ..B1.39
..B1.38 ..B1.30
..LN19:
movl -4(%ebp), %ebx #13.0
leave #13.0
ret #13.0
.align 4,0x90
mark_end;

Debugging Shared Variables

When a variable appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clause on some block, the variable is made private to the parallel
region by redeclaring it in the block. SHARED data, however, is not declared in the
threaded code. Instead, it gets its declaration at the routine level. At the machine
code level, these shared variables become incoming subroutine call arguments
to the threaded entry points (such as ___PADD_6__par_loop0).

In Example 2, the entry point ___PADD_6_par_loop0 has six incoming
parameters. The corresponding OpenMP parallel region has four shared
variables. First two parameters (parameters 1 and 2) are reserved for the
compiler's use, and each of the remaining four parameters corresponds to one
shared variable. These four parameters exactly match the last four parameters to
__kmpc_fork_call() in the machine code of PADD.

Note
The FIRSTPRIVATE, LASTPRIVATE, and REDUCTION variables also
require shared variables to get the values into or out of the parallel region.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

198

Due to the lack of support in debuggers, the correspondence between the shared
variables (in their original names) and their contents cannot be seen in the
debugger at the threaded entry point level. However, you can still move to the
call stack of one of the subroutines and examine the contents of the variables at
that level. This technique can be used to examine the contents of shared
variables. In Example 2, contents of the shared variables A, B, C, and N can be
examined if you move to the call stack of PARALLEL().

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

199

Optimization Support Features
Optimization Support Features Overview

This section describes the Intel® Fortran features such as directives, intrinsics,
run-time library routines and various utilities which enhance your application
performance in support of compiler optimizations. These features are Intel
Fortran language extensions that enable you optimize your source code directly.
This section includes examples of optimizations supported by Intel extended
directives and intrinsics or library routines that enhance and/or help analyze
performance.

For complete detail of the Intel® Fortran Compiler directives and examples of
their use, see Chapter 14, "Directive Enhanced Compilation," in the Intel®
Fortran Language Reference. For intrinsic procedures, see Chapter 9, "Intrinsic
Procedures," in the Intel® Fortran Language Reference.

A special topic describes options that enable you to generate optimization reports
for major compiler phases and major optimizations. The optimization report
capability is used for Itanium®-based applications only.

Compiler Directives

Compiler Directives Overview

This section discusses the Intel® Fortran language extended directives that
enhance optimizations of application code, such as software pipelining, loop
unrolling, prefetching and vectorization. For complete list, descriptions and code
examples of the Intel® Fortran Compiler directives, see "Directive Enhanced
Compilation" in the Intel® Fortran Language Reference.

Pipelining for Itanium®-based Applications

The SWP | NOSWP directives indicate preference for a loop to get software-
pipelined or not. The SWP directive does not help data dependence, but overrides
heuristics based on profile counts or lop-sided control flow.

The syntax for this directive is:

!DEC$ SWP or CDEC$ SWP

!DEC$ NOSWP or CDEC$ NOSWP

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

200

The software pipelining optimization triggered by the SWP directive applies
instruction scheduling to certain innermost loops, allowing instructions within a
loop to be split into different stages, allowing increased instruction level
parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost
loops that do not contain procedure calls that are not inlined. Because the
optimizer no longer considers fully unrolled loops as innermost loops, fully
unrolling loops can allow an additional loop to become the innermost loop (see
-unroll[n]]). You can request and view the optimization report to see whether
software pipelining was applied (see Optimizer Report Generation).

SWP
!DEC$ SWP
do i = 1, m
if (a(i) .eq. 0) then
b(i) = a(i) + 1
else
b(i) = a(i)/c(i)
endif
enddo

Loop Count and Loop Distribution

LOOP COUNT (N) Directive

The LOOP COUNT (n) directive indicates the loop count is likely to be n.

The syntax for this directive is:

!DEC$ LOOP COUNT(n) or CDEC$ LOOP COUNT(n)

where n is an integer constant.

The value of loop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

LOOP COUNT (N)
!DEC$ LOOP COUNT (10000)
do i =1,m
b(i) = a(i) +1 ! This is likely to
enable

! the loop to get software-
! pipelined

enddo

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

201

Loop Distribution Directive

The DISTRIBUTE POINT directive indicates to compiler a preference of
performing loop distribution.

The syntax for this directive is:

!DEC$ DISTRIBUTE POINT or CDEC$ DISTRIBUTE POINT

Loop distribution may cause large loops be distributed into smaller ones. This
may enable more loops to get software-pipelined. If the directive is placed inside
a loop, the distribution is performed after the directive and any loop-carried
dependency is ignored. If the directive is placed before a loop, the compiler will
determine where to distribute and data dependency is observed. Currently only
one distribute directive is supported if it is placed inside the loop.

DISTRIBUTE POINT
!DEC$ DISTRIBUTE POINT
do i =1, m
b(i) = a(i) +1
....
c(i) = a(i) + b(i) ! Compiler will decide
where

! to distribute.
! Data dependency is observed

....
d(i) = c(i) + 1
enddo

do i =1, m
b(i) = a(i) +1
....
!DEC$ DISTRIBUTE POINT
call sub(a, n) ! Distribution will start
here,

! ignoring all loop-carried
! dependency

c(i) = a(i) + b(i)
....
d(i) = c(i) + 1
enddo

Loop Unrolling Support

The UNROLL directive tells the compiler how many times to unroll a counted loop.

The syntax for this directive is:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

202

CDEC$ UNROLL or !DEC$ UNROLL

CDEC$ UNROLL [n] or !DEC$ UNROLL [n]

CDEC$ NOUNROLL or !DEC$ NOUNROLL

where n is an integer constant. The range of n is 0 through 255.

The UNROLL directive must precede the do statement for each do loop it affects.

If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is
outside the allowed range, the optimizer assigns the number of times to unroll the
loop.

The UNROLL directive overrides any setting of loop unrolling from the command
line.

Currently, the directive can be applied only for the innermost loop nest. If applied
to the outer loop nests, it is ignored. The compiler generates correct code by
comparing n and the loop count.

UNROLL
CDEC$ UNROLL(4)
do i = 1, m
b(i) = a(i) + 1
d(i) = c(i) + 1
enddo

Prefetching Support

The PREFETCH and NOPREFTCH directives assert that the data prefetches be
generated or not generated for some memory references. This affects the
heuristics used in the compiler.

The syntax for this directive is:

CDEC$ PREFETCH or !DEC$ PREFETCH

CDEC$ NOPRFETCH or !DEC$ NOPREFETCH

CDEC$ PREFETCH a,b or !DEC$ PREFETCH a,b

CDEC$ NOPREFETCH a,b or !DEC$ NOPREFETCH a,b

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

203

If loop includes expression a(j), placing PREFETCH a in front of the loop,
instructs the compiler to insert prefetches for a(j + d) within the loop. d is
determined by the compiler. This directive is supported when option -O3 is on.

PREFETCH
CDEC$ NOPREFETCH c
CDEC$ PREFETCH a
do i = 1, m
b(i) = a(c(i)) + 1
enddo

Vectorization Support

The directives discussed in this topic support vectorization.

IVDEP Directive

Syntax:

CDEC$ IVDEP
!DEC$ IVDEP

The IVDEP directive instructs the compiler to ignore assumed vector
dependences. To ensure correct code, the compiler treats an assumed
dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use IVDEP only when you know that the
assumed loop dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment
bellow, the IVDEP directive can communicate this information to the compiler.
This directive informs the compiler that the conservatively assumed loop-carried
flow dependences for values j < 0 can be safely ignored:
!DEC$ IVDEP
do i = 1,
100
a(i) =
a(i+j)
enddo

Note

The proven dependences that prevent vectorization are not ignored, only
assumed dependences are ignored.

The usage of the directive differs depending on the loop form, see
examples below.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

204

Loop 1
Do i
= a(*) + 1
a(*) =
enddo

Loop 2
Do i
a(*) =

= a(*) + 1
enddo

For loops of the form 1, use old values of a, and assume that there is no loop-
carried flow dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-
carried anti-dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.

Example 1
CDEC$ IVDEP
do j=1,n
a(j) = a(j+m) + 1
enddo
Example 2
CDEC$ IVDEP
do j=1,n
a(j) = b(j) +1
b(j) = a(j+m) + 1
enddo

Example 1 ignores the possible backward dependencies and enables the loop to
get software pipelined.

Example 2 shows possible forward and backward dependencies involving array
a in this loop and creating a dependency cycle. With IVDEP, the backward
dependencies are ignored.

IVDEP has options: IVDEP:LOOP and IVDEP:BACK. The IVDEP:LOOP option
implies no loop-carried dependencies. The IVDEP:BACK option implies no
backward dependencies.

The IVDEP directive is also used with the -ivdep_parallel option for
Itanium®-based applications.

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

205

For more details on the IVDEP directive, see "Directive Enhanced Compilation,"
in the Intel® Fortran Language Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to IVDEP directive, there are more directives that can be used to
override the efficiency heuristics of the vectorizer:

VECTOR ALWAYS
NOVECTOR
VECTOR ALIGNED
VECTOR UNALIGNED
VECTOR NONTEMPORAL

The VECTOR directives control the vectorization of the subsequent loop in the
program, but the compiler does not apply them to nested loops. Each nested
loop needs its own directive preceding it. You must place the vector directive
before the loop control statement.

The VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive overrides the efficiency heuristics of the
vectorizer, but it only works if the loop can actually be vectorized, that is: use
IVDEP to ignore assumed dependences.

Syntax:

!DEC$ VECTOR ALWAYS
!DEC$ NOVECTOR

The VECTOR ALWAYS directive can be used to override the default behavior of
the compiler in the following situation. Vectorization of non-unit stride references
usually does not exhibit any speedup, so the compiler defaults to not vectorizing
loops that have a large number of non-unit stride references (compared to the
number of unit stride references). The following loop has two references with
stride 2. Vectorization would be disabled by default, but the directive
overrides this behavior.
Vector Aligned
!DEC$ VECTOR ALWAYS
do i = 1, 100, 2
a(i) = b(i)
enddo

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization
results in a performance regression rather than improvement), the NOVECTOR
directive can be used in the source text to disable vectorization of a loop. For
instance, the Intel® Compiler vectorizes the following example loop by default. If

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

206

this behavior is not appropriate, the NOVECTOR directive can be used, as shown
below.
NOVECTOR
!DEC$ NOVECTOR
do i = 1, 100
a(i) = b(i) + c(i)
enddo

The VECTOR ALIGNED and UNALIGNED Directives

Syntax:

!DEC$ VECTOR ALIGNED
!DEC$ VECTOR UNALIGNED

Like VECTOR ALWAYS, these directives also override the efficiency heuristics.
The difference is that the qualifiers UNALIGNED and ALIGNED instruct the
compiler to use, respectively, unaligned and aligned data movement instructions
for all array references. This disables all the advanced alignment optimizations of
the compiler, such as determining alignment properties from the program context
or using dynamic loop peeling to make references aligned.

Note

The directives VECTOR [ALWAYS, UNALIGNED, ALIGNED] should be used
with care. Overriding the efficiency heuristics of the compiler should only be
done if the programmer is absolutely sure the vectorization will improve
performance. Furthermore, instructing the compiler to implement all array
references with aligned data movement instructions will cause a run-time
exception in case some of the access patterns are actually unaligned.

The VECTOR NONTEMPORAL Directive

Syntax: !DEC$ VECTOR NONTEMPORAL

The VECTOR NONTEMPORAL directive results in streaming stores on Pentium® 4
based systems. A floating-point type loop together with the generated assembly
are shown in the example below. For large n, significant performance
improvements result on a Pentium 4 systems over a non-streaming
implementation.

The following example illustrates the use of the NONTEMPORAL directive:

NONTEMPORAL
subroutine set(a,n)
integer i,n
real a(n)

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

207

!DEC$ VECTOR NONTEMPORAL
!DEC$ VECTOR ALIGNED

do i = 1, n
a(i) = 1

enddo
end
program setit
parameter(n=1024*1204)
real a(n)
integer i
do i = 1, n

a(i) = 0
enddo
call set(a,n)
do i = 1, n

if (a(i).ne.1) then
print *, 'failed

nontemp.f', a(i), i
stop

endif
enddo
print *, 'passed nontemp.f'
end

Optimizations and Debugging

This topic describes the command-line options that you can use to debug your
compilation and to display and check compilation errors.

The options that enable you to get debug information while optimizing are as
follows:

-O0 Disables optimizations. Enables -fp option.
-g Generates symbolic debugging information and line

numbers in the object code for use by the source-
level debuggers. Turns off -O2 and makes -O0 the
default unless -O2 (or -O1 or -O3) is explicitly
specified in the command line together with -g.

-fp
IA-32
only

Disables the use of the ebp register in
optimizations. Directs to use the ebp-based
stack frame for all functions.

Support for Symbolic Debugging, -g

Use the -g option to direct the compiler to generate code to provide symbolic
debugging information and line numbers in the object code that will be used by
your source-level debugger. For example:

ifort -g prog1.f

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

208

Turns off -O2 and makes -O0 the default unless -O2 (or -O1 or -O3) is explicitly
specified in the command line together with -g.

The Use of ebp Register

-fp (IA-32 only)

Most debuggers use the ebp register as a stack frame pointer to produce a stack
backtrace. The -fp option disables the use of the ebp register in optimizations
and directs the compiler to generate code that maintains and uses ebp as a
stack frame pointer for all functions so that a debugger can still produce a stack
backtrace without turning off -O1, -O2, or -O3 optimizations.

Note that using this option reduces the number of available general-purpose
registers by one, and results in slightly less efficient code.

-fp Summary

Default OFF
-O1 , -O2, or -
O3

Disable -fp

-O0 Enables -fp

The -traceback Option

The -traceback option also forces the compiler to use ebp as the stack frame
pointer. In addition, the -traceback option causes the compiler to generate
extra information into the object file, which allows a symbolic stack traceback to
be produced if a run-time failure occurs.

Combining Optimization and Debugging

The -O0 option turns off all optimizations so you can debug your program before
any optimization is attempted. To get the debug information, use the -g option.

The compiler lets you generate code to support symbolic debugging while one of
the -O1, -O2, or -O3 optimization options is specified on the command line along
with -g, which produces symbolic debug information in the object file.

Note that if you specify an -O1, -O2, or -O3 option with the -g option, some of
the debugging information returned may be inaccurate as a side-effect of
optimization.

It is best to make your optimization and/or debugging choices explicit:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

209

• If you need to debug your program excluding any optimization effect, use
the -O0 option, which turns off all the optimizations.

• If you need to debug your program with optimization enabled, then you
can specify the -O1, -O2, or -O3 option on the command line along with -
g.

Note

The -g option slows down the program when no optimization level (-
On) is specified. In this case -g turns on -O0, which is what slows the
program down. However, if, for example, both -O2 and
-g are specified, the code should run very nearly at the same speed
as if -g were not specified.

Refer to the table below for the summary of the effects of using the -g option
with the optimization options.

These options Produce these results

-g
Debugging information produced, -O0
enabled (optimizations disabled), -fp
enabled for IA-32-targeted compilations

-g -O1
Debugging information produced, -O1
optimizations enabled.

-g -O2
Debugging information produced, -O2
optimizations enabled.

-g -O3 -fp
Debugging information produced, -O3
optimizations enabled, -fp enabled for IA-
32-targeted compilations.

Debugging and Assembling

The assembly listing file is generated without debugging information, but if you
produce an object file, it will contain debugging information. If you link the object
file and then use the GDB debugger on it, you will get full symbolic
representation.

Optimizer Report Generation

The Intel® Fortran Compiler provides options to generate and manage
optimization reports.

• -opt_report generates optimizations report and places it in a file
specified in
-opt_report_filefilename. If -opt_report_file is not specified,

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

210

-opt_report directs the report to stderr. The default is OFF: no
reports are generated.

• -opt_report_filefilename generates optimizations report and
directs it to a file specified in filename.

• -opt_report_level{min|med|max} specifies the detail level of the
optimizations report. The min argument provides the minimal summary
and the max the full report. The default is -opt_report_levelmin.

• -opt_report_routine [substring] generates reports from all
routines with names containing the substring as part of their name. If
[substring] is not specified, reports from all routines are generated.
The default is to generate reports for all routines being compiled.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase
argument of the
-opt_report_phasephase option.

The option can be used multiple times on the same command line to generate
reports for multiple optimizers.

Currently, the reports for the following optimizers are supported:

Optimizer Logical
Name

Optimizer Full Name

ipo Interprocedural Optimizer
hlo High-level Language

Optimizer
ilo Intermediate Language

Scalar Optimizer
ecg Itanium Compiler Code

Generator
all All optimizers

When one of the above logical names for optimizers are specified all reports from
that optimizer will be generated. For example, -opt_report_phaseipo and -
opt_report_phaseecg generate reports from the interprocedural optimizer
and the code generator.

Each of the optimizers can potentially have specific optimizations within them.
Each of these optimizations are prefixed with the optimizer's logical name. For
example:

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

211

Optimizer_optimization Full Name
ipo_inl Interprocedural Optimizer, inline

expansion of functions
ipo_cp Interprocedural Optimizer, copy

propagation
hlo_unroll High-level Language Optimizer, loop

unrolling
hlo_prefetch High-level Language Optimizer,

prefetching
ilo_copy_propagation Intermediate Language Scalar

Optimizer, copy propagation
ecg_swp Itanium Compiler Code Generator,

software pipelining

Command Syntax Example

The following command generates a report for the Itanium Compiler Code
Generator (ecg):

ifort -c -opt_report -opt_report_phase ecg myfile.f

where:

• -c tells the compiler to stop at generating the object code, not linking
• -opt_report invokes the report generator
• -opt_report_phaseecg indicates the phase (ecg) for which to

generate the report; the space between the option and the phase is
optional.

The entire name for a particular optimization within an optimizer need not be
specified in full, just a few characters is sufficient. All optimization reports that
have a matching prefix with the specified optimizer are generated. For example,
if -opt_report_phase ilo_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation

The -opt_report_help option lists the logical names of optimizers and
optimizations that are currently available for report generation.

For IA-32 systems, the reports can be generated for:

• ilo
• hlo if -O3 is on
• ipo if interprocedural optimizer is invoked with -ip or -ipo
• all the above optimizers if -O3 and -ip or -ipo options are on

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

212

For Itanium-based systems, the reports can be generated for:

• ilo
• ecg
• hlo if -O3 is on
• ipo if interprocedural optimizer is invoked with -ip or -ipo
• all the above optimizers if -O3 and -ip or -ipo options are on

Note

If hlo or ipo report is requested, but the controlling option (-O3 or -ip--
ipo, respectively) is not on, the compiler generates an empty report.

213

Index
.
.il files ... 2
[
-[no]altparam compiler option........ 43
-[no]logo compiler option 93
_
_s() variants180
1
128-bit ..6, 60
128-bit Streaming SIMD Extensions

..128
16-bit

accessing 25
16-bit ..6, 128
16-byte28, 43, 131
16-byte-aligned123
1-byte ... 20
2
24-bit significand

pc32.. 43
3
32-bit

exceed .. 73
pointers....................................... 73
single-precision128

32-bit6, 25, 89, 180
32k..174
3-byte ... 6
4
4-byte6, 20, 50
5
5000 interval

set ...112
5000 interval112
53-bit significand

pc64.. 43
6
64-bit6, 25, 89, 180
64-bit double-precision128
64-bit MMX(TM)128
64-bit significand

pc80.. 43

8
80-bit...6
8-bit.....................................6, 25, 128
8-byte6, 25, 50
A
ABI..53
ABS ..130
absence

loop-carried memory dependency
..116

accessing
16-bit...25

accuracy
controlling65

add..4, 66
test2 ..103

add/subtract
operations........................43, 65,66

added performance........................85
adheres

ANSI ...47
advanced PGO options..................90
affected aspect of the program......73
affects

inlining...80
SSE...60

after
FORTRAN 774
vectorization128, 131

ALIAS ...93
aliased ..47
-align compiler option.......................6
ALIGNED......................................197
aligning

data...131
alignment..6

options ..50
strategy.....................................131

all
input/output.................................39
optimizers204

alloca procedure82
ALLOCATABLE..............................47

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

214

allowing
optimizer 35

alternate ... 43
ALWAYS vector197
analyzer..141
analyzing .. 6

effects of multiple IPO................ 79
AND......................................161, 169
another possible environment

variable setting 39
ANSI...43, 66

adheres....................................... 47
conforms..................................... 60

ANSI Fortran
R818 ...151

ansi_alias43, 47
ANTI ...135
anti-dependencies197
API..117, 140
applications

features contributes..................117
application's103,141

code coverage............................ 95
tests .. 95
visual presentation 95

applies
ATOMIC....................................161

ar library manager.......................... 79
argument

aliasing131
using efficiently........................... 15

arranging
data items..................................... 6

array 28, 35, 43, 115, 128, 183
accessing 15
assumed-shape.......................... 15
compiler creates......................... 15
derived-part 6
natural storage order.................. 20
operations.................................130
output argument array types...... 15
requirements 15
using efficiently........................... 15

assembling...................................201
assembly files 32, 75, 78, 79, 197

specifying201

-assume compiler option..........20, 35
assumed-shape arrays15
ATOMIC directive.................141, 161
ATTRIBUTES C93
-auto compiler option47
automatic allocation

variables47
-automatic compiler option.............47
automatic processor-specific

optimization71
AUTOMATIC statement.................47
auto-parallelization

data flow 117, 135, 138
diagnostic138
enabling136
environment variables136
overview....................................134
processing135
programming with.....................135
threshold control.......................138
threshold needed......................136

auto-parallelized
loops ...138

auto-parallelized.....................43, 138
auto-parallelizer's

control 117, 134 -138
enabling117, 136
threshold...................................138

auto-vectorization...............2, 28, 117
auto-vectorizer124
availability

report generation204
avoid

EQUIVALENCE............................6
mixed data type arithmetic

expressions.............................25
small integer items25
small logical items25
unaligned data6
vectorization197

-ax{K|W|N|B|P} compiler option....28,
57, 121

B
BACK option of IVDEP197
BACKSPACE20
-backtrace compiler option...........201

Index

215

BARRIER directive
executes141
use..161

basic PGO options
profile-guided optimization......... 86

bcolor option of code-coverage tool
.. 95

before
inserting141
vectorization128

begin
parallel construct147
serial execution147
worksharing construct147

best performance
function 72

big-endian 35
little-endian 39

binding..141
bitwise AND130
block size128
BLOCKSIZE

increasing 20
omitting 20
values ... 20

bound
denormalized single-precision ... 60

Bourne shell 32
browsing

frames... 95
BUFFERCOUNT

buffered_io option 20
default... 20
increase...................................... 20

buffers
UBC .. 20

byterecl keyword............................ 20
C
-c compiler option35, 75
c$omp149, 183
c$OMP BARRIER........................161
c$OMP DO PRIVATE..................161
c$OMP END PARALLEL.............161
c$OMP PARALLEL......................161
cache size intrinsic......................... 28
cachesize 28

call stack dumps
master thread189
worker thread............................189

call WORK........... 156, 158, 161, 169
callee ..82
calls

malloc ...53
OMP_SET_NUM_THREADS ..156

callstack..185
causing

unaligned data6
cc_omp keyword43
-ccdefault compiler option..............43
ccolor option of code coverage tool

..95
CDEC$ prefix of directives..136, 194,

195, 196, 197
CEIL rounding mode......................28
changing

number......................................156
character data6, 50
characteristics57, 73, 141
checking

floating-point stack state47
inefficient unaligned data6

choosing
inline ...25

chunk size172
clause containing reduction169
clauses141, 147, 149, 151 - 171,

193
comma-separated list.......156, 158
cross-reference151
list..166
summary...................................151

cleanup...128
code

assembly32, 197
preparing141

Code DO ..25
codecov_option..............................95
code-coverage tool95
coding...4, 25

Intel® architectures28
coloring scheme

setting ...95

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

216

combined parallel/worksharing
constructs141, 160

command line
options .. 50
syntax95, 103, 149, 193

comma-separated........................161
comma-separated list ..151, 161, 166

clauses156, 158
variables151

COMMON
FIELDS.....................................166
block ... 6, 28, 35, 50, 53, 141, 156,

165-167
statement....................6, 28, 47, 50

Compaq* Visual Fortran 2
compilation

controlling 50
customizing process of 35
efficient 35
optimizing 35
options43, 47, 50, 53
phase.. 74
techniques 35

compiler
applying heuristic138
commands.................................. 35
compiler’s IL 78
compiler-created186
compiler-generated28, 186
compiler-supplied library 84
compiling with OpenMP*..........149
creating array descriptor 15
creating temporary array............ 15
default optimizations 43
defining the size of the array

elements 6
directives194
efficient compilation.................... 35
Intel(R) extension routines......180,

186
IPO benefits................................ 73
issuing warnings......78, 89, 90, 91,

121, 151
merging the data from all .dyn files

.. 91
optimization levels...................... 57

producing
pgopti.dpi file...........................92

producing....................................78
producing....................................92
programming with OpenMP*....141
relocating the source files94
report generation204
selecting routines for inlining......82
treating assumed dependence 197
vectorization

support197
vectorization121

compiling source lines185
COMPLEX......................6, 25, 43, 47
conditional parallel region execution

setting156
conditional parallel region execution

..156
conforming

ANSI ...60
IEEE 75466

constructing
entry-point name186

constructing..................................186
containing

8-byte..6
IR ..75, 76
substring204

CONTINUE126
controlling

accuracy65
advanced PGO optimizations90
alignment with options................50
auto-parallelizer's diagnostic levels

......................................117, 138
compilation process35
complex flow.............................117
computation of stacks and

variables..................................47
data scope attributes................158
floating-point accuracy66
floating-point computations65
generation of profile information

..110
inline expansion..........................84
loop vectorization197

Index

217

number of threads156
OpenMP* diagnostics149
rounding...................................... 64
speculation 57
your program with OpenMP* ...177

conventions...................................... 4
converting

little-endian 35
COPYIN clause... 147, 151, 156, 166
copyprivate...................................151
correct usage

countable..................................127
COS......................................128, 130
COUNT ..127
countable

correct usage............................127
coverage analysis

modules subset 95
coverage analysis 95
CPU

CPU_TIME 32
CPU-intensive20, 32
use.. 15

CRAY* pointer
preventing aliasing 47

creating
DPI list103
multifile IPO executable using xild

.. 76
multifile IPO executable with

command line 75
multithreaded applications 28

criteria
inline function expansion............ 82

criteria .. 82
criteria for inline function expansion

.. 82
CRITICAL directive141, 151, 161

use..161
critical/ordered141
cross-iteration141
cross-platform, -ansi_alias............. 47
Csh... 39
customizing

compilation process 35
CVF options 2

D
data

alignment6, 50
alignment example131
data-dependence115
declarations

ordering.....................................6
declarations6
dependence.... 114, 124, 135, 138,

194
dependence analysis124
dependence vectorization patterns

..124
environment directive147
flow

program’s loops134
flow ...117
flow ...134
items

arranging...................................6
items ...6
options ..47
settings43
sharing141
type4, 6, 25, 60, 117, 121, 169

data scope attribute clauses........166
data type arithmetic expressions...25
DATE_AND_TIME32
DAZ flag2, 28, 72
DCLOCK ..32
dcommons keyword6, 35, 50
DCU (data cache unit)131
debugger limitations

multithread programs185
debugging

code ..186
multiple threads189
multithread programs overview185
parallel regions186
shared variables193
statements185
code using multiple threads189

DEC.......93, 136, 194, 195, 196, 197
DEF

USE ..197
DEFAULT

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

218

BUFFERCOUNT 20
disabling options 43
Itanium®-based applications 82

default behavior
compiler options 43

DEFAULT Clause
specify167
use..167

deferred-shape............................... 15
demangle option of the code

coverage tool.............................. 95
denormal

exceptions 28
flushing60, 65
values28, 60, 65

denormalized 60
denormalized single-precision

bound.. 60
denormalized single-precision....... 60
denormalized values...................... 60
denormals 28
denormals-are-zero 28
dependence135
DEQUEUE161
dequeuing161
derived-type data 6
describes

characteristics 57
Profile IGS110

developing
multithreaded application 28

device-specific 20
diagnostic reports138, 149
diagnostics . 117, 121, 123, 136, 138,

149
difference operators.....................183
different applications

optimizing 57
differential coverage

running.. 95
source... 95

DIMENSION.........................126, 127
dimension-by-dimension..............124
directive

controls147

enhanced compilation193, 194,
197

format................................136, 149
IVDEP

informs compiler197
IVDEP.......................................116
name.................................136, 149
overview....................................194
preceding..................................197
relieve117
usage rules141
use ..149
VECTOR...................................197

directory
specifying....................................90

directory..90
disable

-fp..201
function splitting..........................89
inlining...43
intrinsics inlining57
IPO..73
-On optimizations57

disclaimer ...1
disk I/O ...20
dispatch options68
DISTRIBUTE POINT directive.....195
division-to-multiplication optimization

..64
DO directive 141, 158, 161, 168
DO loop 15, 20, 25, 158, 168, 172
DO WHILE........... 126, 127, 158, 161
document number1
DO-ENDDO..................................126
DOUBLE...28
DOUBLE PRECISION

returns.......................................177
types ...130
variables

KIND..43
variables43

-double_size {n} compiler option ...43
double_size 6443
dpi

customer.dpi95
file 86, 89, 93, 95, 103

Index

219

DPI list
Create103
dpi_list file103
dpi_list tests_list103
line ..103

options .. 95
pgopti.dpi 95

dps.. 43
-dps compiler option 43
dummy argument...............15, 20, 35
dummy_aliases35, 47
dumping

profile data.................................. 93
profile information.............111, 112

during
instrumentation........................... 93
interprocedural optimizations..... 84

dyn (dynamic-information files)
files 86, 90, 92, 93, 95, 103-112

dynamic
counters...................................... 95
DYNAMIC.........................161, 172
dynamic_threads......................177
dynamic-information

files....................................86, 89
profile counters

resetting112
E
eax..186, 189
ebp register43, 186, 189

use..201
ebx..189
ecg..204
ecg_swp204
EDB..6, 32
edi...186
edx..189
effective auto-parallelization usage

..135
effects

analyzing 79
multiple IPO................................ 79

efficiency4, 25
efficient

code.. 25
compilation 35

use of arrays...............................15
record buffers..........................20

efficient compilation35
elapsed time.................................103
elsize ..180
email ...95
enable

auto-parallelizer................117, 136
DEC ..43
denormals-as-zero28
-fp option.............................60, 201
implied-DO loop collapsing20
inlining...84
-O2 optimizations57
parallelizer117
SIMD-encodings.......................128
test-prioritization103

encounters
SINGLE.....................................158

end............................... 126, 127, 131
DO...158
parallel construct147
REDUCTION169
worksharing

construct147
worksharing141
worksharing151

END CRITICAL directive161
END DO directive.................141, 158
END INTERFACE93
END MASTER directive.......151, 161
END ORDERED directive....151, 161
END PARALLEL

directive147, 156
END PARALLEL141
END PARALLEL151
END PARALLEL DO

directive160
END PARALLEL DO............141, 151
END PARALLEL DO....................160
END PARALLEL SECTIONS

directive160
END PARALLEL SECTIONS141,

151
END PARALLEL SECTIONS160
END SECTION directive..............158

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

220

END SECTIONS
directive141, 158

END SECTIONS..........................151
END SECTIONS..........................158
END SINGLE

directive141, 158
END SINGLE151
END SINGLE158
END SUBROUTINE...............93, 131
endian .. 39
Enhanced Debugger...................... 32
ensuring natural alignment 6
entry

parallel region...........................189
subroutine PADD189

entry/exit.......................................135
entry-point name

constructing186
environment

data environment directive.......147
OpenMP environments routines

..177
uniprocessor.............................185
variables20, 39, 91, 110, 136, 149,

156, 174, 177, 180
environment147
EQUIVALENCE statement ..6, 20, 47

avoid ... 6
EQV......................................161, 169
ERRATA.......................................189
errno variable

setting ... 84
error_limit 30 43
-error_limit n compiler option......... 43
esp..186, 189
examples

OpenMP183
PGO.. 92
vectorization131

examples 4, 6, 15, 20, 25, 28, 32, 35,
39, 43, 47, 50, 53, 57, 60, 64, 65,
66, 68, 69, 71, 72, 75, 76, 78, 79,
80, 84, 85, 86

exceed
32-bit... 73

EXCEPTION list............................. 39

executable files35
executing

BARRIER..................................141
SINGLE.....................................158
test-prioritization103

execution
environment routines................177
flow ...147

existing
pgopti.dpi91

exit
worksharing141

explicit symbol visibility specification
..53

explicit-shape arrays15
EXTENDED PRECISION66
extended-precision.........................25
extensions support.........................68
EXTERN symbol visibility attribute

value ...53
F
F_UFMTENDIAN variable

setting ...39
value ...39

-fast compiler option.......................57
fcolor...95
feature 1, 2, 4, 6, 28, 35

application117
display...95
enable ...39
OpenMP contains.....................141
overview....................................193
work ..185

feedback compilation92
FIELDS.................................165, 166
file

.dpi89, 95, 103

.dyn files......................................93
assembly 76, 78, 79, 201
containing

intermediate representation (IR)
...75

list..103
containing35, 103
default output..............................35
dynamic-information...................89

Index

221

executable .. 32, 35, 71, 75, 76, 78,
86, 89, 92, 121, 136, 140, 141

input.. 20
multiple IPO................................ 74
multiple source files.................... 35
name

pgopti.dpi 93
name.......................................4, 90
object 2, 35, 43, 74, 75, 76, 78, 79,

89
pathname 53
real object files 78
relocating the source files 94
required75, 95, 103
specifying symbol files 53

FIRSTPRIVATE clause135, 141,
147, 151, 156, 158, 166, 167, 168,
193

floating-point
applications

optimizing................................ 28
applications 28
arithmetic precision

IA-32 systems......................... 64
Itanium-based systems 65
-mp option............................... 60
-mp1 option............................. 60
options 60
overview.................................. 60

exceptions 28
handling 60

floating-point-to-integer 64
multiply and add (FA)................. 66
stack state checking................... 47
type... 60

FLOW...135
FLUSH directive

use..161
FLUSH directive...................141, 151
FLUSH directive...........................161
flushing

denormal...............................60, 65
zero denormal60, 65

FMA.. 66
-fnsplit- compiler option 89
FOR_SET_FPE intrinsic

FOR_M_ABRUPT_UND72
FOR_SET_FPE intrinsic60
FOR_SET_FPE intrinsic72
fork/join...183
format

auto-parallelization directives...136
big-endian...................................39
expressions20
floating-point applications28
OpenMP directives149

formatted files
unformatted files.........................20

FORT_BUFFERED
run-time environment variable ...20

FORT_BUFFERED........................20
Fortran

API 141, 147, 185
FORTRAN 77

dummy aliases........................35
FORTRAN 774, 6, 15
FORTRAN 7735
Fortran standard...........................4
Fortran uninitialized53
Fortran USE statement177
INCLUDE statement.................177

Fourier-Motzkin124
FP43,60, 201

multiply..65
operations evaluation65
options ..60
results ...65

-fp compiler option
-fp summary..............................201

-fpstkchk compiler option2
frames

browsing95
-ftz compiler option.........................28
FTZ flag2, 28

Itanium®-based systems60
setting ...72

FTZ flag2, 28, 65
full name.......................................204
function

best performance72
function splitting

disabling..................................89

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

222

function/routine.........................180
function/subroutine..................... 47

G
-g compiler option201
GCC .. 76

ld ... 75
GCD ...124
GDB

use..201
general-purpose registers............201
generating

instrumented code...................... 89
non-SSE 28
processor-specific function version

.. 71
profile-optimized executable 89
reports204
vectorization reports.................121

gigabytes..............................174, 180
global symbols 53
GNU186, 189
GOT (global offset table) 53
GP-relative 53
GUIDED (schedule type)172
guidelines6, 25

advanced PGO........................... 90
auto-parallelization135
coding ... 28
vectorization123

H
help

od utility 39
HIDDEN visibility attribute 53
high performance

programming 6
high-level....................................4, 35

optimizer204
parallelization135

HLO
hlo_prefetch..............................204
hlo_unroll204
overview113
prefetching................................117
unrolling115

HTML files 95

Hyper-Threading technology 28, 117,
140

I
I/O

list..20
parsing ..20
performance

improving4, 20
performance4
performance20

IA-32
applications...............................113
floating-point arithmetic64
Hyper-Threading Technology-

enabled117
Intel® Debugger185
Intel® Enhanced Debugger........32

IA-32 only4, 60, 115
IA-32 systems2, 64, 68, 72
IA-32-based

little-endian39
processors39, 141

IA-32-specific feature...................121
IA-32-targeted compilations.........201
IAND............................ 151, 161, 169
identifying

synchronization161
identifying161
IEEE ..60,72

IEEE 75428, 66
conform66

IEOR............................ 151, 161, 169
IF

generated95
statement....................................95

IF clause.......................................156
-iface compiler option.....................43
ifort..4, 35, 43, 50, 53, 60, 65, 68, 69,

71, 72, 74, 75, 79, 80, 84, 86, 92,
103, 115, 121, 136, 138, 149, 186,
201, 204

IL
compiler reads............................78
files ...2, 78
produced.....................................78

ilo ..204

Index

223

ILP ..117
implied DO loop 25

collapsing 20
improving

I/O performance 20
run-time performance................. 25

improving/restricting FP arithmetic
precision 66

include..177
floating-point-to-integer 64
Intel® Xeon(TM)........................... 2

incorrect usage126
non-countable loop...................127

increase
BLOCKSIZE specifier 20
BUFFERCOUNT specifier 20

individual module source view....... 95
industry-standard140
inefficient

code.. 25
unaligned data.............................. 6

infinity ... 60
init routine....................................... 82
initialization169
initializer ... 53
initiating

interval profile dumping............112
inlinable .. 82
inline

choose.. 25
expansion60, 82, 204

controlling 84
library functions 84

function expansion
criteria 82

function expansion 82
-inline_debug_info compiler option84
inlined

library.. 84
source position 84

inlined...........................25, 35, 53, 82
inlining43, 57, 79, 85

affect... 80
intrinsics...................................... 57
prevents...................................... 35

INPUT158, 161

arguments...................................15
files ...20
input/output.................................39
test-prioritization103

instruction-level117
instrumentation.......................93, 110

compilation86, 92
compilation/execution.................89
repeat..90

instrumented
code generating..........................89
execution—run92
program85

INTEGER 6, 15, 124-127, 189
variables25

-integer_size{n} compiler option
-integer_size 32..........................43

-integer_size{n} compiler option43
Intel®

architecture-based....................141
architecture-based processors .28,

32
architecture-specific32
Fortran Compiler for 32-bit

application.................................2
Fortran Compiler for Itanium®-

based applications....................2
Intel® architectures

coding4, 28
Intel® Compiler

adjust ..80
coding20, 25, 28
directives194
refer60, 117
run...149
use6, 32, 76, 79
utilize...6
vectorizes197

Intel® Debugger.............................32
IA-32 applications.....................185
Itanium®-based applications....185

Intel® Enhanced Debugger
IA-32 ...32

Intel® extensions
extended intrinsics......................28
OpenMP* routines180

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

224

Intel® Fortran language..4, 6, 15, 20,
28, 50, 72, 185, 193
record structures 6
RTL... 20

Intel® Itanium® Compiler 28
Intel® Itanium® processor...2, 43, 68
Intel® Pentium® 4 processor .69, 71,

72
Intel® Pentium® III processor 69, 71,

72
Intel® Pentium® M processor ..2, 68,

69, 71, 72, 130
Intel® Pentium® processors.....2, 43,

68, 69, 71, 72, 85, 115, 117
Intel® processors....2, 28, 68, 69, 72,

180
depending................................... 71
optimizing for68, 69, 71, 72

Intel® Threading Toolset28, 32
Intel® VTune(TM) Performance Analyzer

.. 32
Intel® Xeon(TM) processors2, 43,
68, 85, 115, 117, 130
Intel®-specific28, 140
INTERFACE................................... 93
intermediate language scalar

optimizer204
intermediate results

use memory................................ 20
internal subprograms..................... 25
INTERNAL visibility attribute 53
interprocedural

during.. 84
use.. 28

interprocedural optimizations (IPO)
....................................4, 35, 57, 73
compilation with real object files 78
criteria for inline function

expansion 82
disable .. 73
inline expansion of user functions

.. 84
library of IPO objects.................. 79
multiple IPO executable 76
objects .. 79
options28, 73, 74, 76

-ipo_c79
-ipo_obj78
-ipo_S......................................79

-Qoption specifies.......................80
interprocedural optimizer73, 204
interthread141
interval profile dumping

initiating.....................................112
intrinsics 4, 15, 28, 35, 43, 57, 84,

193
cashesize....................................28
functions161
inlining...57
procedures................................193

invoking
GCC ld ..76

invoking ..76
IOR 151, 161, 169
-ip compiler option 60, 73, 80, 82, 84,

92, 204
ip_ninl_max_total_stats80
ip_ninl_min_stats80, 82
-ip_no_inlining compiler option 43, 84
-ip_no_pinlining compiler option....84
ip_specifier80
-IPF_flt_eval_method{0|2} compiler

option ..65
-IPF_fltacc compiler option65
-IPF_fma compiler option...............65
-IPF_fp_speculation compiler option

..65
IPO ...204
-ipo compiler option........................73
-ipo_c compiler option....................79
-ipo_obj compiler option....43, 78, 82,

121
-ipo_S compiler option 79, 75, 76, 79
IR ...74,

containing75, 76
object file74

ISYNC ..161
Itanium® acrchitectures28
Itanium® compiler 28, 43, 53, 60, 65,

80, 89, 115, 174
-auto_ilp32 compiler option........73
code generator204

Index

225

Itanium® processors......4, 28, 43, 68
Itanium®-based applications

pipelining194
Itanium®-based applications113,

194
Itanium®-based compilation.......... 86
Itanium®-based multiprocessor ..117
Itanium®-based processors 60
Itanium®-based systems

default... 82
Intel® Debugger185
optimization reports..................204
pipelining194
software pipelining117
using intrinsics............................ 28

IVDEP directive............113, 116, 197
ivdep_parallel...............................116
-ivdep_parallel compiler option...113,

116, 197
K
K|W|N|B|P57, 68, 69, 71
KIND parameter6, 25

double-precision variables 43
specifying 6

kmp.......................................174, 189
KMP_ALL_THREADS174
KMP_BLOCKTIME174
KMP_BLOCKTIME value173
kmp_calloc180
kmp_free180
kmp_get_stacksize180
kmp_get_stacksize_s180
KMP_LIBRARY............................174
kmp_malloc..................................180
KMP_MONITOR_STACKSIZE....174
kmp_pointer_kind180
kmp_realloc..................................180
kmp_set_stacksize180
kmp_set_stacksize_s

order ...180
kmp_size_t_kind180
KMP_STACKSIZE174, 180
KMP_VERSION...........................174
kmpc_for_static_fini189
kmpc_for_static_init_4.................189
kmpc_fork_call186, 189, 193

L
LASTPRIVATE

clauses......................................168
use ..168

LASTPRIVATE... 141, 147, 151, 158,
166, 167, 168, 193

layer..189
ld 76, 92
legal information...............................1
level coverage................................95
libc.so ...53
libc_start_main189
libdir ..43
-libdir keyword compiler option43
libguide.a173
libirc.a library92
libraries

functions84
inline expansion..........................84
libintrins.a28
library I/O20
OpenMP runtime routines177
routines177

limitations
loop unrolling115

line
DPI list103
dpi_list.......................................103
lines compiled...........................138

LINK_command line.......................76
linkage phase74
list

tool generates.............................95
tool provides95

listing 25, 103, 166
file containing............................103
xild...76

little-endian
big-endian...................................39
converting35

little-endian-to-big-endian conversion
environment variable..................39

Lock routines................................177
LOGICAL....................................6, 47
loop

blocking.....................................128

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

226

body..130
changing..................................... 15
collapsing 20
computing................................... 66
constructs126
count...195
diagnostics121, 138
directives195
distribution195
exit conditions...........................127
interchange...............................133
LOOP option of IVDEP directive

..197
parallelization117, 123
parallelizer 68
parallelizing68, 141
peeling131, 197
sectioning128
skewing.....................................114
transformations66, 114, 195
types vectorized128
unrolling 57, 113, 115, 123, 194,

204
limitations..............................115
support..................................196

variable assignment168
vectorization123, 197
vectorized types128

loop-carried memory dependency
absence....................................116

loop-carried memory dependency
..116

lower/mixed..................................185
M
machine code listing

subroutine.................................186
maddr option 95
maintainability 25
makefile.. 76
malloc

calls .. 53
MASTER directive141, 161, 189
master thread...............141, 151, 161

call stack dump189
use..161

math libraries 84

matrix multiplication133
MAX..................... 128, 130, 161, 169
maximum number . 43, 115, 174, 177
memory

access...28
allocation180
dependency116
layout ..28

MIN80, 128, 130, 151, 161, 169,
183, 204

min|med|max................................204
minimizing

execution time103
number......................................103

mintime option..............................103
misaligned

data crossing 16-byte boundary
..131

mispredicted...................................86
mixing

vectorizable123
MM_PREFETCH..........................117
MMX(TM) technology...................117
MODE...39
modules subset

coverage analysis.......................95
modules subset..............................95
more replicated code147
-mp compiler option60
-mp1 compiler option60
multidimensional arrays15, 124
multifile ...74
multifile IPO

IPO executable.....................75, 76
overview......................................74
phases ..74
stores ..74
xild...76

multifile optimization.......................73
multiple threads

debugging.................................189
multithread programs

debugger limitations185
overview....................................185

multithreaded 28, 117, 134-136, 140,
149, 185

Index

227

applications
creating 28
developing 28

produces...........................140, 141
run...149

mutually-exclusive
part.. 43

mutually-exclusive 43
N
names

optimizers204
NAN value47, 65
natural storage order 20
naturally aligned

data... 6
records.. 6
reordered data.............................. 6

new optimizations 2
-noalign compiler option 50
noalignments keyword..................... 6
-noauto compiler option 47
-noauto_scalar compiler option 47
-noautomatic compiler option 47
-nobuffered_io keyword 20
nocommons keyword..................... 50
nodcommons keyword................... 50
-nolib_inline compiler option....60, 84
-nologo compiler option 93
non-countable loop

incorrect usage.........................127
NONE...167
noniterative worksharing SECTIONS

use..158
non-OpenMP................................173
non-preemptable............................ 53
non-SSE

generating 28
NONTEMPORAL197
non-varying values......................... 25
non-vectorizable loop...................123
non-vectorized loops....................121
NOP..115
NOPARALLEL directive.......135, 136
nopartial option 95
NOPREFTCH directives197
-nosave compiler option 47

nosequence keyword50
NOSWP directives194
nototal...103
NOUNROLL196
NOVECTOR directives197
NOWAIT option158
-nozero compiler option47
NUM103, 117
num_threads151, 177
number ...60

changing156
minimizing.................................103

O
-O compiler option..........................57
-o filename compiler option75, 79
-O0 compiler option..........57, 60, 201
-O1 compiler option........................57
-O2 compiler option.... 25, 35, 43, 50,

57, 60, 65, 92, 113, 115, 121, 136,
149, 201
O2 optimizations.................57, 201

-O3 compiler option 28, 89, 113, 121,
201
optimizations.......... 57, 60, 65, 201

-Ob{n} compiler option
-Ob0..84
-Ob1......................................43, 84
-Ob2......................................43, 84

object files 35, 43, 75, 76, 79, 201
IR ..74

od utility
help ...39

omitting
BLOCKSIZE20
SEQUENCE6

OMP ...117, 141, 147, 149, 167, 174,
183

OMP ATOMIC..............................161
OMP BARRIER....................158, 161
OMP CRITICAL............................161
OMP DO...............................147, 156
OMP DO LASTPRIVATE.............168
OMP DO ORDERED,SCHEDULE

..161
OMP DO REDUCTION................169
OMP END CRITICAL...................161

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

228

OMP END DO..............................156
OMP END DO directives156
OMP END MASTER....................161
OMP END ORDERED.................161
OMP END PARALLEL156, 158, 161,

168, 171, 186
OMP END PARALLEL DO .156, 160,

169, 189
OMP END PARALLEL SECTIONS

..160
OMP END SECTIONS158
OMP END SINGLE......................158
OMP FLUSH161
OMP MASTER.............................161
OMP ORDERED..........................161
OMP PARALLEL 156, 158, 168, 186
OMP PARALLEL DEFAULT.......156,

158, 161, 166, 171
OMP PARALLEL DO...156, 160, 186
OMP PARALLEL DO DEFAULT 167,

169
OMP PARALLEL DO SHARED...189
OMP PARALLEL IF156
OMP PARALLEL PRIVATE.168, 186
OMP PARALLEL SECTIONS.....160,

186
OMP SECTION....................158, 160
OMP SECTIONS158
OMP SINGLE...............................158
OMP THREADPRIVATE165, 166
omp_destroy_lock........................177
omp_destroy_nest_lock...............177
OMP_DYNAMIC174
omp_get_dynamic177
omp_get_max_threads................177
omp_get_nested177
omp_get_num_procs...........156, 177
omp_get_num_threads........171, 177
omp_get_thread_num 161, 171, 177,

186, 189
omp_get_wtick177
omp_get_wtime............................177
omp_in_parallel............................177
omp_init_lock177
omp_init_nest_lock177
omp_lib.mod file...........................177

omp_lock_kind177
omp_lock_t...................................177
omp_nest_lock_kind177
omp_nest_lock_t..........................177
OMP_NESTED174
OMP_NUM_THREADS136, 149,

156, 174
OMP_SCHEDULE 136, 141, 172,

174
omp_set_dynamic........................177
omp_set_lock177
omp_set_nest_lock177
omp_set_nested177
omp_set_num_threads156, 177
omp_test_lock177
omp_test_nest_lock177
omp_unset_lock...........................177
omp_unset_nest_lock..................177
-On compiler option........................57
one thread189
open statement

OPEN statement BUFFERED....20
-openmp compiler option117, 149
OpenMP*..2, 4, 43, 47, 68, 117, 123,

134, 135, 140
clauses......................................151
contains

feature...................................141
contains141
directives151
environment variables174
examples183
extension environment variables

..174
Intel® extensions......................180
par_loop....................................186
par_region186
par_section186
parallelizer's

option controls149
parallelizer's..............................149
processing141
run-time library routines177
synchronization directives........141
usage ..183
uses ..141

Index

229

OpenMP*-compliant compilers....180
-openmp_report{n} compiler option

openmp_report0.......................149
openmp_report1.................43, 149
openmp_report2.......................149

-openmp_report{n} compiler option
..117, 149

-openmp_stubs compiler option .117,
180

operator/intrinsic169
operator|intrinsic151
-opt_report{n} compiler option

-opt_report_file204
-opt_report_filefilename204
-opt_report_help.......................204
-opt_report_level204
-opt_report_levelmin43, 204
-opt_report_phasephase option

..204
-opt_report_routine...................204

optima record
use.. 20

optimization-level
options .. 57
restricting.................................... 60
setting ... 57

optimizations
compilation process 6
debugging and optimizations ...201
different application types 4
floating-point arithmetic precision

.. 60
HLO ..113
IPO.. 73
optimizer report generation......204
optimizing for specific processors

.. 68
overview 35
PGO.. 85
reports43, 193, 194, 204

optimizer
allowing....................................... 35
full name...................................204
logical name204
report generation......................204
reports204

optimizer...35
optimizer.......................................194
optimizer.......................................196
optimizer.......................................204
optimizers

names.......................................204
your code....................................71

optimizers204
optimizing (see also optimizations)

application types.........................57
floating-point applications28
for specific processors2, 4, 68

optimizing (see also optimizations)
............................... 28, 57, 68, 130

option..57
causes ..57
controls

auto-parallelizer's..................138
OpenMP parallelizer's149

controls90
controls138
controls149
disables.......................................89
forces ..47
initializes47
places ...47
reduces.....................................201
sets

threshold138
visibility....................................53

sets ...53
sets ...57
sets ...138

options
correspond..................................53
debugging summary.................201
direct

compiler 47, 65, 71, 121
enable ...28

auto-parallelizer136
improve run-time performance...35
instruct123
output summary........................201
overviews..........................117, 201

OR 95, 130, 161, 169
ORDERED 141, 151, 161

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

230

clause158
directive141, 158, 161
specify161
use..161

ordering
data declarations.......................... 6
kmp_set_stacksize_s...............180

original serial code.......................134
other

operations.................................130
options121
READ/WRITE statements.......... 39
tools .. 80

output20, 35, 47, 103, 135, 140, 158,
161, 197
argument 15

overriding
vectorizer's efficiency heuristics

..197
overview..... 6, 35, 57, 68, 73, 74, 85,

110, 113, 117, 121, 140, 185, 193
P
PADD

using GNU................185, 189, 193
-par_report{n} compiler option

-par_report Output....................138
-par_report0..............................138
-par_report1................43, 117, 138
-par_report2..............................138
-par_report3..............................138

-par_report{n} compiler option.....117
-par_report{n} compiler option.....136
-par_report{n} compiler option.....138
-par_threshold{n} compiler option

-par_threshold0138
-par_threshold100....................138

-par_threshold{n} compiler option
..117, 136

-par_threshold{n} compiler option138
PARALLEL. 135, 136, 141, 147, 151,

156, 160, 166, 167, 168, 169, 171,
193

parallel construct
begin...147
end..147

parallel construct147
PARALLEL directive ... 136, 156, 161
PARALLEL DO

directive135, 172
use ..160

PARALLEL DO... 117, 141, 151, 160,
161, 166-169, 171

parallel invocations with makefile .76,
89

PARALLEL PRIVATE117
parallel processing140

directive groups141
thread model

pseudo code147
thread model.............................147

parallel program development117
parallel regions.....................141, 149

debugging.................................186
directives156
entry..189

PARALLEL SECTIONS141, 151,
161, 167-169, 171
use ..160

parallel/worksharing141, 160
parallelism117
parallelization123, 134-136, 138, 141

loops ...117
parallelized . 43, 135, 147, 149,185
parallelizer149

enables117
relieves134

parsing
I/O ...20

part
mutually-exclusive43

pathname53
-pc{n} compiler option43, 64

pc32 compiler option
24-bit significand.....................43

pc6443, 64
53-bit significand.....................43

pc8043, 64
64-bit significand.....................43

-pc{n} compiler option43, 64
pcolor..95
Pentium® 4 processors68

Index

231

Pentium® III processors 68
Pentium® M processors 68
performance analysis...................140
performance analyzer32, 185
performance-critical95, 173
performance-related options 35
performing...................................... 20

data flow117, 134
I/O ... 20

PGO 82, 85, 89-93, 110
environment variables................ 91
methodology............................... 86
PGO API..................................... 93
phases .. 86
usage model............................... 86

PGO API support
dumping and resetting profile

information............................112
dumping profile information111
interval profile dumping............112
overview110
resetting the dynamic profile

counters112
resetting the profile information112

pgopti.dpi file................86, 89, 94, 95
compiler produces...................... 92
existing 91
remove.. 91

pgopti.spi..........................86, 95, 103
PGOPTI_Prof_Dump.............93, 111
PGOPTI_Prof_Dump_And_Reset

..112
PGOPTI_Prof_Reset111, 112
PGOPTI_Set_Interval_Prof_Dump

..112
pgouser.h110
phase1 ...141
phase2 ...141
pipelining57, 194, 197, 204

Itanium®-based applications ...194
optimization194

placing
PREFETCH197

pointer aliasing............................... 47
pointers 15, 47, 73, 117, 123, 151,

201

position-independent code.............53
POSIX ..186
-prec_div compiler option...............64
preemption

preemptable................................53
preempted53, 82

PREFETCH....................57, 113, 117
placing197

prefetching 57, 113, 194, 204
optimizations.............................117
option ..117
support......................................197

preparing
code ..141

preventing
CRAY* pointers47
inlining...35

PRINT statement95, 168
prioritization..................................103
PRIVATE clause 135, 147, 151, 156,

161, 166-169, 171, 189, 193
private scoping

variable141
procedure names151
process

overview......................................35
process_data................................111
processor..................... 28, 68, 69, 71

processor-based.........................68
processor-instruction..................68
processor-specific

generating71
optimization.................69, 71, 72
runtime checks........................72

processor-specific2, 53
processor-specific71
processor-specific72
targeting......................................68

produced 78, 89, 140,141
IL 78
multithreaded....................140, 141
profile-optimized89

-prof_dir dirname compiler option..90
prof_dpi file...................................103
prof_dpi Test1.dpi103
prof_dpi Test2.dpi103

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

232

prof_dpi Test3.dpi103
PROF_DUMP_INTERVAL91, 110
-prof_file filename compiler option 90
-prof_gen[x] compiler option

-prof_gen compilations............... 89
PROF_NO_CLOBBER 91
-prof_use compiler option 89
profile data

dumping...................................... 93
profile IGS

describe....................................110
environment variable................110
functions110
variable110

profile information
dumping....................................111
generation support110

profile-guided optimizations (see
also PGO).............................92, 93
instrumented program................ 85
methodology............................... 86
overview 85
phases .. 86
utilities... 93

profile-optimized
executable 89
generating 89
produce....................................... 89

profiling summary
specifying 90

profmerge
tool93, 103
use.. 94
utility ... 93

program
affected aspect........................... 73

program’s loops
dataflow134

programming
high performance 6

project makefile.............................. 76
PROTECTED................................. 53
providing

superset....................................168
pseudo code

parallel processing model147

pushl186, 189
Q
-qipo_fa xild option.........................76
-qipo_fo xild option.........................76
-Qoption compiler option................80
R
-rcd compiler option64
READ20, 39, 135

READ DATA.............................124
READ/WRITE statements..............39
REAL

REAL DATA..............................124
REAL6, 25, 43, 47, 66, 128, 130,

131
real object files78
REAL*10 variables.........................28
REAL*16...25
REAL*4...25
REAL*8...25
-real_size {n} compiler option

-real_size 6443
reassociation65, 66, 169
rec8byte keyword...........................50
RECL

value ...20
recnbyte keyword...........................50
recommendations28

controlling alignment50
record buffers

efficient use of20
RECORD statement

use ..6
-recursive compiler option..............47
redeclaring193
redirected standard20
REDUCTION....... 147, 151, 156, 166

clause169
completed169
end..169
use ..169
variables169, 193

reduction/induction variable...........57
ref_dpi_file

respect ..95
relieving

I/O ...20

Index

233

relocating
source files 94
using profmerge 94

removing
pgopti.dpi 91

reordering
transformations123

repeating
instrumentation........................... 90

replicated code.............................147
report

availability.................................204
generation204
optimizer204
stderr ..204

resetting
dynamic profile counters112
profile information.....................112

restricting
FP arithmetic precision 66
optimizations 60

RESULT ... 72
results

IPO.. 85
RETURN126, 127, 131

double-precision.......................177
return values............................... 47

REVERSE....................................168
rm PROF_DIR..............................103
rounding

control... 64
significand 64

round-to-nearest 64
routines .. 82

selecting82, 180
timing ..177

RTL... 20
run

differential coverage................... 95
multithreaded............................149
test prioritization103

run-time
call ..180
library routines..........................177
peeling131
performance 35

processor-specific checks......2, 72
scheduling136

S
-S compiler option78
-safe_cray_ptr compiler option47
SAVE statement.............................47
scalar......47, 57, 113, 114, 128, 141,

156, 161, 169, 172, 183, 204
clean-up iterations131
replacement..............................115
scalar_integer_expression151
scalar_logical_expression........151
-scalar_rep................................115

-scalar_rep[-] compiler option115
SCHEDULE..................................151

clause172
specifying..................................172
use ..158

scoping ...166
SCRATCH............................165, 166
screenshot......................................95
SECNDS ..32
SECTION 141, 151, 158
SECTIONS.................. 141, 151, 156

directive 158, 160, 168, 169
use ..158

sections_1183
selecting

routines82
selecting ...82
SEQUENCE

omit ...6
specify...6
statement................................6, 50
use ..6

setenv...39
setting

arguments.....................................6
coloring scheme95
conditional parallel region

execution...............................156
email ...95
errno ...84
F_UFMTENDIAN variable..........39
FTZ ...72
html files......................................95

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

234

integer and floating-point data 6
optimization level........................ 57
units ..156

Sh ... 39
SHARED117, 135, 147, 156, 166-

169, 193
clause171
debugging.................................193
shared scoping.........................141
shared variables.......................189
updating....................................183
use..171

significand 43
round .. 64

SIMD 28, 117, 121, 123, 128
SIMD SSE2

streaming.................................... 28
SIMD-encodings

enabling128
simple difference operator183
SIN128, 130
SINGLE141, 151, 156

directive158, 161
encounters................................158
executing158
use..158

single-instruction..........................123
single-precision........................25, 60
single-statement loops.................123
single-threaded185
small logical data items 25
small_bar.. 28
SMP................................28, 134, 140
software pipelining117, 194, 195
source 2, 4, 6, 25, 35, 53, 60, 193,

197
code..149
coding guidelines 25
files relocation 94
input..................................136, 149
listing186, 189
source position

inlined 84
source position 84
view .. 95

specialized code69, 71, 117, 121

specific
optimizing2, 4, 68

specifying
8-byte data..................................43
DEFAULT167
directory......................................90
END DO....................................158
KIND ...6
ORDERED................................161
profiling summary.......................90
RECL ..20
schedule172
SEQUENCE6
symbol visibility explicitly............53
vectorizer131
visibility without symbol file53

spi
file95, 103
option ..103
pgopti.spi95, 103

SQRT ...156
SSE 28, 60, 121, 128
SSE228, 121
stacks ...47

size ...180
standard

OpenMP* clauses.....................151
OpenMP* directives..................151
OpenMP* environment variables

..174
statements 15, 25, 39, 47, 50, 80, 95,

130, 147, 156, 161, 177, 185, 196
accessing......................................6
BLOCKSIZE20
BUFFERCOUNT20
BUFFERED20
functions25

STATIC...172
STATUS ...20
stderr

report ..204
Stream_LF20
streaming

SIMD SSE228
Streaming SIMD Extensions...28, 32,

123, 128

Index

235

single-precision128
stride-1123, 133

example133
strings... 20
strip-mining128
STRUCTURE statements..........6, 50
SUBDOMAIN171
subl.......................................186, 189
subobjects168
suboption.. 35
subroutine

machine code listing186
PADD

entry189
source listing.........................189

PADD..189
PARALLEL186
PGOPTI_PROF_DUMP............. 93
VEC_COPY..............................131
WORK161

subscripts15, 39, 124, 133
array ... 15
loop...133
varying .. 20

substring... 82
containing204

superset168
support2, 4, 6, 28

loop unrolling196
MMX(TM) 28
OpenMP* Libraries...........134, 173
prefetching................................197
symbolic debugging201
vectorization197
worksharing141

SWP directive194
symbol

file ... 53
preemption 53
visibility attribute options 53

symbolic debugging201
synchronization

constructs161
identify161
with my neighbor161

worksharing construct directives
..158

synchronization .. 117, 134, 135, 140,
141, 161, 169

syntax136, 149
SYSTEM_CLOCK..........................32
systems ..60
T
table operators/intrinsics..............169
TAN ..128
targeting a processor68
terabytes.......................................174
test prioritization tool

Test1
Test1.dpi103
Test1.dpi 00103
Test2.dpi103

Test2
adding103
Test2.dpi 00103

Test3
Test3.dpi103
Test3.dpi 00103

tests_list file103
tselect command103

testl ...189
this release.......................................2
THREADPRIVATE..... 147, 151, 156,

166
directive141, 165
variables167

threads ...156
threshold...28

auto-parallelization136
control138
option sets138

TIME intrinsic procedure................32
timeout..82
timing

routines177
your application6, 32

tips
troubleshooting.........................138

TLP...117
tool..................... 6, 28, 32, 74, 80, 93

code coverage

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

236

list.. 95
code coverage............................ 95
test prioritization103

-tpp{n} compiler option
-tpp1 ... 68
-tpp243, 68
-tpp5 ... 68
-tpp668, 79
-tpp743, 68

-traceback compiler option201
transformations57, 115, 140

reordering123
transformed parallel code134

troubleshooting
tips ..138

TRUNC... 28
tselect command..........................103
two-dimensional128

array ... 28
type

aliasablility 47
casting117
INTEGER 47
padd_,@function189
parallel_,@function186
part_dt .. 6
REAL .. 66
TYPE statement 6
types ... 4, 6, 15, 20, 25, 32, 35, 39,

43, 47, 50, 57, 60, 65, 66, 71,
82, 117, 123, 128, 130, 135,
136, 151, 156, 158, 161, 168,
169, 172, 174, 186, 189, 197

U
UBC

buffers... 20
ucolor code-coverage tool option .. 95
ULIST ... 39
unaligned data 6
UNALIGNED directives197
unary

SQRT..128
unary ..130
unbuffered...................................... 20
underflow/overflow......................... 47
undispatched................................158

unformatted files20
unformatted I/O20
uninterruptable141
uniprocessor................ 141, 149, 185
units

setting156
unpredicatble..................................47
unproven distinction

unvectorizable copy131
unproven distinction131
UNROLL directive196
-unroll[n] compiler option

-unroll0................................43, 115
-unrolln......................................115

-unroll[n] compiler option115
unrolling................................115, 196

loop ...115
unvectorizable123
unvectorizable copy due to

unproven distinction131
updating

shared.......................................183
usage

model86, 103
requirements.............................103
rules76, 158

user functions.................................84
user@system32
users’ source..................................78
using

32-bit counters............................89
advanced PGO...........................90
ATOMIC....................................161
auto-parallelization135
BARRIER..................................161
COPYIN....................................166
CPU ..15
CRITICAL161
DEF...197
DEFAULT167
ebp register...............................201
EDB ..6
efficient data types25
EQUIVALENCE statements.......25
FIRSTPRIVATE........................168
FLUSH......................................161

Index

237

GDB..201
GOTO158
GP-relative 53
implied-DO loops........................ 20
Intel® performance analysis tools

.. 32
interprocedural optimizations.... 28,

73
intrinsics

Itanium®-based systems........ 28
intrinsics...................................... 28
-ip.. 73
-IPF_fltacc 65
IPO..73, 85
IVDEP.......................................197
LASTPRIVATE.........................168
MASTER...................................161
memory

intermediate results 20
memory....................................... 20
-mp.. 60
noniterative worksharing

SECTIONS158
non-SSE instructions 28
NONTEMPORAL197
-O3.. 35
optimal record............................. 20
ORDERED161
orphaned directives..................147
-par_report3..............................138
-par_threshold0138
PARALLEL DO.........................160
PARALLEL SECTIONS160
-prec_div..................................... 64
PRIVATE168
profile-guided optimization......... 92
profmerge 94
profmerge utility

source relocation 94
profmerge utility.......................... 94
REAL .. 25
REAL variables 28
RECORD...................................... 6
REDUCTION............................169
SCHEDULE..............................158
SECTIONS158

SEQUENCE6
SHARED...................................171
SINGLE.....................................158
slow arithmetic operators25
SSE...28
this document4
THREADPRIVATE directive147
unbuffered disk writes20
unformatted files

formatted files20
unformatted files.........................20
vectorization28
VTune(TM) Performance Analyzer

......................................140, 141
worksharing156
xiar ..78

utilities for PGO..............................93
utilize ..6
V
value...................................2, 4, 6, 20

1E-40 ..60
infinity..60
mixed data type25
NaN...60
specified for -src_old and -

src_new...................................94
threshold control.......................138
visibility attributes53

variables
AUTOMATIC43
automatic allocation47
comma-separated list...............151
correspond..................................15
existing......................................151
ISYNC.......................................161
length ..20
loop ...168
PGO environment.......................91
private scoping141
profile IGS.................................110
renaming.....................................57
scalars ..47
setting6, 180

VAX*...50
-vec_report{n} compiler option

-vec_report0121

Intel ®Fortran Compiler for Linux*Systems User's Guide Volume II:Optimizing Applications

238

-vec_report143, 121
-vec_report2121
-vec_report3121
-vec_report4121
-vec_report5121

vector copy...................................131
VECTOR directives

VECTOR ALIGNED197
VECTOR ALWAYS197
VECTOR NONTEMPORAL197
VECTOR UNALIGNED197

vectorizable..................124, 130, 133
mixing123

vectorization (see also Loop)
avoiding197
examples131
key programming guidelines....123
levels ..121
loop...197
options113, 121
overview121
reports121
support......................................197

vectorization (see also Loop) .28, 66,
85, 117, 121, 131, 195, 197

vectorize.........................66, 123, 131
loops ... 85

vectorized..... 43, 121, 126, 128, 131,
197

vectorizer............. 117, 123, 128, 197
efficiency heuristics

overriding197
efficiency heuristics197
options121

vectorizing compilers123
vectorizing loops197
version numbers 78
versioned .il files 2
view

XMM ... 32
violation

FORTRAN-77............................. 35
visibility

specifying 53
symbol .. 53

visual presentation

application's code coverage.......95
visual presentation95
-vms compiler option..................6, 35
VMS-related35
VOLATILE statement20
VTune(TM) Performance Analyzer1, 32,

185
use ..140

W
-W0 compiler option6
wallclock177
what's new..2
whitespace53
work ..156

work/pgopti.dpi file......................94
work/sources94

worker thread
call stack dump.........................189

WORKSHARE..............................140
worksharing 117, 134, 135, 156, 160,

169
construct141, 158

begin147
end ..147

construct directives...................158
end....................................141, 151
exits ..141
use ..156

WRITE..................... 20, 39, 135, 161
WRITE DATA124

write whole arrays20
X
X_AXIS........................ 158, 160, 161
-x{K|W|N|B|P} compiler option......69,

121
-xB............................ 2, 69, 72, 121
-xK...69, 72
-xK|W|P.......................................66
-xP...................................2, 69, 121

x86 processors...............................69
XFIELD.................................165, 166
xiar..78
xild ..79

listing...76
options

-ipo_[no]verbose-asm.............76

Index

239

-ipo_fcode-asm....................... 76
-ipo_fsource-asm.................... 76
-qipo_fa................................... 76
-qipo_fo................................... 76

options .. 76
tool .. 74

XMM
view .. 32

XOR..130
Y
Y_AXIS.........................158, 160, 161

YFIELD.................................165, 166
Z
Z_AXIS158, 160
zero denormal

flushing60, 65
ZFIELD165, 166
-Zp{n} compiler option

-Zp16 ..50
-Zp843, 50

-Zp{n} compiler option....................50

	Intel ®Fortran Co piler for Linux*Systems User's Guide Volume II:Optimizing Applications
	Disclaimer and Legal Information
	Table Of Contents
	What's New in This Release
	Improvements and New Optimization in This Release
	Introduction to Volume II

	Programming for Hi h Performance
	Programming Guidelines
	Setting Data Type and Alignment
	Using Arrays Efficiently
	Improvin I/O Performance
	Improvin Run-time Efficiency
	Using Intrinsics for Itanium ®-based Systems
	Coding Guidelines for Intel ®Architectures

	Analyzing and Timing Your Application
	Using Intel Performance Analysis Tools
	Timing Your Application

	Compiler Optimizations
	Optimizing Compilation Process
	Efficient Compilation
	Little-endian-to-Big-endian Conversion (IA-32)
	Default Compiler Optimizations
	Using Compilation Options
	Stacks:Automatic Allocation and Checking
	Ali nment Options
	Symbol Visibility Attribute Options

	Optimizing Different Application Types
	Setting Optimizations with -On Options
	Restricting Optimizations

	Floating-point Arithmetic Optimizations
	Options Used for IA-32 and Itanium ®Architectures
	Floating-point Arithmetic Precision for IA-32 Systems
	Floating-point Arithmetic Precision for Itanium ®-based Systems
	Improving/Restricting FP Arithmetic Precision

	Optimizing for Specific Processors
	Targeting a Processor,-tpp{n}
	Processor-specific Optimization (IA-32 only)
	Automatic Processor-specific Optimization (IA-32 only)
	Processor-specific Run-time Checks,IA-32 Systems

	Interprocedural Optimizations (IPO)
	Multifile IPO
	Creating a Multifile IPO Executable with Command Line
	Creating a Multifile IPO Executable Using xild
	Implementing the .il Files with Version Numbers
	Analyzin the Effects of Multifile IPO
	Using -ip with -Qoption Specifiers

	Inline Expansion of Functions
	Criteria for Inline Function Expansion
	Selectin Routines for Inlinin with or without PGO
	Inlining and Preemption
	Controlling Inline Expansion of User Functions
	Inline Expansion of Library Functions

	Profile-guided Optimizations
	Profile-guided Optimizations Methodology and Usage Model
	PGO Phases
	PGO Usage Model
	Basic PGO Options
	Advanced PGO Options
	Guidelines for Using Advanced PGO
	PGO Environment Variables
	Example of Profile-Guided Optimization
	The profmerge Utility
	Using profmerge to Relocate the Source Files
	Code-coverage Tool
	Test Prioritization Tool
	PGO API:Profile Information Generation Support

	High-level Language Optimizations (HLO)
	Loop Transformations
	Scalar Replacement (IA-32 Only)
	Loop Unrollin with -unroll[n]
	Absence of Loop-carried Memory Dependency with IVDEP Directive
	Prefetching

	Parallel Programming with Intel ® Fortran
	Parallelism: an Overview
	Auto-vectorization (IA-32 Only)
	Vectorizer Options
	Loop Parallelization and Vectorization
	Vectorization Key Programmin Guidelines
	Data Dependence
	Loop Constructs
	Loop Exit Conditions
	Types of Loop Vectorized
	Strip-mining and Cleanup
	Loop Blocking
	Statements in the Loop Body
	Vectorization Examples
	Loop Interchange and Subscripts:Matrix Multiply

	Auto-parallelization
	Programming with Auto-parallelization
	Guidelines for Effective Auto-parallelization Usage
	Auto-parallelization Options
	Auto-parallelization Directives Format and Syntax
	Auto-parallelization Threshold Control and Diagnostics

	Parallelization with OpenMP*
	Parallel Processin with OpenMP
	Programming with OpenMP
	Compiling with OpenMP,Directive Format,and Diagnostics
	OpenMP Directives and Clauses Summary
	OpenMP Directive Descriptions
	OpenMP Clause Descriptions
	OpenMP Support Libraries
	OpenMP Environment Variables
	OpenMP Run-time Library Routines
	Intel Extension Routines
	Examples of OpenMP Usage
	Debugging Multithreaded Programs
	Debugging Parallel Re ions
	Debugging Multiple Threads
	Debugging Shared Variables

	Optimization Support Features
	Compiler Directives
	Pipelinin for Itanium ®-based Applications
	Loop Count and Loop Distribution
	Prefetchin Support
	Vectorization Support

	Optimizations and Debugging
	Support for Symbolic Debugging,
	The Use of ebp Register
	Combining Optimization and Debugging
	Debugging and Assembling

	Optimizer Report Generation
	Specifying Optimizations to Generate Reports
	Command Syntax Example
	The Availability of Report Generation

	Index

