Intel® Fortran
L anguage Reference

Copyright © 2003 Intel Corporation

Document Number: 253261-001
World Wide Web: http://developer.intel.com

http://developer.intel.com

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rightsis granted by this document. EXCEPT AS PROVIDED IN INTEL'STERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMSANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPY -
RIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustain-
ing applications.

This Reference as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should

not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccura-
ciesthat may appear in this document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this Reference may contain software defects which may cause the product to deviate from published specifica-
tions. Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel 740, IntelDX2,
IntelDX4, Intel SX2, Intel Inside, Intel Insidelogo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo,
Pentium, Pentium I Xeon, Pentium I11 Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 2003 Intel Corporation.
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Contents

About This Manual

Chapter 1

Chapter 2

Product Website and SUPPOITcoviiiiiiiiiiiiiieee et XXVi
Related PUDIICAtIONS..........coouviiiiiiic e XXVii
(000] 01/=1 0] 1101 [T XXiX
Platform Labels. ... XXXI
Overview
Language Standards ConformancCeeeeveviieerieeieeeiieeieeeeeeeeeeeeeeeeeens 1-2
Language Compatibility.........cccoooiie e 1-2
Fortran 2003 FRAIUIES.......uciii e e e e e e e eaa e ens 1-2
IMPrOVEd FEALUIES.......uuiiiiiiiiiiiiiiiiiiieeie ettt e e e e et e e e e e e e e e e e e e aaaaaaeeaas 1-3
FOrtran 95 FEALUIES........cou i 1-3
NEW FEATUIES ... et e e e ean 1-3
IMPrOVEA FEALUIES.......uuviiiiiiiiiiiiiiiiiiriieesre e e e e e e e e e e e e e e e e e e aaaaaaaaaaaas 1-4
Fortran 90 FEALUIES.......covu e 1-5
NEW FEALUIES ... e e e e e aan 1-5
IMPrOVEd FEALUIES.......uuiiiiiiiiiiiiiiiieiieeee ettt e e e e e e e e e e e e e e e e e aaaeaaeeaas 1-7

Program Structure, Characters, and Source Forms

Program STUCTUIEocuuiiiieii e e 2-1
STATEIMENTS . .eeii e e e e e e e et e e eanns 2-2
NAIMIES ..o aaa e 2-4

(080 F= 1 = (ot (=] g 1= £ TSRO 2-5

SOUICE FOIMIS..coei et e e e et e e bt eeees 2-6
Free SOUIrCE FOIM... .o 2-9

Intel Fortran Language Reference

Fixed and Tab SOUrCe FOIMScciiiiiieiiieiiiicee e, 2-11
Fixed-FOrmat LINESccoovuiiiieeiie e 2-13
Tab-FOrmat LINESoovviiiiiiie i 2-13

Source Code Useable for All Source FOrmMScceeeevveviieieeeviieeeeeennn, 2-15

Chapter 3 Data Types, C onstants, and Variables

INFINSIC DAt@ TYPES .evuniiie e e e e e e e e e e 3-2
INtEgEr DAta TYPES....uviiii et a e 3-4
T LI = 1= W Y/ 01 RN 3-6

General Rules for Real Constants............cccevvvviiiiiieiieiieeeeeeeeeeeeeeeee. 3-7
REAL(4) CONSIANTS ...uvviiiiiic et 3-8
REAL(8) or DOUBLE PRECISION Constantsccccccovvvvvvieeeeenn. 3-9
REAL(16) CONSIANTSuuiiiecccieeeeice et 3-10
ComMPIEX DAta TYPESuuviieiieieeeeiiiiie et 3-10
General Rules for Complex ConstantS............cccovveveviiiiiniieeeeeeeeenns 3-11
COMPLEX(4) CONSLANTScceeeiiiiiiiiiieee e e 3-11
COMPLEX(8) or DOUBLE COMPLEX Constantscccccceeeeinnes 3-12
COMPLEX(16) CONSLANTSccoiiiiiiiiieieee et 3-13
(o To[[or= I D= L= T 1Y/ 0 L= T 3-14
Character Data TYPEueeiieeeiiiiiiiee e 3-14
C Strings in Character Constants............cccceeeviiieieveeeeiiiiieie e eeeeeeeens 3-16
Character SUDSIINGSvvviiiiiiiiiiiiieeee e 3-17

Derived Data TYPEScoee e e et s e e e e e e e e e e e e aaenraa 3-19
Derived-Type Definition.........ccuuviiiiiiiiiieeece e 3-20
Default INtaliZation..............eeueeiiiiiiiiiiieeee e 3-22
Structure COMPONENESoiii i 3-23
StruCtUre CONSITUCTOIS.....cvviiiiii et 3-26

Binary, Octal, Hexadecimal, and Hollerith Constants............cccccvvvvvveenen.. 3-28
Binary CONSIANTSuuuiiii i e e e e e e e e e e e eeees 3-28
(0 Tor 7= | I 0]] r= 1 | £ PP 3-29
Hexadecimal CONSIANTSuuiiiiiiiiiiiiiiiii e, 3-29
HOIIEIth CONSIANTS ...vviviiiiiiiiiiiieeeeeeeeer e 3-30
Determining the Data Type of Nondecimal Constants........................ 3-31

VATBDIES ... i 3-33

Contents

Data Types of Scalar Variablesccccccoiiiii, 3-34
Specification of Data TYPEcccocouuuiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeee 3-34
Implicit TypiNg RUIES.......cooe e, 3-35

ATTAYS <ot e et e a e e e e e e b s 3-35
WHhOIE AITAYS ... 3-38
Array Elements ... 3-38
AITay SECHONS ...ccoiei i 3-41
AIrray CONSIIUCTONS.ceiiiiiiii e 3-44

Chapter 4 Expressi ons and Assignme nt Statements

0] (=151 (0] £ PP 4-1
NUMENC EXPrESSIONS ..ottt e e 4-2
Using Parentheses in Numeric EXPressionscccvvvveeevveevevvinenneneenn, 4-4
Data Type of NUMEriC EXPreSSIONScccoviiiiiiiiiiieeeeiiiiiiieee e 4-5
Character EXPreSSIONScuuuiiiiei e e e eeereeeiiis s e e e e e e e e ee e e e e e e e eeeeaaennnns 4-6
Relational EXPreSSIiONS.cuiiiiiiiiiiiiiiieee et 4-7
LogiCal EXPreSSIONSuvueiiiiii e et e e e e e e e 4-8
Data Types Resulting from Logical Operationscccvvvveeeeennnns 4-9
Evaluation of Logical EXPresSSionS.......cccovveveeviveevviiiniieee e eeeeeeeiinn 4-9
Defined OPEratioNScc.uviiiiiie e 4-10
Summary of Operator Precedenceccccceeeviieeeiiiiceiiiiiiie e 4-11
Initialization and Specification EXPressionsccccceevviiiiinieeeennnnns 4-11
Initialization EXPreSSIONScccivviveeiiiii e ee et e e e e 4-12
Specification EXPresSSiONScc.vvvieiiieiiiiiiiiiieee e 4-13
ASSIgNMENt STAtEMENTS........coiiiiiiei e e e e 4-15
INErNSIC ASSIGNMENTS ...t e e 4-16
Numeric Assignment StatementS........ccoooeeeevveeeeiiiiin e, 4-17
Logical Assignment StatementScoovviiiiiiiiieeeeniiiieeeee e 4-18
Character Assignment Statements...........cccceeeeiiieeeeereceeviicinn e, 4-18
Derived-Type Assignment Statementsccceeveeeerniiiiiiieeeeennnnns 4-19
Array Assignment Statements............ccceevvieeeriveeeiicin e 4-20
Defined ASSIGNMENTSeviiiiiieeee e 4-21
PoiNter ASSIGNMENTSuvuiii it 4-22
WHERE Statement and CONSIIUCE............cooooiiiiiiiii e 4-23

Intel Fortran Language Reference

Chapter 5

vi

FORALL Statement and CONSIIUCTcvuviieiieie e e 4-26

Specification Statements

Type Declaration StatemMeNTS........ccoiiiiiiiiiiee e 5-2
Declaration Statements for Noncharacter Types........ccccceeeevivveeevvevennnns 5-6
Declaration Statements for Character TYPescccccvveeeviiiiiiiiieeeennnnns 5-8
Declaration Statements for Derived TYPeS.....ccovvvveevriiviviiiiiiniieeeeeeeeenns 5-10
Declaration Statements fOr ArTaySc.uuvveeeeeeiiiiiiiieie e 5-10

Explicit-Shape Specifications........ccccovvieeiiiiieiiiiii e, 5-11
Assumed-Shape Specificationseevveeeiiiiiiiiiiiee e 5-14
Assumed-Size SpecificationS........ccccoveviiivieiiiiiii e, 5-15
Deferred-Shape Specificationscccvevveeeiiiiiiiiiieeee e 5-16

ALLOCATABLE Attribute and Statementcccevvvviiiiii e, 5-17

AUTOMATIC and STATIC Attributes and Statements..............ccceevvvvnnnenn. 5-18

COMMON StatemeNntcoceviiiieee e e 5-21

[AN = 1= = o | P 5-24

DIMENSION Attribute and Statementcccoooveeiiiieieiiciin e, 5-27

EQUIVALENCE Statement........cooiiie ettt 5-29
Making Arrays Equivalentccoooiiiiiiiiiiicie e 5-31
Making Substrings EqQuivalent...............cccviiviiiiiiiiieeiieeen 5-33
EQUIVALENCE and COMMON Interaction.............ccccveeeeeeiivieeeeeennnnn. 5-35

EXTERNAL Attribute and Statement...........ccccceeevieeiiiiiieiiiiee e, 5-38

IMPLICIT Stat@mMent.........oi i e e e e e e eeean 5-39

INTENT Attribute and Statement.............ccveeiiiiiiiiiiiice e, 5-41

INTRINSIC Attribute and Statement.............cccceeeiiieeiiiceeeicies e 5-43

NAMELIST Stat€mMentccooeviiiiiieii e e e 5-45

OPTIONAL Attribute and Statement...........coovvviiiiiii e e 5-46

PARAMETER Attribute and Statement..........cccooooeiiiiiiiiiiie e, 5-48

POINTER Attribute and Statement.............cccccevviiieiiiieeiicie e, 5-50

PRIVATE and PUBLIC Attributes and Statements.........cccccooeeeeeviiiiinnnnnnn. 5-51

SAVE Attribute and Statementccoiiiiiieiiiieece e 5-54

TARGET Attribute and Statement............ooooviiiiiiiiieeieecee e, 5-55

VOLATILE Attribute and Statementcccceeviiiieiiiieiiicie e, 5-57

Contents

Chapter 6 Dynamic Allocation

ALLOCATE StatemMENT ... oo e ettt e e e eeeeees 6-2
Allocation of Allocatable ArraysS.......ccccoveeeiiiieeeiiiiiie e 6-3
Allocation of POINTEr TAIgetS.ccoiiiiriiiiiieee et 6-4

DEALLOCATE StatemMeNntcceviiiiiiiieiiiiieiiieeee et 6-5
Deallocation of Allocatable Arrays............ccoceeiiiiiiieiieeeeieeee e 6-6
Deallocation of Pointer Targetscccovveeevirieeiiiiiii e eeee e 6-7

NULLIFY StatemMent........oii ittt e e e e eeaeees 6-8

Chapter 7 Execution Control

Branch Statementsooouiiiiiiii e 7-2
Unconditional GO TO Statementcooeviviviiiiiiiiee e 7-2
Computed GO TO Statement...........coovveviiiiiiii e e e 7-3
The ASSIGN and Assigned GO TO Statements.........cccccccvvvvveeneennninnnn. 7-4

ASSIGN StatemeNtcovniiii e 7-4
Assigned GO TO Statement............oooooeiiiii s 7-5
Arithmetic IF Statementooovviiii e 7-6

(O I I = (=] 1 1= 1 7-7

CASE CONSITUCTS ...t e e e e e aans 7-9

CONTINUE Stat€mMeNt........covuiiiiiiiiieeeeeee e 7-14

DO CONSIIUCTS ..ouneiii et e e et e e e eaans 7-14
FOrms for DO CONSIIUCEScoeeiiieeeiiiiie e 7-15
Execution of DO CONSIIUCES.........ooeiiiiiieeeeeeee e 7-17

Iteration Loop CoNntrol...........cooooiiiiii i 7-17
Nested DO CONSIIUCESocvvieeiiiieeeeee e 7-19
Extended RANQE...........cooooiiiiiiii e 7-21
DO WHILE Statement ..o 7-23
CYCLE StatemeNt.......ccvuiiiiiiiiie et 7-24
EXIT StatEMENTo 7-24

END StatemMENt......coviiiiiiiiii e e e e e e e 7-25

IF Construct and StatemeNnt............oovvieiiiiiiiii e 7-26
| O] 3 1 U o 7-26
IF SIAtEMENT... .ot 7-31

PAUSE StatemMeNt........cciiiiiii e e e e e e 7-32

vii

Intel Fortran Language Reference

RETURN SEAEMENT ...ttt e e e e 7-33
SR O S =1 (=] ¢ 111 o | S 7-35

Chapter 8 Program Units and Procedures

17> V] I o o = o 8-2
Modules and Module ProCedures...........coeuuuiieiiiiieeieieeiiiieee e 8-4
MOdUIE REFEIENCES......cceviieeeeee e 8-7
(] =S r= 1 (=] 1 1= o | APPSR 8-8
Block Data Program UNItScoiiiieiiiiiiiiiiiis e eeeeenean 8-10
Functions, Subroutines, and Statement Functions..........ccceeeevvivvivnnnnnn. 8-12
General Rules for Function and Subroutine Subprograms.................. 8-13
RECUISIVE PrOCEAUIES.......uueiieieiie e 8-13

PUre PrOCEAUIESvveeeieei e 8-14
Elemental ProCedures.........coooovvvuieiiiiiiie e 8-17
FUNCLIONS ... aaans 8-18
RESULT KEYWOIU.....ciiiiiiiiiiiiiiiee ettt 8-23
FUNCLiON REfEIENCES ... oo 8-23
SUBIOULINES ... et 8-24
Statement FUNCHONS ..o 8-27
EXtErnal ProCEAUIES........uiiiiii et e e e 8-28
INtErNal PrOCEAUIESoovuieiite e 8-29
ArguMENt ASSOCIALION......cciiiiiiiiiiiee ettt e e e e e e 8-30
Optional ArgUMENLSoceeiiiiiii e e e e e 8-32
AITaY ATQUMENTS ..o 8-33
o Y (=T QAN {0 U] =T o £ 8-34
Assumed-Length Character ArgUmMENTS.oocuvveieeeeiniiiiiiieeeeeenens 8-35
Character Constant and Hollerith Arguments..........ccccoooveeeviiiieiiinnnnnn. 8-36
Alternate Return ArgUMENTScooiiiiiiiiiiieee st 8-37
Dummy Procedure ArgUMENES.......ccooeieeriiieeiiiiin e eee e eevriies e e e e eeeeens 8-37
References to Generic Procedures..........oouvieeiieeeieceeeeiiiiiee e, 8-38
References to Generic Intrinsic FUNCLIONSccooeiiiiiiiieiiiiiene, 8-39
References to Elemental Intrinsic Procedures..........ccccccvvveeeeennnn. 8-42
References to Non-Fortran Procedures...........cccoeeeeeiievieeeiciiiice e, 8-43
%REF and %VAL Argument List FUNCLIONScocciviiieieeennnee, 8-43

viii

Contents

Chapter 9

YOLOC FUNCHION ...ttt 8-44
Procedure INterfaces. ... 8-45
Determining When Procedures Require Explicit Interfaces 8-46
Defining Explicit INnterfaces.........oovvvvviiiiiiii 8-47
Defining Generic Names for Procedurescccccceeeeiii, 8-49
Defining Generic OPEratorsovvviiiiiiiiieeieeeeeeeeee e, 8-50
Defining Generic ASSIgNMENtoovvvviiiiiiiiie e, 8-51
CONTAINS StatemMeENtcoovviiiiii et eee e 8-53
ENTRY STAEMENT ..o 8-53
ENTRY Statements in Function Subprograms............ccccccoeeeeeeeenennn. 8-55
ENTRY Statements in Subroutine Subprograms................................. 8-56
Intrinsic Procedures
Argument Keywords in INtrinSic Proceduresccccovvvvvvieeeeeeiiiiiiieeeenn. 9-3
Overview of INtriNSIC ProCedUIESccccciiiiiiiiiiiiieteieee e 9-4
Categories of INtriNSIC FUNCHIONS.........oooviiiiiiiieeeeiiiieeec e 9-4
INErNSIC SUDIOULINES ...oooiiiiiiii e 9-15
Bit FUNCLIONS .ocviiiiiceeieee e, 9-16
Descriptions of INtrinsic ProCceduresoouuviiiiiiiiieee e e ee e, 9-18
AB S e e aa e e 9-18
ACHAR et e e e e e e et r e e e e e e aanne 9-19
ACOS et e e e e 9-20
ACOSD .ot e e e e e e e e e anne 9-20
ACOSH .o a e e e 9-21
ADJUSTL oottt e e e e e s e e e e e e e e nnne 9-21
ADJUSTR. L. e e 9-22
AIMAGt e e e e e e e e e e e e e anne 9-22
AN T e 9-23
ALL -t e e e e e e e nnnrees 9-23
ALLOCATED ... eaaan 9-24
ANINT Lo e e e e e e e e e e e e e e s e snreeeeeeeeeeaannes 9-25
AN 9-25
ASIN e e e e e e e e nnnees 9-26
ASIND L. e 9-27

Intel Fortran Language Reference

ASINH ..ottt et e e ee e 9-27
ASSOCIATED w..ovoeveeeeeeeeeeeeeeeeeeeeee st eses et ee s eseesees e eseanes 9-28
ATAN L.ttt ettt 9-29
ATANZ .ottt e e ettt ettt ee e 9-30
ATANZD ..ottt ettt 9-31
ATAND. ...ttt eee et ee s e ettt e et e et er e 9-31
ATANH. ..ottt ee et en e 9-32
BADDRESSeoeeeeeeeeveeteet et et eeeee e e es et e ees et es s eeeeees 9-32
BIT _SIZE oottt e et 9-33
BTEST oottt eeeeeeeseeeeeeeee e e e e e eeee e et ee s et s eee e e e s es e e ee e 9-33
CACHESIZE (164 ON1Y) ..o eeeeeeeeeeee e seees e eeseenes 9-34
CEILING oottt e et s e s seesees e et ese s es s eeesenes 9-35
CHAR ...ttt ettt e et s oo 9-35
CIMPLX oottt e e et e e eeeseeseee s e e e s esees s eeeseereees 9-36
CONIG ettt e e 9-37
(10 1= TP 9-38
COSD ettt ettt ettt 9-38
COSH vttt e et et st ee et e s es s e eeeeeereees 9-39
COTAN .ottt ettt s e 9-39
COTAND .ottt s et ee s ese et es s ees e eeesenes 9-40
COUNT oottt es e 9-40
CPU _TIME ..ot eeeeeeeeee et e et e s sees s eeeeseeseeseeseeeeesenes 9-42
CSHIFT oottt ettt s 9-42
DATE oot e e e eeeeee e e e e e ee e et et et s eee et s st eeee 9-44
DATE_AND_TIMEovoioeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 9-44
DBLE oottt ettt eee et e ettt et sttt 9-46
DOMPLX ..ottt e v 9-47
DFLOAT .ottt eee e ee st e et s eee et ses s eee e eeeeeees 9-48
DIGITS oottt e e 9-48
DIM oottt eee e e et et e et et er e ee et r et 9-49
DINUM ...ttt e e es e e es e, 9-49
DOT_PRODUCT ...ttt eeeeeeesees e eseeseesees e eeeseeseeseeseeeeeeeeees 9-50
DPROD ..ottt eeee e eee e et 9-51
DREAL ..ottt e e eeeee e et e s s ee et en s es e ene 9-51

Contents

DSHIFTL 1ottt ee e s s et e s eee e eneeee 9-52
DSHIFTR et eeeeeeteeseeseee et e eseeseees et eseesesseees et eseeseeseeeseenes 9-52
EOF ettt ettt ettt 9-53
EOSHIFT oo e et ees e et se e et et es e eeeseese s eseeseeeseenes 9-54
EPSILON......eeve ettt e e e e et seee s e sees e e s e 9-56
ERF v eeeeee ettt e s e et e s s ee ettt e et et et rer e et eees 9-57
ERFC oottt et s e e e n e et et et r e 9-57
ERRSNS ..ot e e eteeseeeeee et eeeseee et et esees e eeseeseeseeseeeseenes 9-58
EXIT oottt ettt et e ettt 9-59
EXP ettt ettt ettt ettt ettt ettt rer e r e 9-59
EXPONENT ...ttt eee et es e s e 9-60
FLOOR ..ottt et eeseee e et s s s es et et ees s eeeseeseeseeseesseeseees 9-60
FP_CLASS ..ottt et eee e 9-61
FRACTION ..ottt eeee e es e seeseees s et s eee e eseeseeseesseesenes 9-61
FREE ... oottt e s ee e et e e s s s 9-62
GETARG .ottt s et e e s s s et s s et e e s ene. 9-62
HUGE ...ttt s et s eee e en s 9-64
TACHAR .ottt s eee et s et e s et s ees et eseesees s eeesenes 9-64
TAND ...ttt st e e e een e 9-65
LARGC ..ot ee e et s et et et ees e eeeseese s s eeseeesenes 9-66
TARGPTR ..ottt s et s e ee e es s een e 9-66
IBCHNG et seee et s et et s ees e ese s s eeseeesenes 9-67
IBCLR ..t e et eee e eee e e s e et ee s eee s see s s eseeeeeees 9-67
IBITS o veeveeeee e eeee e s eeee et eseeseee et eseeseeseees et esees e eeseeseeseeneeseeesenes 9-68
IBSET oottt e et e e e eee et ee ettt 9-69
ICHAR ..ottt e et s e e e s s s ees e ee e ereer e 9-70
IDATE ¢t e et e ettt e e 9-71
IEOR oottt eee et s eee e e et s e e e s e s s ene et es e ereerine 9-71
ILEN oottt e ettt en e 9-72
INDEX vvveeveeeeeee et sees e eee s eeeeseessee e s eseeseeeees et eseeseeseeeereseeseeseesene 9-73
INT oottt et e et e ettt r e 9-73
INT_PTR_KIND. ov. vt teeeeeeee e teese s eseees e et eseeseeeeee s sseasens 9-75
INUM .ottt ettt st eseen e 9-76
TOR ettt e et et e s ee et eeeeees e et e s s ees et er s en e eseees 9-76

xi

Intel Fortran Language Reference

ISHA 9-77
1] o [9-78
LS H T 9-79
1] o | I TR 9-80
ISHL - 9-81
S N A SRR 9-82
INUM i 9-82
1 PR 9-82
LBOUND ..ottt 9-83
LEADZ ... e e e e 9-84
[9-85
LEN_TRIM Lottt e e e e e e e e e e aee e 9-85
LG E 9-86
TR 9-87
L e 9-87
TR 9-88
L O e 9-89
O L R 9-89
LOGILO .. 9-90
LOGICAL .ottt ettt e e e e e e e e e e e e e e e e aneeeas 9-91
MALLOC ... 9-91
IMATIMUL .ot r e e e e e e e e e e e e e aeeeens 9-92
Y G 9-93
MAXEXPONENT ..ot 9-95
MAXLOC ... 9-95
QY TR 9-97
MCLOCK i 9-98
MERGE ... ettt a e e 9-98
Y P 9-99
MINEXPONENT ..ottt 9-100
MINLOC ... 9-100
L R/ R 9-102
MM_PREFETCH ..ottt 9-103
IMIOD et 9-105

xii

Contents

MODULO ...t 9-106
MULT_HIGH (164 ONIY) ..o 9-106
MVBITS oot 9-107
NARGS ...t ee e e e 9-108
NEAREST ...t 9-110
NINT oot ee e e 9-110
NOT .ottt 9-111
INULL 1ot e e 9-112
PACK ..ottt 9-113
POPCNT .ottt 9-114
POPPARco.oeeeee et 9-114
PRECISION ...ttt e e 9-114
PRESENT ..ot 9-115
PRODUCT .ottt 9-116
QOMPLX ..o 9-117
QEXT ettt ettt 9-117
QFLOAT .o 9-118
QNUM oot 9-119
QREAL .o 9-119
RADIX .ot 9-120
RAN. ..ot 9-120
RANDOM_NUMBERcitoieeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeeeseeeeeeeee e 9-121
RANDOM_SEEDooiveeieeeeeeeeeeeeeeeeeeeeeeesee e 9-121
RANDU ..ot 9-122
RANGE ...t 9-123
REAL ..ottt 9-123
REPEAT ..ottt 9-124
RESHAPE ...ttt 9-125
RINUM ..ot 9-126
RRSPACING ...ttt 9-126
SCALE .ot 9-127
SCAN .ottt 9-127
SECNDS ... 9-128
SELECTED_INT_KINDeeeeeeeeeeeeeeeeeeeeee e eees oo 9-129

Xiii

Intel Fortran Language Reference

SELECTED_REAL_KINDcooiiiii e 9-129
SET_EXPONENT ... 9-130
SHAPE ... 9-130
SHIFT L e 9-131
SHIFTR 9-131
S GN e 9-132
SIN L 9-133
SIND L 9-134
SINH L 9-134
S ZE e 9-135
SIZEOF ... 9-135
SPACING ... 9-136
SPREAD ... 9-136
SO R T e 9-137
SUM i 9-138
SYSTEM_CLOCK ... oo ees 9-139
TAN Lo 9-140
TAND e 9-141
TANH Lo 9-141
TIME oo 9-142
TINY oo 9-143
TRAILZ oo 9-143
TRANSFER ... 9-144
TRANSPOSE ... 9-145
TRIM oo 9-145
UBOUND ... e e e e e e e e eee s 9-146
UNPACK .t 9-147
VERIFY .o 9-148
ZEXT oot 9-148

Chapter 10 Data Transfer /O Statements

ReCOrds and FilES.......cii i 10-1
Components of Data Transfer Statements...........ccccoooeeeviiiiiiiiiiieeeeeeeens 10-2
/O CONLIOl LIStcoiiiiiiiii it 10-3

Xiv

Contents

UNit SPECITIEI v, 10-4
Format SPecCifier ... 10-5
Namelist SPECIfier ... 10-6
ReCOrd SPECIfier.....ccoi i 10-6

I/O Status SPECIfiercoovvveeiee 10-6
Branch SPecCifiers ... 10-7
Advance SPECIfIENooceieiiie e 10-8
Character Count SPECIfIEruuuuiiiiiiiiiiiiiiiiiieieeei e 10-9

[/O LISES ittt ettt e bbb e e e e 10-9
Simple List [tems in 1/O LiStScovviiiiiiiiiiiiiieeeeeee e 10-10
implied-DO Lists in /O LiStS....ccccvviiiiieiiiiiiiiiiiieeee, 10-12
READ State@MENTS....coueeiii et eeeeees 10-13
Forms for Sequential READ Statements................ccccceeeeeeeee, 10-13
Rules for Formatted Sequential READ Statements..................... 10-15
Rules for List-Directed Sequential READ Statements.................. 10-15
Rules for Namelist Sequential READ Statements........................ 10-18
Rules for Unformatted Sequential READ Statements.................. 10-23
Forms for Direct-Access READ Statementscccccoeeeeeeeeeennn. 10-24
Rules for Formatted Direct-Access READ Statements 10-25
Rules for Unformatted Direct-Access READ Statements............. 10-26
Forms and Rules for Internal READ Statementscccvvvveeeennnn 10-26
ACCEPT StatemMent.........ooi e 10-28
WRITE State@mMEeNtScoviiiiiiiiiiiieeeee e 10-29
Forms for Sequential WRITE Statements...............coooeeeiiiiiiiiieeenns 10-29
Rules for Formatted Sequential WRITE Statements.................... 10-30
Rules for List-Directed Sequential WRITE Statements................. 10-31
Rules for Namelist Sequential WRITE Statements 10-33
Rules for Unformatted Sequential WRITE Statements................. 10-34
Forms for Direct-Access WRITE Statements.........cccccoovvvvvieeeeeennnnns 10-35
Rules for Formatted Direct-Access WRITE Statements............... 10-36
Rules for Unformatted Direct-Access WRITE Statements 10-36
Forms and Rules for Internal WRITE Statements.................coceeeeen. 10-36
PRINT and TYPE Statementsccuveeiiieeiiiiiiiiiieeee e 10-38
REWRITE Stat@mMeNt......coooeiiiiiieiiiee et eeeeeees 10-39

XV

Intel Fortran Language Reference

Chapter 11 1/O Formatting

Format SPeCIfiCatiONScoiiiiiiiiieie e 11-2
Data Edit DeSCIIPLOIS.coivieeeiiiiie e e ee e e e e e e e e e e eeeaeaaaas 11-6
Forms for Data Edit DeSCriPIOrS.cccuviiiiiiieiiiiiiiieeece e 11-6
General Rules for Numeric Eitingcvveeiiiiieeiiiciic e, 11-8
INteger EdItiNG.......eeeieiiiee e 11-9
I Lo 1] o 11-9

B EAItING...cviiiiiieiiiiiiiee e 11-11

(@ 8 =0 {111 Vo PRSPPI 11-12

Z EAITING .ot 11-13
Real and Complex EditiNgcouviiiiiiii e 11-14
[o 1 1] o USRS 11-15
=V (o [D 2N = 111 Vo 11-16
I o 111 T TSRS 11-19
ES EAItiNG coeeeeiiiiieeee e 11-20

G EQItING et 11-22
(O70] 1] 0] 1237 o [11] T S 11-24
Logical EAItING (L)vvveeieeeeeeiiiiei e 11-25
Character EAitiNg (A) «.ooeeveviiiiie e e e e e e e e e ee e 11-26
Default Widths for Data Edit DESCIPLOISccovvviviiiiiieeeiiiiiiieeeeennn 11-28
Terminating Short Fields of Input Dataccccceeivieeeviieeiiiiceeeeee, 11-29
CoNtrol Edit DESCIIPTOIS. .. .uuviiieiee ettt e et e e 11-30
Forms for Control Edit DeSCriptors........ccoovvviiiiiii e 11-30
POSItIONAl EAItINGvvveiieeeiiiiiieeee e 11-31
B I =T 11 1] o RO RRPR 11-31
TL EQItING c ettt 11-32
I = 11 Vo RSP RRPR 11-32

DG =L 111 o [T PP P PP PPPPPPPPPPRN 11-32

IS Lo | 0 = 111 T S 11-33
SP EGITING .t 11-33
SS EQItING cneviiiiieie ettt e e e 11-33

S EAIlING et 11-33

2 F= T N = 111 T 11-33
2] NI o 111 T TSRS 11-34

XVi

Contents

Chapter 12

BZ EdItiNg ... 11-34
Scale Factor EAitiNg (P) «...coovviiiiiiiieeeeieeeeeee e 11-34
Slash Editing (/) ...ccooeeeiee oo 11-36
(o] (o] 0 18 =To 111 o () 1SS 11-37
Dollar Sign ($) and Backslash (\) EAitingccccceviiiireiniiieeeiiieenn, 11-37
Character Count Editing (Q)..----ssseeseeuemmmeineiniiieiieieeeeeeeieeeeeeeeeeeeeeee 11-38
Character String Edit DeSCIPLOrscocooeeeiiicieveeeveeveeeeee 11-38

Character Constant Editingccooooeoooiiiiiiiiiiiieeeeeeeeeeeeeeeeee 11-39

o =T 11 o PR PPPPPT 11-39
Nested and Group Repeat Specifications...........ccccceeeeeiei, 11-40
Variable Format EXPresSsSionS........ccovvviieeieeieeeeeeeee 11-41
Printing of Formatted RECOIAS..........ouviiiiiiiiiiiiieiiiie e 11-42
Interaction Between Format Specifications and I/O Lists 11-43

File Oper ation I/O Statements

BACKSPACE Statementcouiuiiiiiiiii ettt eeenee 12-2
CLOSE StAt@MENT ...t 12-3
DELETE STAt@MENT ..uvuuiiiii ettt e e e e e eeneens 12-4
ENDFILE Stat@mMentcoo oo 12-5
INQUIRE STAt@MENT ...uuiiiiii ettt e e e e e eeeeens 12-7
ACCESS SPECITIEE v 12-8
ACTION SPECITIEI ...eeiiiiiiiiieei e 12-9
BINARY Specifier (W*32, W*64)ccoooviiiiiiiiiiiiie 12-9
BLANK SPECITIEI ...ttt 12-9
BLOCKSIZE SPECIIEI ...cciiiiieeiieeeeeee e 12-10
BUFFERED SPECITIEI ...t 12-10
CARRIAGECONTROL SPECITIeF......uuuuuiiiiiiiiiiiiiiiiiiiieiiieeieeeeeeeeeveeeee 12-10
CONVERT SPECIHIEIeviiiiiieiiiiieeet e 12-11
DELIM SPECITIENciieeeeiiiee ettt e e e e e e e 12-12
DIRECT SPECITIET ...ceiiieiiiiiieiee ettt 12-12
EXIST SPECIIEI...cciiieeiiiiii e 12-12
FORM SPECIIET.....ueiieieeiieiie ettt 12-13
FORMATTED SPECIFIEI .cceveiiiiieeieeeeeee e 12-13
IOFOCUS Specifier (W*32, W*B4)cueeieeiiiiiiiiieieee e 12-13

Xvii

Intel Fortran Language Reference

XVviii

MODE SPECIIEI ...vvviiiiiiiiiiiiieieeeee e 12-14
NAME SPECITIEI ... 12-14
NAMED SPECITIEF ..vvvviiiiiiiiiiiiiieeeeeeeeeeee et 12-14
NEXTREC SPECITIEI....uuiiiiiiiiiiiieiieeeeeeeee et 12-15
NUMBER SPECIfIEF ..vvviiiiiiiiiiiiieiieeeeeeeeee ettt 12-15
OPENED SPECITIeF.....ceei i 12-15
ORGANIZATION SPECITIEI ..ceeeeiiiiiiiiiee e 12-16
PAD SPECITIEI ...ttt 12-16
POSITION SPECIIEI....uviiiiiiiiiiieiieeieeeee e, 12-16
READ SPECITIEI ..ttt 12-17
READWRITE SPECII€F ...vvvvviiiiiiiieiiiiiieeeeeeeeeeeeeeeee e, 12-17
RECL SPECITIEE ...ttt ettt ettt e 12-17
RECORDTYPE SPECIfI€F ..cvvviiiiiiiiiiieiiiiiiiiieeeeeeeeee e, 12-18
SEQUENTIAL SPECIfIEF ...vvviiiiee ittt 12-18
SHARE Specifier (W*32, W*B4)ccoeiiiiiiiiiieiiee e 12-19
UNFORMATTED SPECIIeF....cuviiiiieee et 12-19
WRITE SPECIFIEE vttt 12-19
OPEN SEat@MENTo 12-20
ACCESS SPECITIEF v.vvviiiiiiieiieeeieeeeeeee e, 12-24
ACTION SPECIIEN .., 12-25
ASSOCIATEVARIABLE SPECIfier ...t 12-25
BLANK SPECIIEN ...ttt 12-26
BLOCKSIZE SPECIIEI...cuviiiiiiiiiiiieeieeeeeeieeeteeeeee e, 12-26
BUFFERCOUNT SPECIfier......uvviiiiieeiiiiiiiiiiee e 12-26
BUFFERED SPECIfIeF....cuvviiiiiiiiiiiieieeeieeieeeeeee e, 12-27
CARRIAGECONTROL SPECIfi€F....cuvuiiieeeeiiiiiiiiiiieeeeiiiiiiia e 12-28
CONVERT SPECIfIEF ..cceiie e 12-28
DEFAULTFILE SPECIIEF....ccii et 12-30
DELIM SPECITIEF ..vvvviviiiiiiiiiiiiiiieeieeeeeee ettt a e 12-30
DISPOSE SPECITIEI ...ttt 12-31
FILE SPECITIEI ..uviiiiiiiiiiiiiieeiittieee ettt a e e e e e e 12-32
O] 1Y IS 01T o 1] SRR 12-32
IOFOCUS Specifier (W*32, W*64)coovvvveeiiiiiiiiiiiiiiiiiieeeeeeeeeeee, 12-33
MAXREC SPECITIEIvveiiiiiiiiiiiieiieeieeeeeeee ettt a e e e 12-33

Contents

Chapter 13

Chapter 14

MODE SPECITIEF covvvvieiiiiiiiiie e, 12-33
NAME SPECITIEIueiiiiieiieie e 12-33
ORGANIZATION SPECITIEI .ot 12-34
PAD SPECITIEI .o 12-34
POSITION SPeCIfier....cccciiiiiieieecee s 12-35
READONLY SPECIIEI...cciiiiiiiiiee et 12-35
RECL SPECIfIEI.ccviiiiiiiiiiiieee e 12-36
RECORDSIZE SPECIfIEI.....uvviiiieeeei it e et e e 12-37
RECORDTYPE SPECIfier cccciviieeeieeeeeee e 12-37
SHARE Specifier (W*32, W*B4)........ccouiiiiiiiieee e eeeeiiieeeans 12-38
SHARED SPECIIEI ... e e 12-39
STATUS SPECITIET ...t e e e e 12-39
TITLE Specifier (W*32, W*B4)uvveiieieiiiiiiiiiieeee e 12-40
TYPE SPECITIOI ..o 12-40
USEROPEN SPECIfIEI ...uvvviiiiiiiiiiiieiieeieeeeeeeeeet ettt 12-40
REWIND SEat@mMeENT..... oot e eeees 12-41
UNLOCK STAEMENTuviiiiiiiiiiiiiiieiieieieeeee ettt ettt e e e e e 12-42

Compilati on Control Statements
INCLUDE Stat€mMeNt........ccuuiiiiiiiiii e e et e e e e e e e e 13-1
OPTIONS Statementcoovuiiiiiie e 13-3

Directive Enhanced Compilation

Syntax Rules for Compiler DIir€CtVEScccccvvivvviiiiiiiiiiiiiieeeeeeeeeeeeee e 14-1
General Compiler DIreCHVESot e 14-2
Rules for General Directives that Affect DO Loops...........cccceeeeeeee. 14-4
ALIAS DIFECLIVE ..o 14-5
ATTRIBUTES DIFECHVEuvviiiiiiiiiiiiiiiiieeee et 14-5
ATTRIBUTES ALIAS ...ttt e e 14-8
ATTRIBUTES ALIGN ..ottt 14-9
ATTRIBUTES ALLOCATABLEcutiiiieiiieiiiiieeee e eiieeee e 14-9
ATTRIBUTES ALLOW_NULL ...ttt 14-9
ATTRIBUTES ARRAY_VISUALIZER (W*32 only).......ccccuvvvvnnnnnnn. 14-10
ATTRIBUTES C and STDCALL.......ccuuviiieeiiiiiiiieeeee e 14-10

XiX

Intel Fortran Language Reference

XX

ATTRIBUTES DECORATE ..ottt 14-12
ATTRIBUTES DEFAULT ... 14-12
ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64) 14-13
ATTRIBUTES EXTERN......ciiiiiiiiieeeee e 14-13
ATTRIBUTES IGNORE_LOC.......c..ccoivviiivii, 14-13
ATTRIBUTES INLINE, NOINLINE, and FORCEDINLINE............ 14-14
ATTRIBUTES NO_ARG_CHECKcoovvvviiiiiiiiiiie, 14-14
ATTRIBUTES NOMIXED_STR_LEN ARGcccoeviiiiii. 14-15
ATTRIBUTES REFERENCE and VALUE...........cccooooeiiiiiviniiinnnn. 14-15
ATTRIBUTES VARYING.......cceiiiieeeeee et 14-16
DECLARE and NODECLARE DIreCtiVES.......cccceeiieeeeeiiieiiiiieeieeeeeee 14-16
DEFINE and UNDEFINE DIir€CtiVES..........ccuuvvvieeiieeeeeiieeeieee e 14-17
DISTRIBUTE POINT Dir€CtVE....uuceiieieeiiieeiiiiiiiee e 14-18
FIXEDFORMLINESIZE DIir€CHVE........cceeeeeeeeviee et 14-19
FREEFORM and NOFREEFORM DirecCtivescevvvviiieeeneeennnn. 14-20
IDENT DIrECLIVE .. coevveeeeetee et 14-20
IF and IF DEFINED Dir€CtiVEScciiiiieiiiieiiiiiiiee e 14-20
INTEGER DIF€CHVE ...veeeeieeeeieeeeeeee et 14-22
IVDEP DIFECLIVEcevvviiiiee ettt ettt 14-23
LOOP COUNT DIFECHVEcceeeeeevtieeee et 14-25
MESSAGE DIrECHVE ..uuuiiiieceieeeeeee et 14-26
OBJICOMMENT DIFECHVE ..vvviieeeeeeeeeeee et 14-26
OPTIONS DIrECLIVEcceeitiiee et 14-27
PACK DiIrBCHVE.....ceevteeeeeeee et 14-30
PARALLEL and NOPARALLEL DireCtivesccoeeveeeeeivieiiiiieeieeeeee 14-31
PREFETCH and NOPREFETCH DireCtiveScccoovvvvvvuveeeeeeeeeeeenans 14-32
PSECT DIFECHVE ..cevvvviiei i ittt ettt 14-33
REAL DIFECLIVE.ceveieieeee e 14-35
STRICT and NOSTRICT DIireCtiVES.....ccceeeeeiiieiiiiiiiieeeeeeeeeeeeviie e 14-36
SWP and NOSWP Directives (164 only)........cooooieeiiiiiiciiees 14-37
TITLE and SUBTITLE DIr€CHVESvvveeeeeeeieeeeeeiieeeeee e 14-38
UNROLL and NOUNROLL Dir€CtIVES......cevieeeeeiieeeeiieee e, 14-39
VECTOR ALIGNED and VECTOR UNALIGNED Directives (i32 only).......
14-39

Contents

VECTOR ALWAYS and NOVECTOR Directives (i32 only)................ 14-40
VECTOR NONTEMPORAL Directive (i32 only).......cccovvevvveereeeennnnnns 14-41
OpenMP* Fortran Compiler DIreCtives..........coceeeeeeiiciiiviiiinnens 14-42
Data Scope Attribute ClauSes..........coooeieeeiieiie s 14-44
COPYIN CIAUSE ...ttt 14-44
COPYPRIVATE ClaUSEcccooiiiiiiiiee et e e siieeea e e e 14-44
DEFAULT ClaAUSE......coiiiiiiiieeeee ettt 14-45
FIRSTPRIVATE ClaUSEceviiiieeiiiiiiiiiiee e eeiieee e eiineee e e e 14-46
LASTPRIVATE ClaUSE.......cceiiiiiiiiiiiiiiiie e 14-46
PRIVATE ClaUSE....cciiiiiiiiiiiiiee e ettt e seea e e e e e siineaenee e e e 14-46
REDUCTION ClaUSE.......cuuiiiiiieeiiiiiiiiiiie ettt e 14-47
SHARED ClAUSEcvviiiiiieeieeiiiiiiee et e e 14-49
Conditional Compilation RUIES...............cuvvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e, 14-49
Nesting and Binding RUIES..........coooviiiiiiiiii, 14-50
ATOMIC DIFECHIVEcetieiiiiiiieiie ettt e e 14-52
BARRIER DIr€CHVE ...ccceiiiiiieiiie ettt a e e e 14-53
CRITICAL DIF€CHVEevviiiiie ettt 14-54
DT I B = Tox 1) 14-55
FLUSH DIFrECHIVE ..eeiiiiiiiiiiiieiieee ettt e e 14-59
MASTER DIFECHVE ..ceeeeeiiiiiiiiee e ettt a e e e e e e e 14-60
ORDERED DIFCHVEceviiiiiiiiiiiiiiie ettt 14-61
PARALLEL DIFCHIVE ...cccoiiieiiie ettt e e e e e 14-62
PARALLEL DO DIr€CHVEuviiiieeeiiiiiiiiiieee ettt 14-64
PARALLEL SECTIONS DIr€CtIVEuuviiieeeeeieiiiiiiiee e eiiiieeeee e 14-66
SECTIONS DIF€CHVEeeviiiieiiiiiiieiee ettt 14-67
SINGLE DIFECHVEuvviiiiie ettt a e 14-68
THREADPRIVATE DIr€CHVE.......ceviiiiiiieeeiiiiieieee e 14-69

Chapter 15 Scope and Association

Yoo] o1 TP P PTOPPTPPPPPPPP 15-1
Unambiguous Generic Procedure References........cccccceeeevveeeeveeevevvnnnnnnn. 15-4
Resolving Procedure ReferencCesccccoeeiiiiiiiiiie e 15-5
References to Generic NamMesS...........oovvvviiiiiiiiiiiieee e 15-5
References to Specific NamMeS.........ccuvviiiiiiiiii e 15-7

XXi

Intel Fortran Language Reference

References to Nonestablished Namescccccoooviiiiiiiiiiiiiiiiiiiennenn, 15-8
=T Tox = 1 [ISR 15-9
NAME ASSOCIALIONevveiieeiiiiiiiiiee e 15-10
Argument ASSOCIALIONcoovviiiiiiiiiiiii e 15-10

Use and HOSt ASSOCIALIONuueviieiiiiiiiiiiieee et 15-11
PoINter ASSOCIALIONuueiiiiiiiiiiiiiieeeieeeee e 15-12
Storage ASSOCIAtIONccoeeiiieiicci e e e 15-13
Storage Units and Storage SeqUEeNCe.............ueeeeeeeeeeeeieeeeeeeeennnne. 15-13
Array ASSOCIALION ..evveviieiiiiiieiieeeeeec e, 15-15

Appendix A Deleted and O bsolescent Language Features

Deleted Language Features in FOrtran 95...........oooooviiiiiiiiinniiiiiiieeee e A-1
Obsolescent Language Features in Fortran 95cccccevviiiiii e eeeeeeenns A-2
Obsolescent Language Features in Fortran 90ccooeeiieiiieceicccccciinns A-3

Appendix B Additiona | Language Features

DEFINE FILE Statementc..uvviiiiee e e e e e ieeee e e e e B-1
ENCODE and DECODE Statements..........ccvvvvvvvviieiiiiiiiiiiiieeieeeeeeeeaeeeeen, B-3
FIND State@mMeNt........ i e e e et e e e e e B-5
INTERFACE TO StatemMentceiiiiiiiiiiiiiieiee et e e B-5
FORTRAN-66 Interpretation of the EXTERNAL Statement B-6
Alternative Syntax for the PARAMETER Statement............cccccooveevee. B-8
VIRTUAL Stat@mMentcoceei e e e e e e e e e e e eaean B-9
Alternative Syntax for Octal and Hexadecimal Constants B-10
Alternative Syntax for a Record Specifier........ccccovvvieiiiiiiiiiiiiiiiiie B-10
Alternative Syntax for the DELETE Statement........ccccccvvvvvvvviiiiiiinnineen. B-10
Alternative Form for Namelist External Recordsccccceevviiieeriieiiinnnnnn. B-11
Integer POINTER Statement.........ccoovvviviiiiiieiiisen e e e B-12
RECOII StTUCTUIES. .. uuii it e e et e e e e e e eaeannes B-13
Structure Declarationsooooeeiiiiii B-14
Type DecClarations..........ooooiiiiiiiiee e B-18
Substructure Declarations...........cccccccuueevviiiiiniiiiiieie . B-18
UNIioN DECIarationsS.........ccoovveiiiiiiiiie e B-19
=L O @] B I r= 1 (=] 1 1= o | R B-21

XXii

Contents

References to Record FieldS............ccuvvviiiiiiiiiiiiiieiiiiecee e B-22
Aggregate ASSIGNMENT........oii i B-24
Appendix C The ASCII Character Set for Linux Systems
The ASCII Character Set (L*X)oovveiiiiiiiiieeeeeeeeeeiiis e C-1
Appendix D Data Representation Models
Model for INteger DAuuvriiiieiiiiiiieee e D-2
Model for Real Data..........coovviiiiiiiiiiiiiee s D-3
YT Te [T (o] g =1 A I | = U D-4

Appendix E Run-Time Library Routines

MOAUIE ROULINES ..ot E-1
Portability ROULINESccoovviiiiiiiiiiiie E-2
National Language Support Routines (W*32, W*64) E-8
POSIX* ROULINES. ...ciiiiiiiiiiiiiiieee ettt e e e E-10
QuickWin Routines (W*32, W*B4)...........uuuuuuummmieriniininneenieeeeeeeeeeeeeeeen E-14
Graphics Routines (W*32, W*B4)...........uuuurririiiiiminiininiinnieerseereeeeeeeee E-16
Dialog RoULINES (W*32)...cceiiiiiieeeeeeeeee e E-20
Miscellaneous RUN-TiMe ROULINESccoeviiiiiiiiiiiiieeeiiiiiiieeee e E-22
COM ROULINES (W*32) ..eeieeeeeiiiiiiiiee e e e ettt e sniaeee e e e e e s snnnaanaae e E-23
AUTO ROULINES (W*32) ..o E-24

OpenMP* FOrtran ROULINESuuuuuiiiiiiiiiiiiiiieiiieeeer et ee e eaaeaaaaaaaeens E-25

Appendix F Summary of Language Extensions

SOUICE FOIMS ..ttt e e e e e e e F-1

NBIMNIES .t et e e e e et e e e e e e e e e e e e e raans F-1

(O P = 1o (] ST KPP F-1

INTrNSIC DA TYPES .eeeeeieiiiiieiie et e e F-2

CONSTANTS. ... e e e et e e e e e e e e e e F-2

EXpressions and ASSIGNMENTooiiiiiiiiiieeiiii e F-2

Specification StateMENTSciii i F-2

o Yol N[0 o I @o] 11 (o] ISR F-3

Compilation Control Statements...........ciieiiii i F-3

BUIIE-IN FUNCLIONS ...ttt F-3

XXiii

Intel Fortran Language Reference

[/O STATEMENTS. ...t e e e e e F-3
1/O FOIMALIING . ..cc i e ittt e e e e e e e F-3
File Operation Stat€mMENtS...........uuuiiiiiiiiiiiiiiiiiiir e a e aa e F-4
Compiler DIFECLIVESooeeieeeeeeeeeeee e F-5
INEFNSIC PrOCEAUIESuviiiiiiiiiiiieie et F-7
Additional Language FeatUres. ... F-9
Run-Time Library ROULINES............uuuuiiiiiiiiiiiiiiiiieeiieeiieeeeesseesseeeeeeeeeeeeeeee F-10

Glossary

Index

XXiv

About This Manual

This manual contains the complete description of the Intel® Fortran programming language,
which includes Fortran 95, Fortran 90, and some Fortran 2000 language features. It contains
information on language syntax and semantics, on adherence to various Fortran standards, and on
extensions to those standards.

It appliesto the following:

* Intel Fortran for Linux* on |A-32 systems

® Intel Fortran for Linux on Intel® Itanium® systems

* Intel Visual Fortran on 1A-32 and Intel [tanium systems

For details on the features of the compilers and how to improve the run-time performance of
Fortran programs, see your user’s guide.

This manual is intended for experienced applications programmers who have abasic
understanding of Fortran concepts and the Fortran 95/90 language, and are using Intel Fortranin
either a single-platform or multiplatform environment.

Some familiarity with parallel programming concepts and your operating system is helpful. This

manual is not a Fortran or programming tutorial.

This manual is organized as follows:

® Chapter 1, “Overview,” describes language standards, language compatibility, and Fortran
95/90 features.

® Chapter 2, “Program Structure, Characters, and Source Forms,” describes program structure,
the Fortran 95/90 character set, and source forms.

® Chapter 3, “Data Types, Constants, and Variables,” describesintrinsic and derived data types,
constants, variables (scalars and arrays), and substrings.

® Chapter 4, “Expressions and Assignment Statements,” describes Fortran expressions and
assignment statements, which are used to define or redefine variables.

® Chapter 5, “ Specification Statements,” describes specification statements, which are used to
declare the attributes of data objects.

XXV

Intel Fortran Language Reference

Chapter 6, “Dynamic Allocation,” describes statements used in dynamic allocation.

Chapter 7, “Execution Control,” describes constructs and statements that can transfer control
within a program.

Chapter 8, “Program Units and Procedures,” describes program units (including modules),
subroutines and functions, and procedure interfaces.

Chapter 9, “Intrinsic Procedures,” summarizes all intrinsic procedures.

Chapter 10, “Data Transfer 1/0O Statements,” describes data transfer input/output (1/0)
statements.

Chapter 11, “1/0 Formatting,” describes the rules for 1/0O formatting.

Chapter 12, “File Operation |/O Statements,” describes auxiliary 1/0 statements you can use
to perform file operations.

Chapter 13, “Compilation Control Statements,” describes compilation control statements.
Chapter 14, “ Directive Enhanced Compilation,” describes general and parallel compiler
directives.

Chapter 15, “ Scope and Association,” describes scope and association.

Appendix A, “Deleted and Obsolescent L anguage Features,” describes deleted featuresin
Fortran 95 and obsolescent language features in Fortran 95 and Fortran 90.

Appendix B, “Additional L anguage Features,” describes some statements and language
features supported for programs written in older versions of Fortran.

Appendix C, “The ASCII Character Set for Linux Systems,” describes the ASCII character
set available on Linux* systems. For information on character sets available on Windows*
systems, see the online documentation for those systems.

Appendix D, “Data Representation Models,” describes data representation models for
numeric intrinsic functions.

Appendix E, “Run-Time Library Routines,” summarizes the many run-time library routines.
Appendix F, “ Summary of Language Extensions,” summarizes Intel Fortran extensionsto the
Fortran 95 Standard.

The Glossary contains abbreviated definitions of some commonly used terms in this manual.

Product Website and Support

XXVi

Intel® Fortran provides a product web site that offers timely and comprehensive product
information, including product features, white papers, and technical articles. For the latest
information, visit:

http://devel oper.intel .com/software/products/

http://developer.intel.com/software/products/

About This Manual

Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more.

Registering your product entitles you to one year of technical support and product updates through
Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:

® Submit issues and review their status.
* Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

Related Publications

Thefollowing is an aphabetical list of some commercialy published documents that provide
reference or tutorial information on Fortran 95 and Fortran 90:

® Compag Visua Fortran by N. Lawrence; published by Digital Press*
(Butterworth-Heinemann), ISBN: 1-55558-249-4.

¢ Digital Visual Fortran Programmer’s Guide by M. Etzel and K. Dickinson; published by
Digital Press* (Butterworth-Heinemann), ISBN: 1-55558-218-4.

®* Fortran 90 Explained by M. Metcalf and J. Reid; published by Oxford University Press,
ISBN 0-19-853772-7.

® Fortran 90/95 Explained by M. Metcalf and J. Reid; published by Oxford University Press,
ISBN 0-19-851888-9.

®* Fortran 90/95 for Scientists and Engineers by S. Chapman; published by McGraw-Hill,
ISBN 0-07-011938-4.

* Fortran 90 Handbook by J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener;
published by Intertext Publications (McGraw-Hill), ISBN 0-07-000406-4.

® Fortran 90 Programming by T. Ellis, |. Philips, and T. Lahey; published by Addison-Wesley,
ISBN 0201-54446-6.

* Introduction to Fortran 90/95 by Stephen J. Chapman; published by WCB McGraw-Hill,
ISBN 0-07-011969-4.

®* Programmer’s Guide to Fortran 90, Second Edition by W. Brainerd, C. Goldberg, and J.
Adams; published by Unicomp, ISBN 0-07-000248-7.

Intel® does not endorse these books or recommend them over other books on the same subjects.

The following copyrighted standard and specification documents contain precise descriptions of
many of the features found in Intel® Fortran:

XXVii

http://www.intel.com/software/products/support

Intel Fortran Language Reference

XXViii

American National Standard Programming Language FORTRAN, ANS| X3.9-1978
American National Standard Programming Language Fortran 90, ANS| X3.198-1992

This Standard is equivalent to: International Standards Organization Programming Language
Fortran, | SO/IEC 1539:1991 (E).

American National Standard Programming Language Fortran 95, ANSI X3J3/96-007

This Standard is equivalent to: International Standards Organization Programming Language
Fortran, |SO/IEC 1539-1:1997 (E).

High Performance Fortran Language Specification, Version 1.1, Technical Report
CRPC-TR-92225

OpenMP Fortran Application Program Interface, Version 1.1, November 1999
OpenMP Fortran Application Program Interface, Version 2.0, November 2000

Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at:

http://www.intel.com

Some helpful titles are;

Intel® Fortran Language Reference

Intel® Fortran Libraries Reference

Intel® Fortran Compiler Installing and Getting Sarted

Intel® Array Visualizer online help reference

Intel® Array Viewer online help reference

Using the Intel® License Manager for FLEXIm®*

Intel® C++ Compiler User's Guide

VTune™ Performance Analyzer online help

Enhanced Debugger online help

Intel® Architecture Software Developer's Manual

— Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190
— Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191
— Vol. 3: System Programming, Intel Corporation, doc. number 243192
Pentium® Processor Family Developer's Manual

Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618

Intel® Itanium® Architecture Manuals

Intel® Itanium® Architecture Software Conventions & Runtime Architecture Guide
Intel® Itanium® Assembler User's Guide

Intel® Itanium® Architecture Assembly Language Reference Guide

http://www.intel.com

About This Manual

For more developer's manuals on Intel processors, refer to the Intel's Literature Center.
The following sources might be useful in helping you understand basic optimization and
vectorization terminology and technology:

* Intel® Architecture Optimization Reference Manual

* Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1997.

® The Sructure of Computers and Computation: Volume |, David J. Kuck. John Wiley and
Sons, New York, 1978.

® Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A
Book Series on Loop Transformations for Restructuring Compilers). Kluwer Academic
Publishers. 1993.

* Loop parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994.

® High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,
Redwood City. 1996.

* Supercompilersfor Parallel and Veector Computers, H. Zima. ACM Press, New York, 1990.

®* An Auto-vectorizing Compiler for the Intel® Architecture, Aart Bik, Paul Grey, Milind
Girkar, and Xinmin Tian. Submitted for publication

* Efficient Exploitation of Parallelism on Pentium® |11 and Pentium® 4 Processor-Based
Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

Conventions

The following table describes the typographic and terminology conventions used in this manual:

Typographic Conventions

Extensions to Fortran 95 This color indicates extensions to the Fortran 95 Standard. These
extensions may or may not be implemented by other compilers that
conform to the language standard.

AUTOMATIC, INTRINSIC, WRITE Uppercase letters indicate Fortran95/90 statements, data types,
directives, and other syntax keywords. Examples of statement
keywords are WRITE, INTEGER, DO, and OPEN.

option, option This italic type indicates an keyword arguments in syntax, new terms,
emphasized text, or a book title. Most new terms are defined in the
Glossary of the Language Reference.

CALL CPU_TI ME This courier type indicates a code example, a derived type name, or a
pathname.

XXiX

Intel Fortran Language Reference

CTRL

{choicel | choice2}

[optional item]

s, s]...

Adobe Acrobat*

Small capital letters indicate the names of keys and key sequences,
such as CTRL+C.

A plus indicates a combination of keys. For example, CTRL+E means to
hold down the CTRL key while pressing the E key.

Braces and vertical bars indicate a choice of items. You can usually
only choose one of the items in the braces.

In syntax, single square brackets indicate items that are optional. In
code examples, they are used to show arrays.

A horizontal ellipsis (three dots in a row) following an item indicates that
the item preceding the ellipsis can be repeated. In code examples, a
horizontal ellipsis means that not all of the statements are shown.

An asterisk at the end of a word or name indicates it is a third-party
product trademark.

Terminology Conventions

compiler option

cat (1)

Intel Fortran

Fortran
Fortran 95/90

Fortran 95
Fortran 90
Windows systems

Linux systems

integer

XXX

This term refers to Linux* options and Windows* options that can be
used on the compiler command line.

This format refers to an online reference page; the section number of
the page is shown in parentheses. For example, a reference to

cat (1) indicates that you can find the material on the cat command
in Section 1 of the reference pages. To read online reference pages, use
the man command. Your operating system documentation also includes
reference page descriptions.

This term refers to the name of the common compiler language
supported by the Intel® Visual Fortran Compiler for Windows* and
Intel® Fortran Compiler for Linux* products. For more information on
these compilers, see http://developer.intel.com/software/products/.

This term refers to language information that is common to ANSI
FORTRAN 77, ANSI/ISO Fortran 95/90, and Intel Fortran.

This term refers to language information that is common to ANSI/ISO
Fortran 95 and ANSI/ISO Fortran 90.

This term refers to language features of ANSI/ISO Fortran 95.
This term refers to language features of ANSI/ISO Fortran 90.

This term refers to all supported Microsoft* Windows operating systems.
(See also “Platform Labels”.)

This term refers to all supported Linux operating systems. (See also
“Platform Labels”.)

This term refers to the INTEGER(KIND=1), INTEGER(KIND=2),
INTEGER (INTEGER(KIND=4)), and INTEGER(KIND=8) data types as
a group.

http://developer.intel.com/software/products/

About This Manual

real

This term refers to the REAL (REAL(KIND=4)), DOUBLE PRECISION
(REAL(KIND=8)), and REAL(KIND=16) data types as a group.

REAL This term refers to the default data type of objects declared to be REAL.
REAL is equivalent to REAL(KIND=4), unless a compiler option
specifies otherwise.

complex This term refers to the COMPLEX (COMPLEX(KIND=4)), DOUBLE
COMPLEX (COMPLEX(KIND=8)), and COMPLEX(KIND=16) data
types as a group.

logical This term refers to the LOGICAL(KIND=1), LOGICAL(KIND=2),
LOGICAL (LOGICAL(KIND=4)), and LOGICAL(KIND=8) data types as
a group.

<Tab> This symbol indicates a nonprinting tab character.

A This symbol indicates a nonprinting blank character.

The following example shows how this manual's typographic conventions are used to indicate the
syntax of the PARAMETER statement:
PARAMETER [(] c =expr [, c = expr]...))]

This syntax shows that when you use this statement, you must specify the following:

®* Thekeyword PARAMETER.

* Anoptional left parenthesis.

®* Oneor morec = expr items, where c is a named constant and expr isavalue.
If you want to specify more than one ¢ = expr item, a comma must separate the items.
The three dots following the syntax mean you can enter as many of these sequences (a
comma, followed by ¢ = expr) asyou like.

* Anoptiona terminating right parenthesis. If you used the optional left parenthesis, you must
use the terminating right parenthesis.

The colored brackets ([]) indicate that the parentheses are optional only as an extension to
standard Fortran 95.

Platform Labels

A platformisacombination of operating system and central processing unit (CPU) that providesa
distinct environment in which to use a product (in this case, alanguage). This manual contains
information for the following language platforms:

Platform 1

Language Operating System CPU
Intel® Fortran Linux 1A-32

XXXi

Intel Fortran Language Reference

XXXii

Platform 1
Language Operating System CPU
Linux Intel® Itanium®
Microsoft* Windows* 2000 I1A-32
Microsoft Windows NT* 4.0 1A-32
Microsoft Windows XP* 1A-32
Microsoft Windows XP Intel Itanium

1. For the latest information on the current language platforms, see the online Release Notes.

Information in this manual appliesto all supported platforms unlessit is otherwise labeled for a
specific platform (or platforms), as follows:

L*X Applies to Linux* on Intel® I1A-32 processors and Intel® Itanium® processors.

L*X32 Applies to Linux on Intel IA-32 processors.

L*X64 Applies to Linux on Intel Itanium processors.

W*32 Applies to Microsoft Windows* 2000, Windows XP, and Windows NT* 4.0 on Intel
IA-32 processors.

W*64 Applies to Microsoft Windows XP operating systems on Intel Itanium processors.

i32 Applies to 32-bit operating systems on Intel I1A-32 processors.

i64 Applies to 64-bit operating systems on Intel Itanium processors.

For example, the IOFOCUS specifier (for an OPEN statement) islabeled " (W* 32, W*64)", so this
specifier isvalid only on Windows operating systems.

Overview 1

This chapter discusses Intel® Fortran standards conformance and language compatibility, and
provides an overview of Fortran 95, Fortran 90, and proposed Fortran 2003 features.

Figure 1-1 Graphic Representation of Intel Fortran

Fortran 90

FORTRAN 77 Fortran 95

Fortran
Extensions

Fortran 95 includes Fortran 90 and most features of FORTRAN 77. Fortran 90 is a superset that
includes FORTRAN 77. Intel Fortran fully supports the Fortran 95, Fortran 90, and FORTRAN 77
Standards.

1 Intel Fortran Language Reference

Language Standards Conformance

Intel Fortran conforms to American National Standard Fortran 95 (ANSI X3J3/96-007)1,
American National Standard Fortran 90 (ANSI X3.198-1992)2, and includes support for some
features in proposed standard Fortran 2003.

The ANSI committee X3J3 is currently answering questions of interpretation of Fortran 95 and
Fortran 90 language features. Any answers given by the ANSI committee that are related to
featuresimplemented in Intel Fortran may result in changes in future rel eases of the Intel Fortran
compiler, even if the changes produce incompatibilities with earlier releases of Intel Fortran.

Intel Fortran provides a number of extensions to the Fortran 95 Standard. In the language
reference manual, extensions are displayed in this color.

Intel Fortran also includes support for programs that conform to the previous Fortran standards
(ANSI X3.9-1978 and ANSI X3.0-1966), the International Standards Organization standard SO
1539-1980 (E), the Federal Information Processing Institute standard FIPS 69-1, and the Military
Standard 1753 Language Specification.

See Also

Appendix F, “Summary of Language Extensions’, for asummary of Intel Fortran language
extensions

Language Compatibility

Intel Fortran is highly compatible with Compag* Fortran and Compaqg Fortran 77 on supported
platforms, and it is substantially compatible with PDP-11* and VAX* FORTRAN 77.

See Also

Your user’s guide for specific details on language compatibility, compiler options, and program
conversion considerations

Fortran 2003 Features

This section briefly describes the Fortran 2003 features that have been implemented in Intel®
Fortran.

1. Thisisthe same as International Standards Organization standard 1SO/IEC 1539-1:1997 (E).
2. Thisisthe same as International Standards Organization standard | SO/IEC 1539:1991 (E).

1-2

Overview 1

Improved Features

The following Fortran 2003 features improve previous Fortran features:

Enhancement to derived-type components, function results, and dummy arguments

Components of derived types can now be allocatable and function results and dummy
arguments can now be allocatable.

For more information, see “ Derived-Type Definition”, “ Functions’, and “ Array Arguments’.

Fortran 95 Features

This section briefly describes the Fortran 95 language features that have been implemented in Intel
Fortran. Some features are new, while others are improvements to previous Fortran features.

New Features

The following Fortran 95 features are new to Fortran:

The FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using array constructors
and the RESHAPE and SPREAD intrinsics. The Fortran 95 FORALL statement and construct
offer an aternative method.

FORALL allows array elements, array sections, character substrings, or pointer targets to be
explicitly specified as afunction of the element subscripts. A FORALL construct allows
several array assignments to share the same element subscript control.

FORALL isageneralization of WHERE. They both allow masked array assignment, but
FORALL uses element subscripts, while WHERE uses the whole array.

For more information, see “FORALL Statement and Construct”.

PURE user-defined procedures

Pure user-defined procedures do not have side effects, such as changing the value of a
variablein acommon block. To specify apure procedure, use the PURE prefix in the function
or subroutine statement. Pure functions are allowed in specification statements.

For more information, see “ Pure Procedures”.

ELEMENTAL user-defined procedures

An elemental user-defined procedure is arestricted form of pure procedure. An elemental
procedure can be passed an array, which is acted upon one element at atime. To specify an
elemental procedure, use the ELEMENTAL prefix in the function or subroutine statement.
For more information, see “Functions” and “ Subroutines’.

1-3

1 Intel Fortran Language Reference

CPU_TIME intrinsic subroutine

This new intrinsic subroutine returns a processor-dependent approximation of processor time.
For more information, see“CPU_TIME”.

NULL intrinsic function

In Fortran 90, there was no way to assign anull value to the pointer by using a pointer
assignment operation. A Fortran 90 pointer had to be explicitly allocated, nullified, or
associated with atarget during execution before association status could be determined.

Fortran 95 provides the NULL intrinsic function that can be used to nullify a pointer.
For more information, see “NULL".
New obsolescent features

Fortran 95 deletes several language features that were obsolescent in Fortran 90, and
identifies new obsolescent features.

Intel Fortran fully supports features deleted in Fortran 95.
For more information, see Appendix A, “ Deleted and Obsolescent Language Features’.

Improved Features

The following Fortran 95 features improve previous Fortran features:

1-4

Derived-type structure default initialization

In derived-type definitions, you can now specify default initial values for derived-type
components.

For more information, see “Default Initialization”.

Pointer initialization

In Fortran 90, there was no way to define the initial value of a pointer. You can now specify
default initialization for a pointer.

For more information, see “ Derived-Type Definition” and “ Default Initialization”.
Automatic deallocation of allocatable arrays

Allocatable arrays whose status is allocated upon routine exit are now automatically
deallocated.

For more information, see “ Allocation of Allocatable Arrays’.
Enhanced CEILING and FLOOR intrinsic functions

KIND can now be specified for these intrinsic functions.

For more information, see “CEILING” and “FLOOR".
Enhanced MAXLOC and MINLOC intrinsic functions

DIM can now be specified for these intrinsic functions.

For more information, see “MAXLOC” and “MINLOC”.

Overview 1

Enhanced SIGN intrinsic function

When a specific compiler option is specified, the SIGN function can now distinguish between
positive and negative zero if the processor is capable of doing so.

For more information, see “SIGN”.

Printing of —0.0

When a specific compiler option is specified, afloating-point value of minus zero (—0.0) can
now be printed if the processor can represent it.

Enhanced WHERE construct

The WHERE construct has been improved to allow nested WHERE constructs and a masked
EL SEWHERE statement. WHERE constructs can now be named.

For more information, see “WHERE Statement and Construct”.

Generic identifier allowed in END INTERFACE statement

The END INTERFACE statement of an interface block defining a generic routine now can
specify ageneric identifier.

For more information, see “Defining Explicit Interfaces’.

Zero-length formats

On output, when using I, B, O, Z, and F edit descriptors, the specified value of the field width
can be zero. In such cases, the compiler selects the smallest possible positive actua field
width that does not result in the field being filled with asterisks (*).

Comments alowed in namelist input
Fortran 95 allows comments (beginning with) in namelist input data.

Fortran 90 Features

This section briefly describes the Fortran 90 language features that have been implemented in Intel
Fortran. Some features are new, while others are improvements to previous Fortran features.

New Features

The following Fortran 90 features are new to Fortran:

Free source form

Fortran 90 provides a new free source form where line positions have no special meaning.
There are no reserved columns, trailing comments can appear, and blanks have significance
under certain circumstances (for example, PR O G R A M isnot allowed as an aternative for
PROGRAM).

For more information, see “ Free Source Form”.

1-5

1 Intel Fortran Language Reference

1-6

Modules

Fortran 90 provides a new form of program unit called a module, which is more powerful
than (and overcomes limitations of) FORTRAN 77 block data program units.

A moduleis aset of declarations that are grouped together under a single, global name.
Modules let you encapsulate a set of related items such as data, procedures, and procedure
interfaces, and make them available to another program unit.

Module items can be made private to limit accessibility, provide data abstraction, and to
create more secure and portable programs.

For more information, see “Modules and Module Procedures’.

User-defined (derived) data types and operators

Fortran 90 lets you define new data types derived from any combination of the intrinsic data
types and derived types. The derived-type object can be accessed as awhole, or itsindividual
components can be accessed directly.

You can extend the intrinsic operators (such as + and *) to user-defined data types, and aso
define new operators for operands of any type.

For more information, see “ Derived Data Types’ and “Defining Generic Operators’.

Array operations and features

In Fortran 90, intrinsic operators and intrinsic functions can operate on array-val ued operands
(whole arrays or array sections).

New features for arrays include whole, partial, and masked array assignment (including the
WHERE statement for selective assignment), and array-valued constants and expressions.
You can create user-defined array-valued functions, use array constructors to specify values
of aone-dimensional array, and allocate arrays dynamically (using ALLOCATABLE and
POINTER attributes).

New intrinsic procedures create multidimensional arrays, manipulate arrays, perform
operations on arrays, and support computationsinvolving arrays (for example, SUM sumsthe
elements of an array).

For more information, see “Arrays’ and Chapter 9, “Intrinsic Procedures’.

Generic user-defined procedures

In Fortran 90, user-defined procedures can be placed in generic interface blocks. This alows
the procedures to be referenced using the generic name of the block.

Selection of a specific procedure within the block is based on the properties of the argument,
the same way as specific intrinsic functions are selected based on the properties of the
argument when generic intrinsic function names are used.

For more information, see “Defining Generic Names for Procedures’.

Overview 1

* Pointers

Fortran 90 pointers are mechanisms that allow dynamic access and processing of data. They
allow arraysto be sized dynamically and they allow structuresto be linked together.

A pointer can be of any intrinsic or derived type. When a pointer is associated with atarget, it
can appear in most expressions and assignments.

For moreinformation, see “POINTER Attribute and Statement” and “ Pointer Assignments’.
® Recursion

Fortran 90 procedures can be recursive if the keyword RECURSIVE is specified on the
FUNCTION or SUBROUTINE statement line.

For more information, see Chapter 8, “Program Units and Procedures’.
* |nterface blocks

A Fortran 90 procedure can contain an interface block. Interface blocks can be used to do the
following:

— Describe the characteristics of an external or dummy procedure
— Define ageneric name for a procedure
— Define anew operator (or extend an intrinsic operator)
— Define anew form of assignment
For more information, see “Procedure Interfaces”.
* Extensibility and redundancy

By using user-defined data types, operators, and meanings, you can extend Fortran to suit
your needs. These new datatypes and their operations can be packaged in modules, which can
be used by one or more program units to provide data abstraction.

With the addition of new features and capabilities, some old features become redundant and
may eventually be removed from the language. For example, the functionality of the ASSIGN
and assigned GO TO statements can be replaced more effectively by internal procedures. The
use of certain old features of Fortran can result in less than optimal performance on newer
hardware architectures.

For more information, see your user’s guide. For alist of obsolescent features, see
Appendix A, “Deleted and Obsolescent Language Features’.

Improved Features

The following Fortran 90 features improve previous Fortran features:

1 Intel Fortran Language Reference

1-8

Additional features for source text

Lowercase characters are now alowed in source text. A semicolon can be used to separate
multiple statements on a single source line. Additional characters have been added to the
Fortran character set, and names can have up to 31 characters (including underscores).

For more information, see Chapter 2, “Program Structure, Characters, and Source Forms’.
Improved facilities for numerical computation

Intrinsic data types can be specified in a portable way by using akind type parameter
indicating the precision or accuracy required. There are also new intrinsic functionsthat allow
you to specify numeric precision and inquire about precision characteristics available on a
processor.

For moreinformation, see Chapter 3, “Data Types, Constants, and Variables” and Chapter 9,

“Intrinsic Procedures’.
Additional input/output features

Fortran 90 provides additional keywords for the OPEN and INQUIRE statements. It aso
permits namelist formatting, and nonadvancing (stream) character-oriented input and output.

For more information on formatting, see Chapter 10, “Data Transfer I/0O Statements’; on
OPEN and INQUIRE, see Chapter 12, “File Operation 1/0 Statements’.

Additional control constructs

Fortran 90 provides anew control construct (CASE) and improvesthe DO construct. The DO
construct can now use CY CLE and EXIT statements, and can have additional (or no) control
clauses (for example, WHILE). All control constructs (CASE, DO, and IF) can now be
named.

For more information, see Chapter 7, “Execution Control”.

Additional intrinsic procedures

Fortran 90 provides many more intrinsic procedures than existed in FORTRAN 77. Many of
these new intrinsics support mathematical operations on arrays, including the construction
and transformation of arrays. New bit manipulation and numerical accuracy intrinsics have
been added.

For more information, see Chapter 9, “Intrinsic Procedures’.

Additional specification statements

The following specification statements are new in Fortran 90:

— TheINTENT statement (“INTENT Attribute and Statement”)

— The OPTIONAL statement (* OPTIONAL Attribute and Statement”)

— The Fortran 90 POINTER statement (“ POINTER Attribute and Statement”)

— The PUBLIC and PRIVATE statements (“ PRIVATE and PUBLIC Attributes and
Statements”)

Overview 1

Additional way to specify attributes

Fortran 90 lets you specify attributes (such as PARAMETER, SAVE, and INTRINSIC) in
type declaration statements, as well asin specification statements.

For more information, see “ Type Declaration Statements’.

Scope and Association

These concepts were implicit in FORTRAN 77, but they are explicitly defined in Fortran 90.

In FORTRAN 77, the term scoping unit appliesto a program unit, but Fortran 90 expands the
term to include internal procedures, interface blocks, and derived-type definitions.

For more information, see Chapter 15, “ Scope and Association”.

1 Intel Fortran Language Reference

1-10

Program 3ructure,
Characters, and Source
Forms 2

This chapter contains information on the following topics:

®* Anoverview of program structure, including general information on statements and names
(see “Program Structure”)

* “Character Sets’

* “Source Forms’

Program Structure

A Fortran program consists of one or more program units. A programunit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; itis
terminated by an END statement.

A program unit can be either a main program, an external subprogram, a module, or a block data
program unit. An executable program contains one main program, and, optionally, any number of
the other kinds of program units. Program units can be separately compiled.

An external subprogramisafunction or subroutine that is not contained within amain program, a
module, or another subprogram. It defines a procedure to be performed and can be invoked from
other program units of the Fortran program. Modules and block data program units are not
executable, so they are not considered to be procedures. (Modules can contain modul e procedures,
though, which are executable.)

Modules contain definitions that can be made accessible to other program units: data and type
definitions, definitions of procedures (called module subprograms), and procedure interfaces.

M odule subprograms can be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

A block data program unit specifiesinitial values for data objects in named common blocks. In
Fortran 95/90, thistype of program unit can be replaced by a module program unit.

2-1

2 Intel Fortran Language Reference

Main programs, external subprograms, and module subprograms can contain internal
subprograms. The entity that contains the internal subprogram isits host. Internal subprograms
can beinvoked only by their host or by other internal subprograms in the same host. Internal
subprograms must not contain internal subprograms.

See Also
Chapter 8, “Program Units and Procedures’, for details on program units and procedures

Statements

Program statements are grouped into two general classes. executable and nonexecutable. An
executable statement specifies an action to be performed. A nonexecutabl e statement describes
program attributes, such as the arrangement and characteristics of data, as well as editing and
data-conversion information.

Order of Statements in a Program Unit

Figure 2-1 shows the required order of statementsin aFortran program unit. In thisfigure, vertica
lines separate statement types that can be interspersed. For example, you can intersperse DATA
statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot
intersperse DATA statements with CONTAINS statements.

2-2

Program Sructure, Characters, and Source Forms 2

Figure 2-1 Required Order of Statements

OPTIONS Statements

PROGRAM, FUNCTION. SUBROUTINE,
MODULE, or BLOCK DATA Statement

USE Statements

IMPLICIT NONE Statements

PARAMETER IMPLICIT
Cimg];m Statements Statements
INCLUDE NAMELIST,
Statements, FORMAT, Derived-Type Definitions,
and and PARAMETER Interface Blocks,
Directives ENTRY and DATA Type Declaration Statements,
Statements Statements Statement Function Statements,

and Specification Statements

DATA Executable
Statements Statements
CONTAINS Statement

Internal Subprograms
or Module Subprograms

END Statement

ZK-6516A-GE

Note that in this figure, INCLUDE statements, directives, OPTIONS statements, and the order of
NAMELIST statements are language extensions.

PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. In Fortran
95/90, NAMELIST statements can appear only among specification statements. However, Intel®
Fortran alows them to also appear among executabl e statements.

2-3

2 Intel Fortran Language Reference

Table 2-1 shows other statements restricted from different types of scoping units.

Table 2-1 Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY and RETURN statements

Modulel! ENTRY, FORMAT, OPTIONAL, and INTENT statements,
statement functions, and executable statements

Block data program unit CONTAINS, ENTRY, and FORMAT statements, interface
blocks, statement functions, and executable statements

Internal subprogram CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT
statements, statement functions, and executable
statements

1. The scoping unit of a module does not include any module subprograms that the module contains.

See Also
“Scope” for details on scoping units

Names

Names identify entities within a Fortran program unit (such as variables, function results, common
blocks, named constants, procedures, program units, namelist groups, and dummy arguments). In
FORTRAN 77, names were called "symbolic names".

A name can contain letters, digits, underscores (), and the dollar sign ($) specia character. The
first character must be aletter or adollar sign.

In Fortran 95/90, a name can contain up to 31 characters. Intel® Fortran allows names up to 63

characters.
The length of a module name (in MODULE and USE statements) may be restricted by your file
system.
% NOTE. Be careful when defining names that contain dollar signs. On Linux*
= and Windows* systems, a dollar sign can be a symbol for command or symbol

substitution in various shell and utility commands.

In an executable program, the names of the following entities are global and must be uniquein the
entire program:

2-4

Program Sructure, Characters, and Source Forms 2

® Program units

* External procedures
® Common blocks

* Modules

Examples
The following examples show valid and invalid names:

Valid

NUMBER

FIND_IT

X

Invalid Explanation

5Q Begins with a numeral.

B.4 Contains a special character other than _ or $.
_WRONG Begins with an underscore.

See Also

“Scope” for details on the scope of names

Character Sets

Intel Fortran supports the following characters:
® The Fortran 95/90 character set which consists of the following:
— All uppercase and lowercase | etters (A through Z and a through z)
— Thenumerals 0 through 9
— Theunderscore (_)
— Thefollowing special characters:

Character Name Character Name

A or <Tab> Blank (space) or tab : Colon

= Equal sign ! Exclamation point
+ Plus sign " Quotation mark

- Minus sign % Percent sign

* Asterisk & Ampersand

2-5

2 Intel Fortran Language Reference

Character Name Character

/

(
)

Slash

Left parenthesis
Right parenthesis
Comma

©® N VvV A T

Period (decimal point)
Apostrophe

Name
Semicolon
Less than
Greater than
Question mark

Dollar sign (currency symbol)

® Other printable characters

Printable charactersinclude the tab character (09 hex) and ASCII characterswith codesin the
range 20(hex) through 7E(hex). Printable charactersthat are not in the Fortran 95/90
character set can only appear in comments, character constants, Hollerith constants, character

string edit descriptors, and input/output records.

Uppercase and lowercase | etters are treated as equival ent when used to specify program behavior

(except in character constants and Hollerith constants).

See Also

* Appendix C, “The ASCI| Character Set for Linux Systems’, for details on the ASCI|

character set for Linux systems

® The online documentation for Windows* systems for details on other character sets available

for those systems

Source Forms

Within a program, source code can bein free, fixed, or tab form. Fixed or tab forms must not be
mixed with free form in the same source program, but different source forms can be used in

2-6

different source programs.

All source forms allow lowercase characters to be used as an alternative to uppercase characters.

Several characters are indicators in source code (unless they appear within acomment or a
Hollerith or character constant). The following are rules for indicatorsin al source forms:

Program Sructure, Characters, and Source Forms 2

Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere
within a program unit. If the comment indicator appears within a source line, the comment
extends to the end of theline.

An all blank lineis also acomment line.
Comments have no effect on the interpretation of the program unit.

For more information on comment indicatorsin free source form, see “ Free Source Form”; in
fixed and tab source forms, see “Fixed and Tab Source Forms”.

Statement separator

More than one statement (or partial statement) can appear on asingle source lineif a
statement separator is placed between the statements. The statement separator is a semicolon
character (;).

Consecutive semicolons (with or without intervening blanks) are considered to be one
semicolon.

If asemicolon isthe last character on aline, or the last character before acomment, it is
ignored.

Continuation indicator

A statement can be continued for more than one line by placing a continuation indicator on
theline. Intel Fortran allows up to 511 continuation lines in a source program.

Comments can occur within a continued statement, but comment lines cannot be continued.
Within a program unit, the END statement cannot be continued, and no other statement in the
program unit can have an initia line that appears to be the program unit END statement.

For more information on continuation indicatorsin free source form, see “ Free Source Form”;
in fixed and tab source forms, see “Fixed and Tab Source Forms”.

Table 2-2 summarizes characters used as indicators in source forms;

Table 2-2 Indicators in Source Forms
Source Item Indicator 1 Source Form Position
Comment ! All forms Anywhere in source code
Comment line ! Free At the beginning of the
source line
ILC,or* Fixed In column 1
Tab In column 1

2-7

2 Intel Fortran Language Reference

Table 2-2 Indicators in Source Forms
Source Item Indicator 1 Source Form Position
Continuation line? & Free At the end of the source line
Any character except Fixed In column 6
zero or blank
Any digit except zero Tab After the first tab
Statement separator ; All forms Between statements on the
same line
Statement label 1 to 5 decimal digits Free Before a statement
Fixed In columns 1 through 5
Tab Before the first tab
A debugging statement3 D Fixed In column 1
Tab In column 1

1. If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.

2. For all forms, up to 511 continuation lines are allowed.

3. Fixed and tab forms only.

2-8

Source code can bewritten so that it is useable for all source forms (see “Source Code Useable for

All Source Forms”).

Statement Labels

A statement label (or statement number) identifies a statement so that other statements can refer to
it, either to get information or to transfer control. A label can precede any statement that is not part
of another statement.

A statement label must be one to five decimal digits long; blanks and |eading zeros are ignored.
An all-zero statement label isinvalid, and a blank statement cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements that can be referred

to by other statements. FORMAT statements are referred to only in the format specifier of an 1/0

statement or in an ASSIGN statement. Two statements within a scoping unit cannot have the same
label.

See Also
®* “Free Source Form” for details on labelsin free source form
* “Fixed and Tab Source Forms’ for details on labelsin fixed and tab source forms

Program Sructure, Characters, and Source Forms 2

Free Source Form

In free source form, statements are not limited to specific positions on a source line. In Fortran
95/90, afree form source line can contain from 0 to 132 characters. Intel Fortran allowsthelineto
be of any length.

Blank charactersare significant in free source form. The following are rules for blank characters:
Blank characters must not appear in lexical tokens, except within a character context. For
example, there can be no blanks between the exponentiation operator **. Blank characters
can be used freely between lexical tokens to improve legibility.

Blank characters must be used to separate names, constants, or labels from adjacent
keywords, names, constants, or labels. For example, consider the following statements:

| NTEGER NUM
GO TO 40
20 DO K=1, 8

The blanks are required after INTEGER, TO, 20, and DO.

Some adjacent keywords must have one or more blank characters between them. Others do
not require any; for example, BLOCK DATA can also be spelled BLOCKDATA. The
following list shows which keywords have optional or required blanks:

Optional Blanks
BLOCK DATA

DOUBLE COMPLEX
DOUBLE PRECISION

ELSE IF

ELSE WHERE
END BLOCK DATA
END DO

END FILE

END FORALL
END FUNCTION
END IF

END INTERFACE
END MODULE
END PROGRAM
END SELECT
END SUBROUTINE

Required Blanks

CASE DEFAULT

DO WHILE

IMPLICIT type-specifier

IMPLICIT NONE

INTERFACE ASSIGNMENT
INTERFACE OPERATOR

MODULE PROCEDURE

RECURSIVE FUNCTION

RECURSIVE SUBROUTINE
RECURSIVE type-specifier FUNCTION
type-specifier FUNCTION
type-specifier RECURSIVE FUNCTION

2-9

2 Intel Fortran Language Reference

Optional Blanks Required Blanks
END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

For information on statement separators (;) in all forms, see “ Source Code Useable for All Source

Forms'.

Comment Indicator

In free source form, the exclamation point character (!) indicates acomment if it iswithin asource
line, or acomment lineif it isthefirst character in a source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line (unlessit appearsin
aHollerith or character constant, or within a comment). The continuation lineis the first
noncomment line following the ampersand. Although Fortran 95/90 permits up to 39 continuation
linesin free-form programs, Intel Fortran allows up to 511 continuation lines.

The following shows a continued statement:
TCOSH(Y) = EXP(Y) + & I The initial statenent |ine
EXP(-Y) I A continuation |line
If the first nonblank character on the next noncomment line is an ampersand, the statement
continues at the character following the ampersand. For example, the preceding example can be
written as follows:
TCOSH(Y) = EXP(Y) + &
& EXP(-Y)
If alexical token must be continued, the first nonblank character on the next noncomment line
must be an ampersand followed immediately by the rest of the token. For example:
TCOSH(Y) = EXP(Y) + EX&
&P(-Y)

If you continue a character constant, an ampersand must be the first non-blank character of the
continued line; the statement continues with the next character following the ampersand. For
example:
ADVERTI SER = "Davis, O Brien, Chalners & Peteré&

&son"

2-10

Program Sructure, Characters, and Source Forms 2

ARCHI TECT = "O Connor, Enerson, and Davi s&
& Associ at es”

If the ampersand is omitted on the continued line, the statement continues with the first non-blank
character in the continued line. So, in the preceding example, the whitespace before " Associates'
would be included.

The ampersand cannot be the only nonblank character in aline, or the only nonblank character
before a comment; an ampersand in acomment isignored.

See Also
“Source Code Useable for All Source Forms” for details on the general rules for all source forms

Fixed and Tab Source Forms

In Fortran 95, fixed source form is identified as obsolescent.
In fixed and tab source forms, there are restrictions on where a statement can appear within aline.

By default, a statement can extend to character position 72. In this case, any text following
position 72 isignored and no warning message is printed. You can specify a compiler option to
extend source lines to character position 132.

Except in a character context, blanks are not significant and can be used freely throughout the
program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default, Intel
Fortran does not. If portability is aconcern, you can use the concatenation operator to prevent
source lines from being padded by other Fortran compilers (see the example in " Continuation
Indicator" below) or you can force short source lines to be padded by using a compiler option.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates acomment if itis
within asource line. (It must not appear in column 6 of afixed form line; that column is reserved
for a continuation indicator.)

The letter C (or ¢), an asterisk (*), or an exclamation point (!) indicates a comment line when it
appearsin column 1 of a sourceline.

Continuation Indicator
In fixed and tab source forms, a continuation line is indicated by one of the following:

* For fixed form: Any character (except a zero or blank) in column 6 of a source line
* Fortabform: Any digit (except zero) after the first tab

2-11

2 Intel Fortran Language Reference

2-12

The compiler considers the characters following the continuation indicator to be part of the
previousline. Although Fortran 95/90 permits up to 19 continuation linesin afixed-form program,
Intel Fortran allows up to 511 continuation lines.
If azero or blank is used as a continuation indicator, the compiler considersthelineto be aninitia
line of a Fortran statement.
The statement label field of a continuation line must be blank (except in the case of a debugging
statement).
When long character or Hollerith constants are continued across lines, portability problems can
occur. Use the concatenation operator to avoid such problems. For example:
PRINT *, 'This is a very long character constant '//
+ "which is safely continued across |ines’
Use this same method when initializing data with long character or Hollerith constants. For
example:
CHARACTER* (*) LONG_CONST
PARAMETER (LONG CONST = "This is a very long '//
+ 'character constant which is safely continued '//
+ 'across lines’)
CHARACTER* 100 LONG VAL
DATA LONG VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation
method of line continuation.

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement label, a comment
indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appearsin column 1 of asourceline. The
initial line of the debugging statement can contain a statement label in the remaining columns of
the statement label field.

If adebugging statement is continued onto more than one line, every continuation line must begin
with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However, you can specify a
compiler option to force the compiler to treat debugging statements as source text to be compiled.

See Also
* “OPTIONS Statement”

Program Sructure, Characters, and Source Forms 2

®* “Source Forms’ for details on the general rulesfor all source forms, statement separators (;)
in al forms, and statement labels

e Appendix A, “Deleted and Obsolescent L anguage Features’, for details on obsol escent
featuresin Fortran 95

® Your user's guide for details on compiler options

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement |abels,
continuation indicators, statement text, and sequence numbers. Each column represents asingle
character.

The column positions for each field follow:

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72 (or 132 with a compiler option)
Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in columns 73 through
80 of any fixed-format linein an Intel Fortran program. The compiler ignoresthe charactersin this
field.

If you extend the statement field to position 132, the sequence number field does not exist.

% NOTE. If you use the sequence number field, do not use tabs anywhere in the
= source line, or the compiler may interpret the sequence numbers as part of the
statement field in your program.

See Also

®* “Source Forms’ for details on the genera rulesfor all source forms
* “Fixed and Tab Source Forms’ for details on the general rules for fixed and tab source forms

Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and a
statement field, but not a sequence number field.

Figure 2-2 shows equivaent source lines coded with tab and fixed source form.

2-13

2 Intel Fortran Language Reference

Figure 2-2 Line Formatting Example

Format using TAB Character Character—per-Column Format

2 3 4 5|67 8 9 10|11 12 13 14 15|16 17 18 19 20
C FIRST VALUE C FIITIR|S]|T VIA|L]JU]|E
10 [TAB] 1=J+5*K + 110 I = J + 51*|K +
1L*M 1 L|*|[m
IVAL = [+2 I'|V]IA]L =1]|+]2

ZK-0614-GE

2-14

The statement label field precedes the first tab character. The continuation indicator field and
statement field follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can contain any Fortran
statement. A Fortran statement cannot start with a digit.

If astatement is continued, a continuation indicator must be the first character (following the first
tab) on the continuation line.

Many text editors and terminals advance the terminal print carriage to a predefined print position
when you press the <Tab> key. However, the Intel Fortran compiler does not interpret the tab
character in thisway. It treats the tab character in a statement field the same way it treats a blank
character. In the source listing that the compiler produces, the tab causes the character that follows
to be printed at the next tab stop (usually located at columns 9, 17, 25, 33, and so on).

% NOTE. If you use the sequence number field, do not use tabs anywhere in the
e source line, or the compiler may interpret the sequence numbers as part of the
statement field in your program.

Program Sructure, Characters, and Source Forms 2

See Also

“Source Forms’ for details on the general rulesfor all source forms
“Fixed and Tab Source Forms” for details on the general rules for fixed and tab source forms

Source Code Useable for All Source Forms

To write source code that is useable for all source forms (free, fixed, or tab), follow these rules:

Blanks Treat as significant (see “Free Source Form”).

Statement labels Place in column positions 1 through 5 (or before the first tab character).
Statements Start in column 7 (or after the first tab character).

Comment indicator Use only !. Place anywhere except in column position 6 (or immediately

after the first tab character).

Continuation indicator Use only &. Place in column position 73 of the initial line and each

continuation line, and in column 6 of each continuation line (no tab
character can precede the ampersand in column 6).

The following exampleisvalid for all source forms:
Col um:
12345678. . . 73

Define the user function MY_SIN
DOUBLE PRECI SI ON FUNCTI ON MY_SI N(X)
MY_SIN = X - X**3/FACTOR(3) + X**5/ FACTOR(5) &
& - X**7/ FACTOR(7)
CONTAI NS

| NTEGER FUNCTI ON FACTOR(N)

FACTOR = 1

DO10 1 =N, 1, -1
10 FACTOR = FACTOR * |

END FUNCTI ON FACTOR

END FUNCTI ON MY_SI N

2-15

2 Intel Fortran Language Reference

2-16

Data Types, Constants, and
Variables

3

Each constant, variable, array, expression, or function reference in a Fortran statement has a data
type. The data type of these items can be inherent in their construction, implied by convention, or
explicitly declared.

Each data type has the following properties:

A name

The names of the intrinsic data types are predefined, while the names of derived types are
defined in derived-type definitions. Data objects (constants, variables, or parts of constants or
variables) are declared using the name of the datatype.

A set of associated values

Each data type has a set of valid values. Integer and real data types have arange of valid
values. Complex and derived types have sets of values that are combinations of the values of
their individual components.

A way to represent constant values for the data type

A constant is a data object with afixed value that cannot be changed during program
execution. The value of a constant can be a numeric value, alogical value, or a character
string.

A constant that does not have anameisaliteral constant. A literal constant must be of
intrinsic type and it cannot be array-valued.

A constant that has a name is a named constant. A named constant can be of any type,
including derived type, and it can be array-valued. A named constant has the PARAMETER
attribute and is specified in atype declaration statement or PARAMETER statement.

A set of operations to manipulate and interpret these values

The data type of avariable determines the operations that can be used to manipulate it.
Besides intrinsic operators and operations, you can also define operators and operations.

This chapter contains information on the following topics:

“Intrinsic Data Types’ (Thistopic also discusses the forms for constants.)

3-1

3 Intel Fortran Language Reference

“Derived Data Types’
“Binary, Octal, Hexadecimal, and Hollerith Constants”
“Variables’

See Also

“Type Declaration Statements’
“Defined Operations”
“Expressions’ for details on valid operations for data types

“PARAMETER Attribute and Statement” for details on named constants and the
PARAMETER attribute

Your user’s guide for details on ranges for numeric literal constants

Intrinsic Data Types

Intel® Fortran provides the following intrinsic data types:

32

INTEGER (see"Integer Data Types’)

There are four kind parameters for data of type integer:
— INTEGER([KIND=]1) or INTEGER*1

— INTEGER([KIND=]2) or INTEGER*2

— INTEGER([KIND=]4) or INTEGER*4

— INTEGER([KIND=]8) or INTEGER*8

REAL (see “Real Data Types’)

There are three kind parameters for data of type real:
— REAL([KIND=]4) or REAL*4

— REAL([KIND=]8) or REAL*8

— REAL([KIND=]16) or REAL*16

DOUBLE PRECISION (see“Real Data Types')

No kind parameter is permitted for data declared with type DOUBLE PRECISION. This data
typeisthe same as REAL ([KIND=]8).

COMPLEX (see“Complex Data Types’)

There are three kind parameters for data of type complex:
— COMPLEX([KIND=]4) or COMPLEX*8

— COMPLEX([KIND=]8) or COMPLEX*16

— COMPLEX([KIND=]16) or COMPLEX*32

Data Types, Constants, and Variables 3

* DOUBLE COMPLEX (see"Complex Data Types’)

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data
typeisthe same as COMPLEX([KIND=]8).

® LOGICAL (see“Logica Data Types'’)

There are four kind parameters for data of type logical:

— LOGICAL([KIND=]1) or LOGICAL*1

— LOGICAL([KIND=]2) or LOGICAL*2

— LOGICAL([KIND=]4) or LOGICAL*4

— LOGICAL([KIND=]8) or LOGICAL*8
® CHARACTER (see“Character Data Type")

There is one kind parameter for data of type character: CHARACTER([KIND=]1).
* BYTE

Thisisal-byte value; the data type is equivalent to INTEGER([KIND=]1).

Theintrinsic function KIND can be used to determine the kind type parameter of a representation
method.

For more portable programs, you should not use the forms INTEGER([KIND=]n) or
REAL([KIND=]n). You should instead define a PARAMETER constant using the
SELECTED_INT_KIND or SELECTED_REAL_KIND function, whichever is appropriate. For
example, the following statements definea PARAMETER constant for an INTEGER kind that has
9 digits:

| NTEGER, PARAMETER :: MY_I NT_KIND = SELECTED | NT_KI ND(9)

| NTEGER(MY_INT_KIND) :: J

Note that syntax separator :: is used in type declaration statements.
The following sections describe the intrinsic data types and forms for literal constants for each

type.

See Also
* “Type Declaration Statements’
e “KIND”

* “Declaration Statements for Noncharacter Types’ and “ Declaration Statements for Character

Types’ for details on declaration statements for intrinsic data types
* “Expressions’ for details on operations for intrinsic data types
® Table 15-2 for details on storage requirements for intrinsic data types

3 Intel Fortran Language Reference

Integer Data Types

34

Integer data types can be specified as follows:
INTEGER
INTEGER([KIND=]n)
INTEGER*n

n

Iskind 1, 2, 4, or 8.

If akind parameter is specified, the integer has the kind specified. If akind parameter is not
specified, integer constants are interpreted as follows:

¢ |f theinteger constant is within the default integer kind range, the kind is default integer.

Default integer isINTEGER(4). You can change the default behavior by specifying the
compiler option that controls the default integer kind.

* |f theinteger constant isoutside the default integer kind range, the kind of the integer constant
is the smallest integer kind which holds the constant.

Integer Constants

Aninteger constant is awhole number with no decimal point. It can have aleading sign and is
interpreted as a decimal number.

Integer constants take the following form:
[sIn[n...][_K]
s
Isasign; required if negative (), optional if positive (+).
n
Isadecimal digit (0 through 9). Any leading zeros are ignored.
k

Isthe optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for INTEGER(4), or 8
for INTEGER(8). It must be preceded by an underscore (_).

An unsigned constant is assumed to be nonnegative.

Integers are expressed in decimal values (base 10) by default. To specify a constant that is not in
base 10, use the following syntax:

[sl[[base] #]nnn...
S
Isan optional plus (+) or minus (-) sign.

Data Types, Constants, and Variables 3

base
Is any constant from 2 through 36.

If base is omitted but # is specified, the integer isinterpreted in base 16. If both base and # are
omitted, the integer is interpreted in base 10.

For bases 11 through 36, the letters A through Z represent numbers greater than 9. For example,
for base 36, A represents 10, B represents 11, C represents 12, and so on, through Z, which
represents 35. The case of the lettersis not significant.

Examples
The following examples show valid and invalid integer (base 10) constants:

Valid

0

-127

+32123

47 2

Invalid Explanation

9999999999999999999 Number too large.

3.14 Decimal point not allowed; this is a valid REAL constant.
32,767 Comma not allowed.

333 3is not a valid kind for integers.

The following integers (most of which are not base 10) are all assigned avalue equal to 3,994,575
decimal:

I = 2#1111001111001111001111

m = 7#45644664
J = +8#17171717
K = #3CF3CF

n = +17#2DE110
L = 3994575

i ndex = 36#2DVBF

You can use integer constants to assign values to data. The following table shows assignments to
different data and lists the integer and hexadecimal valuesin the data:

35

3 Intel Fortran Language Reference

Integer Value in Hexadecimal Value in

Fortran Assignment the Data the Data

LOGICAL(1)X

INTEGER(1)X

X =-128 -128 Z'80'

X= 127 127 Z'7F

X= 255 -1 Z'FF'

LOGICAL(2)X

INTEGER(2)X

X= 255 255 Z'FF

X =-32768 -32768 Z'8000

X = 32767 32767 Z'TFFF

X = 65535 -1 Z'FFFF'
See Also

® “Numeric Expressions’ for details on integer constants used in expressions
® Your user's guide for details on the ranges for integer types and kinds

Real Data Types

3-6

Real data types can be specified as follows:
REAL
REAL ([KIND=]n)
REAL*n
DOUBLE PRECISION
n
Iskind 4, 8, or 16.

If akind parameter is specified, thereal constant has the kind specified. If akind parameter is not
specified, the kind is default real. Default real is REAL(4). You can change the default behavior
by specifying the compiler option that controls the default real kind.

DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data declared with type
DOUBLE PRECISION.

Data Types, Constants, and Variables 3

General Rules for Real Constants

A real constant approximates the value of a mathematical real number. The value of the constant
can be positive, zero, or negative.

The following is the general form of areal constant with no exponent part:
[sIn[n...][_K]

A real constant with an exponent part has one of the following forms:
[sIn[n...]E[s]nn...[K]
[s|n[n...]D[s]nn...
[s]n[n...]Q[g]nn...

s

Isasign; required if negative (-), optional if positive (+).

n

Isadecimal digit (0 through 9). A decimal point must appear if the real constant has no exponent
part.

k

Isthe optional kind parameter: 4 for REAL (4), 8 for REAL(8), or 16 for REAL(16). It must be
preceded by an underscore (_).

Rules and Behavior

Leading zeros (zerosto the left of the first nonzero digit) are ignored in counting significant digits.
For example, in the constant 0.00001234567, al of the nonzero digits, and none of the zeros, are
significant. (See the following sections for the number of significant digits each kind type
parameter typicaly has).

The exponent represents a power of 10 by which the preceding real or integer constant isto be
multiplied (for example, 1.0E6 represents the value 1.0 * 10**6).

A real constant with no exponent part and no kind type parameter is (by default) asingle-precision
(REAL(4)) constant. You can change the default behavior by specifying the compiler option that
controls the default real kind.

If the real constant has no exponent part, adecimal point must appear in the string (anywhere
before the optional kind parameter). If there is an exponent part, adecimal point is optional in the
string preceding the exponent part; the exponent part must not contain a decimal point.

The exponent letter E denotes asingle-precision real (REAL(4)) constant, unless the optional kind
parameter specifies otherwise. For example, -9.E2_8 is a double-precision constant (which can
also be written as—9.D2).

The exponent |etter D denotes a double-precision real (REAL(8)) constant.

3-7

3 Intel Fortran Language Reference

3-8

The exponent letter Q denotes a quad-precision real (REAL(16)) constant.

A minus sign must appear before a negative real constant; a plus sign is optional before a positive
constant. Similarly, a minus sign must appear between the exponent letter (E, D, or Q) and a
negative exponent, whereas a plus sign is optional between the exponent letter and a positive
exponent.

If the real constant includes an exponent |etter, the exponent field cannot be omitted, but it can be
Zero.

To specify areal constant using both an exponent |etter and a kind parameter, the exponent letter
must be E, and the kind parameter must follow the exponent part.

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digitsis
unlimited, but typically only the leftmost seven digits are significant.

IEEE* S floating format is used.

Examples
The following examples show valid and invalid REAL (4) constants:

Valid

3.14159

3.14159 4

621712. 4

-.00127

+5.0E3

2E-3 4

Invalid Explanation

1,234,567. Commas not allowed.

325E-47 Too small for REAL; this is a valid DOUBLE PRECISION constant.
-47.E47 Too large for REAL; this is a valid DOUBLE PRECISION constant.
625._ 6 6 is not a valid kind for reals.

100 Decimal point missing; this is a valid integer constant.

$25.00 Special character not allowed.

See Also

® “Genera Rulesfor Real Constants’

Data Types, Constants, and Variables 3

® Your user's guide for details on the format and range of REAL (4) data
® Your user’'sguide for details on compiler options affecting Real data

REAL(8) or DOUBLE PRECISION Constants

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of aREAL (4)
number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are
significant.

IEEE T_floating format is used.

Examples
The following examples show valid and invalid REAL(8) or DOUBLE PRECISION constants:

Valid
123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

238

3.4E7 8

Invalid Explanation

—.25D0_2 2 is not a valid kind for reals.

+2.7182812846182 No D exponent designator is present; this is a valid single-precision
constant.

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

See Also

® “Genera Rulesfor Real Constants’

® Your user's guide for details on the format and range of DOUBLE PRECISION (REAL(8))
data

® Your user’'s guide for details on compiler options affecting DOUBLE PRECISION data

3-9

3 Intel Fortran Language Reference

REAL(16) Constants

A REAL (16) constant has more than four times the accuracy of a REAL (4) number, and a greater
range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that precede the
exponent is unlimited, but typically only the leftmost 33 digits are significant.

|IEEE X_floating format is used.

Examples
The following examples show valid and invalid REAL (16) constants:

Valid
123456789Q4000

-1.23Q-400
+2.72Q0
1.88_16

Invalid Explanation
1.Q5000 Too large.
1.Q-5000 Too small.

See Also
* “Genera Rulesfor Real Constants”
® Your user's guide for details on the format and range of REAL (16) data

Complex Data Types

Complex data types can be specified as follows:
COMPLEX
COMPLEX ([KIND=]n)
COMPLEX*s
DOUBLE COMPLEX
n
Iskind 4, 8, or 16.
s

Is 8, 16, or 32. COMPLEX (4) is specified as COMPLEX*8; COMPLEX (8) is specified as
COMPLEX*16; COMPLEX (16) is specified as COMPLEX*32.

3-10

Data Types, Constants, and Variables 3

If akind parameter is specified, the complex constant has the kind specified. If no kind parameter
is specified, the kind of both partsis default real, and the constant is of type default complex.
Default complex is COMPLEX(4). You can change the default behavior by specifying the
compiler option that controls the default real kind.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with
type DOUBLE COMPLEX.

General Rules for Complex Constants

A complex constant approximates the value of amathematical complex number. The constant is a
pair of real or integer values, separated by a comma, and enclosed in parentheses. The first
constant represents the real part of that number; the second constant represents the imaginary part.

The following is the genera form of acomplex constant:
(c.c)

c

Isasfollows:

®* For COMPLEX(4) constants, cis an integer or REAL (4) constant.

®* For COMPLEX(8) constants, c isan integer, REAL (4) constant, or DOUBLE PRECISION
(REAL(8)) constant. At least one of the pair must be DOUBLE PRECISION.

®* For COMPLEX(16) constants, ¢ is an integer, REAL(4) constant, REAL(8) constant, or
REAL(16) constant. At least one of the pair must be a REAL (16) constant.

Note that the comma and parentheses are required.

COMPLEX(4) Constants

A COMPLEX(4) constant isapair of integer or single-precision real constants that represent a
complex number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a complex
number.

If thereal and imaginary part of a complex literal constant are both real, the kind parameter value
isthat of the part with the greater decimal precision.

Therulesfor REAL(4) constants apply to REAL (4) constants used in COMPLEX constants. (See
“General Rulesfor Real Constants’ and “REAL (4) Constants” for the rules on forming REAL (4)
constants.)

The REAL(4) constantsin a COMPLEX constant have IEEE S floating format.

Examples
The following examples show valid and invalid COMPLEX (4) constants:

311

3 Intel Fortran Language Reference

Valid
(1.7039,-1.70391)

(44.36_4,~12.2E16_4)

(+12739E3,0.)

1.2)

Invalid Explanation

(-1.23) Missing second integer or single-precision real constant.
(2.0, 2H12) Hollerith constant not allowed.

See Also

* “General Rulesfor Complex Constants’
® Your user's guide for details on the format and range of COMPLEX (COMPLEX(4)) data
® Your user’'s guide for details on compiler options affecting REAL data

COMPLEX(8) or DOUBLE COMPLEX Constants

A COMPLEX(8) or DOUBLE COMPLEX constant isa pair of constants that represents a
complex number. One of the pair must be a double-precision real constant, the other can be an
integer, single-precision real, or double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is
interpreted as a complex number.

Therulesfor DOUBLE PRECISION (REAL(8)) constants also apply to the double precision
portion of COMPLEX(8) or DOUBLE COMPLEX constants. (See “ General Rules for Real
Constants’ and “REAL (8) or DOUBLE PRECISION Constants” for the rules on forming
DOUBLE PRECISION constants.)

The DOUBLE PRECISION constantsina COMPLEX(8) or DOUBLE COMPLEX constant have
IEEE T_floating format.

Examples

The following examples show valid and invalid COMPLEX(8) or DOUBLE COMPLEX
constants:

Valid
(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

3-12

Data Types, Constants, and Variables 3

(1.7039E0,—1.7039D0)
(+12739D3,0.D0)

Invalid Explanation

(1.23D0,) Missing second constant.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION,; this is a valid

single-precision constant.

See Also

® “Genera Rulesfor Complex Constants’

® Your user's guide for details on the format and range of DOUBLE COMPLEX data

® Your user’'sguide for details on compiler options affecting DOUBLE PRECISION data

COMPLEX(16) Constants

A COMPLEX(16) constant isa pair of constants that represents a complex number. One of the
pair must be a REAL (16) constant, the other can be an integer, single-precision real,
double-precision real, or REAL (16) constant.

A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a complex number.

Therules for REAL(16) constants apply to REAL (16) constants used in COMPLEX constants.
(See “Generd Rulesfor Real Constants’ and “REAL (16) Constants” for the rules on forming
REAL(16) constants.)

The REAL(16) constantsin a COMPLEX constant have |IEEE X_floating format.

Examples

The following examples show valid and invalid COMPLEX(16) constants:
Valid

(1.7039,-1.7039Q2)

(547.3E0_16,~1.44)

(+12739Q3,0.Q0)

Invalid Explanation

(1.23Q0,) Missing second constant.

(1D1,2H12) Hollerith constants not allowed.

(1.7039,-1.7039D0) Neither constant is REAL(16); this is a valid double-precision constant.

3-13

3 Intel Fortran Language Reference

See Also

* “General Rulesfor Complex Constants’

® Your user's guide for details on the format and range of COMPLEX(16) data
® Your user’'s guide for details on compiler options affecting REAL data

Logical Data Types

Logical datatypes can be specified as follows:
LOGICAL
LOGICAL([KIND=]n)
LOGICAL*n

n
Iskind 1, 2, 4, or 8.

If akind parameter is specified, the logical constant has the kind specified. If no kind parameter is
specified, the kind of the constant is default logical.

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following
forms:

TRUE.[K]
FALSE[K

k

Isthe optional kind parameter: 1 for LOGICAL (1), 2 for LOGICAL(2), 4 for LOGICAL(4), or 8
for LOGICAL(8). It must be preceded by an underscore ().

Logical datatype ranges correspond to their comparabl e integer datatype ranges. For example, the
LOGICAL(2) range is the same as the INTEGER(2) range.

See Also
Your user’s guide for details on integer data type ranges

Character Data Type

3-14

The character data type can be specified as follows:

Data Types, Constants, and Variables 3

CHARACTER
CHARACTER([KIND=]n)
CHARACTER([LEN=]len)
CHARACTER([LEN=]len [,[KIND=]n])
CHARACTER(KIND=n [,LEN=len])
CHARACTER*len[,]

n

Iskind 1.

len

Isastring length (not akind). For more information, see “Declaration Statements for Character
Types'.
If no kind type parameter is specified, the kind of the constant is default character.

Character Constants

A character constant is a character string enclosed in delimiters (apostrophes or quotation marks).
It takes one of the following forms:

[k]Ich..]' [C]
[k_]"[ch..]" [C]
k

Isthe optional kind parameter: 1 (the default). It must be followed by an underscore (_). Note
that in character constants, the kind must precede the constant.

ch
Isan ASCII character.
C

IsaC string specifier. C strings can be used to define strings with nonprintable characters. For
more information, see *C Stringsin Character Constants’.

Rules and Behavior

Thevalue of acharacter constant isthe string of characters between the delimiters. The value does
not include the delimiters, but does include al blanks or tabs within the delimiters.

If acharacter constant is delimited by apostrophes, use two consecutive apostrophes (") to place an
apostrophe character in the character constant.

Similarly, if a character constant is delimited by quotation marks, use two consecutive quotation
marks (") to place a quotation mark character in the character constant.

3-15

3 Intel Fortran Language Reference

3-16

The length of the character constant is the number of characters between the delimiters, but two
consecutive delimiters are counted as one character.

The length of acharacter constant must be in the range of 0 to 2000. Each character occupies one
byte of memory.

If acharacter constant appearsin a numeric context (such as an expression on the right side of an
arithmetic assignment statement), it is considered a Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes or quotation
marks.

Examples

The following examples show valid and invalid character constants:
Valid

"WHAT KIND TYPE? "

'TODAY"S DATE IS: "

"The average is: "

Invalid Explanation

'HEADINGS No trailing apostrophe.

'Map Number: " Beginning delimiter does not match ending delimiter.
See Also

“Declaration Statements for Character Types’

C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0)) and can contain
nonprintable characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence is denoted by
using the backslash (\) as an escape character, followed by a single character indicating the
nonprintable character desired.

This type of string is specified by using a standard string constant followed by the character C.
The standard string constant is then interpreted as a C-language constant. Backslashes are treated
as escapes, and anull character is automatically appended to the end of the string (even if the
string already endsin anull character).

Data Types, Constants, and Variables 3

Table 3-1 shows the escape sequences that are allowed in character constants.

Table 3-1 C-Style Escape Sequences
Escape Sequence Represents
\a or \A A bell
\b or\B A backspace
\f or \F A formfeed
\nor\N A new line
\ror\R A carriage return
\tor\T A horizontal tab
\v or \V A vertical tab
\xhh or \Xhh A hexadecimal bit pattern
\ooo An octal bit pattern
\0 A null character
\\ A backslash (\)

If astring contains an escape sequence that isn't in this table, the backslash isignored.

A C string must also be avalid Fortran string. If the string is delimited by apostrophes,
apostrophes in the string itself must be represented by two consecutive apostrophes ().

For exampl e, the escape sequence\ 'st ri ng causesacompiler error because Fortran interpretsthe
apostrophe as the end of the string. The correct formis\' ' stri ng.

If the string is delimited by quotation marks, quotation marks in the string itself must be
represented by two consecutive quotation marks ("").

The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit octal
or aone- to two-digit hexadecimal character code. Each octal digit must bein therangeOto 7, and
each hexadecimal digit must be in the range 0 to F. For example, the C strings"\ 010'Cand '\ x08'C
both represent a backspace character followed by anull character.

The C string '\ \ abcd'Cis equivalent to the string \ abcd' with anull character appended. The
string "C represents the ASCII null character.

Character Substrings

A character substring is a contiguous segment of a character string. It takes one of the following
forms:

v ([e1]:[e2])
a(s[,9...) (el]:[e2])

317

3 Intel Fortran Language Reference

3-18

\'

Isacharacter scalar constant, or the name of a character scalar variable or character structure
component.

el

Isascalar integer (or other numeric) expression specifying the leftmost character position of the
substring; the starting point.

€2

Isascalar integer (or other numeric) expression specifying the rightmost character position of the
substring; the ending point.

a
Is the name of a character array.
s

I's a subscript expression.

Both el and e2 must be within therange 1,2, ..., len, wherelen is the length of the parent character
string. If el exceeds €2, the substring has length zero.

Rules and Behavior

Character positions within the parent character string are numbered from left to right, beginning at
1

If the value of the numeric expression el or €2 is not of type integer, it is converted to integer
before use (any fractional parts are truncated).

If elisomitted, thedefaultis 1. If e2isomitted, the default islen. For example, NAMES(1,3)(:7)
specifies the substring starting with the first character position and ending with the seventh
character position of the character array element NAMES(1,3).

Examples

Consider the following example:

CHARACTER*8 C, LABEL

LABEL = ‘ XVERSUSY'

C = LABEL(2:7)

LABEL (2:7) specifies the substring starting with the second character position and ending with
the seventh character position of the character variable assigned to LABEL, so C hasthe value
' VERSUS' .

Consider the following example:

Data Types, Constants, and Variables 3

TYPE ORGANI ZATI ON
I NTEGER | D
CHARACTER* 35 NAME
END TYPE ORGANI ZATI ON

TYPE(ORGANI ZATI ON) DI RECTOR
CHARACTER* 25 BRANCH, STATE(50)

The following are valid substrings based on the above example:

BRANCH(3: 15) | parent string is a scalar variable
STATE(20) (1:3) ! parent string is an array el ement
DI RECTORYNANMVE I parent string is a structure conponent

Consider the following example:

CHARACTER(*), PARAMETER :: MY_BRANCH = " CHAPTER 204"

CHARACTER(3) BRANCH_CHAP

BRANCH CHAP = MY_BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is acharacter string of length 3 that has the value '204'.

See Also
e “Arrays’

* “Array Elements’
® “Structure Components’

Derived Data Types

You can create derived data types from intrinsic data types or previously defined derived types.

A derived typeisresolved into "ultimate” components that are either of intrinsic type or are
pointers.

The set of values for a specific derived type consists of all possible sequences of component
values permitted by the definition of that derived type. Structure constructors are used to specify
values of derived types.

Nonintrinsic assignment for derived-type entities must be defined by a subroutine with an
ASSIGNMENT interface. Any operation on derived-type entities must be defined by afunction
with an OPERATOR interface. Arguments and function values can be of any intrinsic or derived

type.

See Also
® “Structure Components’

3-19

3 Intel Fortran Language Reference

® “Structure Constructors’

* “Derived-Type Assignment Statements’

* “Record Structures’

* “Defining Generic Operators’ for details on OPERATOR interfaces

* “Defining Generic Assignment” for details on ASSIGNMENT interfaces

Derived-Type Definition

3-20

A derived-type definition specifies the name of a user-defined type and the types of its
components. It takes the following form:

TYPE[[, access] ::] name
component-definition
[component-definition] . . .

END TY PE [name]

access

Isthe PRIVATE or PUBLIC keyword. The keyword can only be specified if the derived-type
definition is in the specification part of amodule.

name

I's the name of the derived type. It must not be the same as the name of any intrinsic type, or the
same as the name of a derived type that can be accessed from a module.

component-definition
Is one or more type declaration statements defining the component of derived type.

The first component definition can be preceded by an optional PRIVATE or SEQUENCE
statement. (Only one PRIVATE or SEQUENCE statement can appear in a given derived-type
definition.)

PRIVATE specifies that the components are accessible only within the defining module, even if
the derived typeitself is public.

SEQUENCE cause the components of the derived type to be stored in the same sequence they are
listed in the type definition. If SEQUENCE is specified, all derived types specified in component
definitions must be sequence types.

A component definition takes the following form:
type|[[, attr] ::] component [(a-spec)] [* char-len] [init-ex]

Data Types, Constants, and Variables 3

type

Is atype specifier. It can be an intrinsic type or a previously defined derived type. (If the
POINTER attribute follows this specifier, the type can aso be any accessible derived type,
including the type being defined.)

attr

Isan optional POINTER attribute for a pointer component, or an optional DIMENSION or
ALLOCATABLE attribute for an array component. You cannot specify both the ALLOCATABLE
and POINTER attribute. If DIMENSION is specified, it can be followed by an array specification.

Each attribute can only appear once in a given component-definition.
component

I's the name of the component being defined.

a-spec

Isan optional array specification, enclosed in parentheses. If POINTER or ALLOCATABLE is
specified, the array is deferred shape; otherwise, it is explicit shape. In an explicit-shape
specification, each bound must be a constant scalar integer expression. For more information on
array specifications, see “ Declaration Statements for Arrays’.

If the array bounds are not specified here, they must be specified following the DIMENSION
attribute.

char-len

Isan optional scalar integer literal constant; it must be preceded by an asterisk (*). This parameter
can only be specified if the component is of type CHARACTER.

init-ex
Isan initialization expression or, for pointer components, =>NULL (). ThisisaFortran 95
feature.

If init-ex is specified, a double colon must appear in the component definition. The equals
assignment symbol (=) can only be specified for nonpointer components.

The initialization expression is evaluated in the scoping unit of the type definition.

Rules and Behavior

If anameis specified following the END TY PE statement, it must be the same name that follows
TY PE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-type name appears
in a derived-type definition in another scoping unit, it istreated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name
can be used in ancther derived-type definition in the same scoping unit.

321

3 Intel Fortran Language Reference

Two data entities have the same type if they are both declared to be of the same derived type (the
derived-type definition can be accessed from a module or a host scoping unit).

If the entities are in different scoping units, they can aso have the same derived typeif they are
declared with reference to different derived-type definitions, and if both derived-type definitions
have all of the following:

® Thesame name

* A SEQUENCE statement (they both have sequence type)

* Components that agree in name, order, and attributes; components cannot be private

See Also
* “Intrinsic Data Types’
e ‘“Arrays’

* “Structure Components’

* “Declaration Statementsfor Derived Types’ for details on how to declare variables of derived
type

* “POINTER Attribute and Statement” for details on pointers

e “Default Initialization”for details on default initialization for derived-type components

® Your user's guide for details on alignment of derived-type data components

Default Initialization

3-22

Default initialization occurs if initialization appears in a derived-type component definition. (This
isaFortran 95 feature.)

The specified initialization of the component will apply even if the definition is PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the
derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default initialization.

To specify default initialization of an array component, use a constant expression that includes one
of the following:

* Anarray constructor

® A singlescalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or undefined. If no default
initialization status is specified, the status of the pointer is undefined. To specify disassociated
status for a pointer component, use =>NULL().

Data Types, Constants, and Variables 3

Examples
You do not have to specify initialization for each component of a derived type. For example:
TYPE REPORT
CHARACTER (LEN=20) REPORT_NANMVE
| NTEGER DAY
CHARACTER (LEN=3) MONTH
I NTEGER :: YEAR = 1995 I Only conponent with default
END TYPE REPORT ! initialization

Consider the following:
TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sal es", 15, "NOV', 1996)

In this case, the explicit initialization in the type declaration statement overrides the YEAR
component of NOV_REPORT.

The default initial value of a component can also be overridden by default initialization specified
in the type definition. For example:

TYPE MGR_REPORT
TYPE (REPORT) :: STATUS = NOV_REPORT
I NTEGER NUM

END TYPE MGR _REPORT

TYPE (MCR_REPORT) STARTUP

In this case, the STATUS component of STARTUP getsitsinitial value from NOV_REPORT,
overriding the initialization for the Y EAR component.

Structure Components
A reference to a component of a derived-type structure takes the following form:
parent [%component [(s-list)]]... %ecomponent [(s-list)]
parent

Isthe name of ascalar or array of derived type. The percent sign (%) is called a component
selector.

component

I's the name of a component of the immediately preceding parent or component.

slist

Isalist of one or more subscripts. If the list contains subscript triplets or vector subscripts, the
reference isto an array section.

3-23

3 Intel Fortran Language Reference

3-24

Each subscript must be ascalar integer (or other numeric) expression with avalue that is within
the bounds of its dimension.

The number of subscriptsin any s-list must equal the rank of the immediately preceding parent or
component.

Rules and Behavior

Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any component to the
right of a parent or component of nonzero rank must not have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or component) with nonzero
rank (if any); otherwise, the rank is zero. The type and type parameters (if any) of astructure
component are those of the rightmost part name.

The structure component must not be referenced or defined before the declaration of the parent
object.

If the parent object hasthe INTENT, TARGET, or PARAMETER attribute, the structure
component also has the attribute.

Examples
The following example shows a derived-type definition with two components:
TYPE EMPLOYEE
I NTEGER | D
CHARACTER(LEN=40) NANME
END TYPE EMPLOYEE
The following shows how to declare CONTRACT to be of type EMPLOY EE:
TYPE(EMPLOYEE) :: CONTRACT
Note that both examples started with the keyword TY PE. The first (initia) statement of a
derived-type definition is called a derived-type statement, while the statement that declares a
derived- type object is called a TY PE statement.
The following example shows how to reference component ID of parent structure CONTRACT:
CONTRACT% D
The following example shows a derived type with a component that is a previously defined type:
TYPE DOT
REAL X, Y
END TYPE DOT

Data Types, Constants, and Variables 3

TYPE SCREEN
TYPE(DOT) C, D
END TYPE SCREEN
The following declares a variable of type SCREEN:
TYPE(SCREEN) M
Variable M has components M%C and M%D (both of type DOT); M%C has components
M%C%X and M%C%Y of type REAL.
The following example shows a derived type with a component that is an array:
TYPE CAR_I NFO
| NTEGER YEAR
CHARACTER(LEN=15), DI MENSI ON(10) :: MAKER
CHARACTER(LEN=10) MODEL, BODY_TYPE*8
REAL PRI CE
END TYPE

TYPE(CAR | NFO) MY_CAR

Notethat MODEL has a character length of 10, but BODY _TY PE has a character length of 8. You
can assign a value to a component of a structure; for example:

MY_CARWEAR = 1985

The following shows an array structure component:

MY _CARYWAKER

In the preceding example, if asubscript list (or substring) was appended to MAKER, the reference
would not be to an array structure component, but to an array element or section.
Consider the following:
MY_CARYVAKER(2) (4:10)
In this case, the component is substring 4 to 10 of the second element of array MAKER.
Consider the following:
TYPE CHARGE

| NTEGER PARTS(40)

REAL LABOR

REAL M LEAGE
END TYPE CHARGE

TYPE(CHARGE) MONTH
TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:

3-25

3 Intel Fortran Language Reference

MONTH/PARTS(|)
MONTH/PARTS(| : K)
YEAR(|) %PARTS

! array el enent

!

!
YEAR(J) UPARTS(1) !

!

!

!

array section
array structure conponent (a whol e array)
array el ement
array section
array section
array section

YEAR(J) %PARTS(I : K)
YEAR(J: K) WPARTS(1)
YEARVPARTS(1)
The following example shows a derived type with a pointer component that is of the type being
defined:
TYPE NUMBER

| NTEGER NUM

TYPE(NUMBER), PO NTER :: START_NUM => NULL()

TYPE(NUMBER), PO NTER :: NEXT_NUM => NULL()
END TYPE

A type such as this can be used to construct linked lists of objects of type NUMBER. Note that the
pointers are given the default initialization status of disassociated.

ZZZZzxz3

The following example shows a private type:
TYPE, PRI VATE :: SYMBOL

LOd CAL TEST

CHARACTER(LEN=50) EXPLANATI ON

END TYPE SYMBCL

Thistypeis private to the module. The module can be used by another scoping unit, but type
SYMBOL isnot available.

See Also

* “Array Elements’ for details on references to array elements

® “Array Sections’ for details on referencesto array sections

®* “Modules and Module Procedures’ for examples of derived typesin modules

Structure Constructors

3-26

A structure constructor lets you specify scalar values of aderived type. It takes the following
form:

d-name (expr-list)
d-name
Is the name of the derived type.

Data Types, Constants, and Variables 3

expr-list

Isalist of expressions specifying component values. The values must agree in number and order
with the components of the derived type. If necessary, values are converted (according to the rules
of assignment), to agree with their corresponding components in type and kind parameters.

Rules and Behavior
A structure constructor must not appear before its derived type is defined.

If a component of the derived typeis an array, the shape in the expression list must conform to the
shape of the component array.

If acomponent of the derived type is a pointer, the value in the expression list must evaluate to an
object that would be avalid target in a pointer assignment statement. (A constant is not avalid
target in a pointer assignment statement.)

If all the valuesin a structure constructor are constant expressions, the constructor isa
derived-type constant expression.

Examples

Consider the following derived-type definition:
TYPE EMPLOYEE

I NTEGER I D

CHARACTER(LEN=40) NANME
END TYPE EMPLOYEE

This can be used to produce the following structure constructor:
EMPLOYEE(3472, "John Doe")

The following example shows atype with a component of derived type:
TYPE | TEM

REAL COST

CHARACTER(LEN=30) SUPPLI ER

CHARACTER(LEN=20) | TEM _NANE
END TYPE | TEM

TYPE PRODUCE
REAL MARKUP
TYPE(I TEM FRU T
END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the values of that
component; for example:

3-27

3 Intel Fortran Language Reference

PRODUCE(. 70, | TEM (.25, "Daniels", "apple"))

See Also
“Pointer Assignments’

Binary, Octal, Hexadecimal, and Hollerith Constants

Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants. They have no
intrinsic data type, but assume a numeric data type depending on their use.

Fortran 95/90 allows unsigned binary, octal, and hexadecimal constants to be used in DATA
statements; the constant must correspond to an integer scalar variable.

In Intel Fortran, binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric
constants are allowed.

Binary Constants

3-28

A binary constant is an aternative way to represent a numeric constant. A binary constant takes
one of the following forms:

B'd[d...]'
B"d[d..]"
d
Isabinary (base 2) digit (O or 1).
You can specify up to 256 binary digitsin a binary constant. Leading zeros are ignored.

Examples
The following examples show valid and invalid binary constants:

Valid

B'0101110°

B"1"

Invalid Explanation

B'0112' The character 2 is invalid.

B10011' No apostrophe after the B.
"1000001" No B before the first quotation mark.

Data Types, Constants, and Variables 3

Octal Constants

An octal constant is an alternative way to represent numeric constants. An octal constant takes one
of the following forms:

odd...]'
o"did...J"
d
Isan octal (base 8) digit (0 through 7).
You can specify up to 256 bits (86 octal digits) in octal constants. Leading zeros are ignored.

Examples
The following examples show valid and invalid octal constants:

Valid

007737

o"1"

Invalid Explanation

o'7782' The character 8 is invalid.

o7772' No apostrophe after the O.

"0737" No O before the first quotation mark.
See Also

“Alternative Syntax for Octal and Hexadecimal Constants”

Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric constants. A hexadecimal
constant takes one of the following forms:

z'dd...]’

z"dd..]"
d
Isahexadecimal (base 16) digit (0 through 9, or an uppercase or lowercase letter in the range of A
to F).

You can specify up to 256 bits (64 hexadecimal digits) in hexadecimal constants. Leading zeros
areignored.

3-29

3 Intel Fortran Language Reference

Examples

The following examples show valid and invalid hexadecimal constants:
Valid

Z'AF9730'

Z'FFABC"

z84'

Invalid Explanation

Z7'999. Decimal not allowed.
"ZF9" No quotation mark after the Z.

See Also
“ Alternative Syntax for Octal and Hexadecimal Constants’

Hollerith Constants

3-30

A Hollerith constant is a string of printable ASCII characters preceded by the letter H. Before the
H, there must be an unsigned, nonzero default integer constant stating the number of charactersin
the string (including blanks and tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte strings, one
character per byte.

Examples

The following examples show valid and invalid Hollerith constants:
Valid

16HTODAY'S DATE IS:

1HB

4H ABC

Invalid Explanation
3HABCD Wrong number of characters.
OH Hollerith constants must contain at least one character.

Data Types, Constants, and Variables 3

Determining the Data T ype of Nondecima | Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type. These constants
assume a numeric data type depending on their use.

When the constant is used with a binary operator (including the assignment operator), the data
type of the constant is the data type of the other operand. For example:

Statement Data Type of Constant Length of Constant !
INTEGER(2) ICOUNT

INTEGER(4) JCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

RAFFIA = B'1001100111111010011" REAL(4) 4
RAFFIA = Z'99AF2' REAL(4) 4
RALPHA = 4HABCH REAL(4) 4
DOUBLE =B'1111111111100110011010' REAL(8) 8
DOUBLE = Z'FFF99A' REAL(8) 8
DOUBLE = 8HABCDEFGH REAL(8) 8
JCOUNT =ICOUNT + B'011101110111" INTEGER(2) 2
JCOUNT = ICOUNT + Q777 INTEGER(2) 2
JCOUNT = ICOUNT + 2HXY INTEGER(2) 2
IF (N .EQ. B'1010100") GO TO 10 INTEGER(4) 4
IF (N .EQ. O'123") GO TO 10 INTEGER(4) 4
IF (N .EQ. 1HZ) GO TO 10 INTEGER(4) 4
1. In bytes.

When a specific datatype (generally integer) isrequired, that type is assumed for the constant. For

example:
Statement Data Type of Constant Length of Constant 1
Y(1X) =Y (0'15") + 3 INTEGER(4) 4
Y(1X) =Y (1HA) + 3 INTEGER(4) 4
1. In bytes.

When a nondecimal constant is used as an actual argument, the following occurs:

331

3 Intel Fortran Language Reference

® For binary, octal, and hexadecimal constants, INTEGER(8) is assumed on Intel® Itanium®
processors. On 1A-32 processors, INTEGER(4) is used.

* For Hollerith constants, no datatype is assumed.

For example:
Statement Data Type of Constant Length of Constant 1
CALL APAC (Z'34BC2 INTEGER(4) 4
CALL APAC (9HABCDEFGH]I) None 9
1. In bytes.

When abinary, octal, or hexadecimal constant is used in any other context, the default integer data
typeisassumed (default integer can be affected by compiler options). In the following examples,
default integer is INTEGER(4):

Statement Data Type of Constant Length of Constant 1
IF (ZAF77) 1,2,3 INTEGER(4) 4
IF (2HAB) 1,2,3 INTEGER(4) 4
| = 07777 — Z'A39' 2 INTEGER(4) 4
|=1HC - 1HA INTEGER(4) 4
J=.NOT. O'73777' INTEGER(4) 4
J=.NOT. 1HB INTEGER(4) 4
1. In bytes.

2. When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a data type, the
following occurs:

® Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of the constant is less
than the length implied by the data type, the leftmost digits have a value of zero.

When the length of the constant is greater than the length implied by the data type, the
constant is truncated on the left. An error resultsif any nonzero digits are truncated.

Table 15-2 lists the number of bytes that each data type requires.
® Hollerith constants

When the length of the constant is less than the length implied by the data type, blanks are
appended to the constant on the right.

3-32

Data Types, Constants, and Variables 3

When the length of the constant is greater than the length implied by the data type, the
constant istruncated on theright. If any characters other than blank characters are truncated,
an error occurs.

Each Hollerith character occupies one byte of memory.

See Also
Your user’s guide for details on compiler options

Variables

A variable is a data object whose value can be changed at any point in a program. A variable can
be any of the following:

* A scaar

A scalar isasingle object that has a single value; it can be of any intrinsic or derived
(user-defined) type.
* Anarray

An array isacollection of scalar elements of any intrinsic or derived type. All elements must
have the same type and kind parameters.

® A subobject designator
A subobject is part of an object. The following are subobjects:

An array element A structure component
An array section A character substring

For example, B(3) is a subobject (array element) designator for array B. A subobject cannot
be avariable if its parent object is a constant.

The name of avariable is associated with a single storage location.

Variables are classified by datatype, as constants are. The data type of avariable indicatesthe type
of datait contains, including its precision, and implies its storage requirements. When data of any
typeisassigned to avariable, it is converted to the data type of the variable (if necessary).

A variable is defined when you give it avalue. A variable can be defined before program
execution by a DATA statement or atype declaration statement. During program execution,
variables can be defined or redefined in assignment statements and input statements, or undefined
(for example, if an I/O error occurs). When avariable is undefined, its value is unpredictable.

When a variable becomes undefined, all variables associated by storage association also become
undefined.

3-33

3 Intel Fortran Language Reference

See Also
* “Arrays’

* “Type Declaration Statements”

* “DATA Statement”

e “Data Type of Numeric Expressions’

® “Storage Association” for details on storage association of variables

Data Types of Scalar Variables

3-34

The datatype of a scalar variable can be explicitly declared in atype declaration statement. If no
typeis declared, the variable has an implicit data type based on predefined typing rules or
definitionsin an IMPLICIT statement.

An explicit declaration of data type takes precedence over any implicit type. Implicit type
specified inan IMPLICIT statement takes precedence over predefined typing rules.

Specification of Data Type

Type declaration statements explicitly specify the data type of scalar variables. For example, the
following statements associate VARL with an 8-byte complex storage location, and VAR2 with an
8-byte double-precision storage location:

COWLEX VARL

DOUBLE PRECI SI ON VAR2

You can explicitly specify the data type of ascalar variable only once.

If no explicit data type specification appears, any variable with a name that begins with the letter
in the range specified in the IMPLICIT statement becomes the data type of the variable.

Character type declaration statements specify that given variables represent character values with
the length specified. For example, the following statements associate the variable names INLINE,
NAME, and NUMBER with storage locations containing character data of lengths 72, 12, and 9,
respectively:

CHARACTER* 72 | NLI NE

CHARACTER NAME* 12, NUMBER* 9

In single subprograms, assumed-length character arguments can be used to process character
strings with different lengths. The assumed-length character argument hasits length specified with
an asterisk, for example:

CHARACTER* (*) CHARDUMWY
The argument CHARDUMMY assumes the length of the actual argument.

Data Types, Constants, and Variables 3

See Also

* “Type Declaration Statements’

* “Declaration Statements for Character Types’
* “Assumed-L ength Character Arguments”

e “IMPLICIT Statement”

Implicit Typing Rules

By default, all scalar variables with names beginning with I, J, K, L, M, or N are assumed to be
default integer variables. Scalar variables with names beginning with any other |etter are assumed
to be default real variables. For example:

Real Variables Integer Variables
ALPHA JCOUNT

BETA ITEM_1
TOTAL_NUM NTOTAL

Names beginning with adollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying datatypein either an
IMPLICIT statement or atype declaration statement.

See Also

* “Type Declaration Statements’
e “IMPLICIT Statement”

Arrays

An array isaset of scalar elementsthat have the same type and kind parameters. Any object that is
declared with an array specification isan array. Arrays can be declared by using atype declaration
statement, or by using aDIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET
statement.

An array can be referenced by element (using subscripts), by section (using a section subscript
list), or asawhole. A subscript list (appended to the array name) indicates which array element or
array section is being referenced.

A section subscript list consists of subscripts, subscript triplets, or vector subscripts. At least one
subscript in the list must be a subscript triplet or vector subscript.

When an array name without any subscripts appearsin an intrinsic operation (for example,
addition), the operation applies to the whole array (all elementsin the array).

3-35

3 Intel Fortran Language Reference

An array has the following properties:

Datatype
An array can have any intrinsic or derived type. The data type of an array (like any other
variable) is specified in atype declaration statement or implied by the first |etter of its name.
All elements of the array have the same type and kind parameters. If avalue assigned to an
individual array element is not the same as the type of the array, it is converted to the array's
type.

Rank
Therank of an array isthe number of dimensionsin the array. An array can have up to seven
dimensions. A rank-one array represents a column of data (a vector), arank-two array
represents a table of data arranged in columns and rows (a matrix), a rank-three array
represents a table of data on multiple pages (or planes), and so forth.

Bounds

Arrays have alower and upper bound in each dimension. These bounds determine the range
of values that can be used as subscripts for the dimension. The value of either bound can be
positive, negative, or zero.

The bounds of a dimension are defined in an array specification.

Size

The size of an array is the total number of elementsin the array (the product of the array's
extents).

The extent is the total number of elementsin a particular dimension. It is determined as
follows: upper bound —lower bound + 1. If the value of any of an array's extentsis zero, the
array has asize of zero.

Shape

The shape of an array is determined by its rank and extents, and can be represented as a
rank-one array (vector) where each element is the extent of the corresponding dimension.
Two arrays with the same shape are said to be conformable. A scalar is conformable to an
array of any shape.

The name and rank of an array must be specified when the array is declared. The extent of each
dimension can be constant, but does not need to be. The extents can vary during program
execution if the array is a dummy argument array, an automatic array, an array pointer, or an
alocatable array.

A whole array is referenced by the array name. Individual elementsin a named array are
referenced by ascalar subscript or list of scalar subscripts (if there is more than one dimension). A
section of anamed array is referenced by a section subscript.

3-36

Data Types, Constants, and Variables 3

Examples
The following are examples of valid array declarations:
DI MENSI ON A(10, 2, 3) I DI MENSI ON st at enment
ALLOCATABLE B(:, :) I ALLOCATABLE st at enent
PO NTER c(:, :, 1) I PO NTER st at enent
REAL, DIMENSION (2, 5) :: D I Type declaration with DIMENSION attribute

Consider the following array declaration:
| NTEGER L(2: 11, 3)
The properties of array L are asfollows:

Data type: INTEGER
Rank: 2 (two dimensions)
Bounds: First dimension: 2 to 11

Second dimension: 1 to 3
Size: 30; the product of the extents: 10 x 3
Shape: (/20,3/) (or 10 by 3); a vector of the extents 10 and 3

The following example shows other valid ways to declare this array:
DI MENSI ON L(2: 11, 3)
| NTEGER, DI MENSI ON(2:11,3) :: L
COWON L(2: 11, 3)
The following example shows references to array elements, array sections, and awhole array:
REAL B(10) I Declares a rank-one array with 10 el enments
| NTEGER C(5, 8) | Declares a rank-two array with 5 elenents in
! di mensi on one and 8 elenments in dinension two

B(3) =

5.0 I Reference to an array el enent

B(2:5) =1.0 I Reference to an array section consisting of
! elements: B(2), B(3), B(4), B(5)

C(4,8) =1 I Reference to an array el enent

C(1:3,3:4) =1 I Reference to an array section consisting of
! elements: (C(1,3) C(1,4)
! C(2,3) C(2,4)
! C(3,3) C(3,4)

3-37

3 Intel Fortran Language Reference

3-38

B = 99 I Reference to a whole array consisting of
! elements: B(1), B(2), B(3), B(4), B(5),
! B(6), B(7), B(8), B(9), and B(10)

See Also

* “DIMENSION Attribute and Statement”
* ‘“Intrinsic Data Types’

* ‘“Derived Data Types’

* “Whole Arrays’
* “Array Elements’

¢ “Array Sections’
* “Declaration Statements for Arrays’ for details on array specifications
® Table 9-2 for details on intrinsic functions that perform array operations

Whole Arrays
A whole array is anamed array; it is either anamed constant or avariable. It isreferenced by
using the array name (without any subscripts).
If awhole array appears in anonexecutable statement, the statement appliesto the entire array. For
example:
| NTEGER, DI MENSION(2:11,3) :: L ! Specifies the type and

! di mensions of array L

If awhole array appearsin an executable statement, the statement appliesto al of the elementsin
the array. For example:

L =10 ! The value 10 is assigned to all the
! elenments in array L
WRITE *, L ! Prints all the elenments in array L

Array Elements

An array element is one of the scalar dataitems that make up an array. A subscript list (appended
to the array or array component) determines which element is being referred to. A reference to an
array element takes the following form:

array(subscript-list)
array
Is the name of the array.

Data Types, Constants, and Variables 3

subscript-list

Isalist of one or more subscripts separated by commas. The number of subscripts must equal the
rank of the array.

Each subscript must be a scalar integer (or other numeric) expression with avalue that is within
the bounds of its dimension.

Rules and Behavior

Each array element inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array element cannot inherit the POINTER
attribute.

If an array element is of type character, it can be followed by a substring range in parentheses; for
example:
ARRAY D(1,2) (1:3) I Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather than an array
element.

The following are some valid array element references for an array declared as REAL B(10,20):
B(1,3), B(10,10), and B(5,8).

For information on forms for array specifications, see “ Declaration Statements for Arrays”.

Array Element Order

The elements of an array form a sequence known as array element order. The position of an
element in this sequence isits subscript order value.

The elements of an array are stored as alinear sequence of values. A one-dimensional array is
stored with itsfirst element in the first storage location and its last element in the last storage
location of the sequence. A multidimensional array is stored so that the leftmost subscripts vary
most rapidly. Thisis caled the order of subscript progression.

Figure 3-1 shows array storage in one, two, and three dimensions

3-39

3 Intel Fortran Language Reference

Figure 3-1

Array Storage

One-Dimensional Array BRC (6)

1 |BRC() | 2 |BRC(2) | 3 |BRC@) | 4 |BRC@#) | 5 |BRC(5) | 6 | BRC(®6)
? f Memory Positions
Two—-Dimensional Array BAN (3,4)
1 |BAN(1,1) | 4 |BAN(1,2) | 7 | BAN(1,3) | 10 | BAN(1,4)
2 |BAN(2,1) | 5 |BAN(2,2) | 8 | BAN(2,3) | 11 | BAN(2,4)
3 |BAN(3,1) | 6 [BAN(3,2) | 9 | BAN(3,3) | 12 | BAN(3,4)
? f Memory Positions
Three—Dimensional Array BOS (3,3,3)
19 | BOS(1,1,3) | 22 | BOS(1,2,3) | 25 | BOS(1,3,3)
20 | BOS(2,1,3) | 23 | BOS(2,2,3) | 26 | BOS(2,3,3)
10 | BOS(1,1,2) | 13 | BOS(1,2,2) | 16 | BOS(1,3,2) { 27 505(313’3)_
11 | BOS(2,1,2) | 14 | BOS(2,2,2) | 17 BOS(2,3,2)I
1 |BOS@1,1,1) | 4 |BOS(1,2,1) | 7 BOS(1,3,1)I18 BOS(3,32)I
2 |BOS(2,1,1) | 5 | BOS(2,2,1) | 8 BOS(2,3,1)I
3 [BOS(3,1,1) | 6 |BOS(3,2,1) | 9 BOS(3,3,1)I
? f Memory Positions
ZK-0616-GE

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript order value of 4;
in three-dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

3-40

Data Types, Constants, and Variables 3

In an array section, the subscript order of the elementsistheir order within the section itself. For
example, if an array is declared as B(20), the section B(4:19:4) consists of elements B(4), B(8),
B(12), and B(16). The subscript order value of B(4) in the array section is 1; the subscript order
value of B(12) in the sectionis 3.

See Also

® “Character Substrings”

e “Array Association”

* “Structure Components’ for details on arrays as structure components
® “Storage Association” for details on storage sequence association

Array Sections

An array section isaportion of an array that is an array itself. It isan array subobject. A section
subscript list (appended to the array or array component) determines which portion is being
referred to. A reference to an array section takes the following form:

array(sect-subscript-list)
array
Is the name of the array.
sect-subscript-list

Isalist of one or more section subscripts (subscripts, subscript triplets, or vector subscripts)
indicating a set of elements along a particular dimension.

At least one of the items in the section subscript list must be a subscript triplet or vector subscript.
A subscript triplet specifies array elementsin increasing or decreasing order at agiven stride. A
vector subscript specifies elementsin any order.

Each subscript and subscript triplet must be a scalar integer (or other numeric) expression. Each
vector subscript must be a rank-one integer expression.

Rules and Behavior

If no section subscript list is specified, the rank and shape of the array section is the same as the
parent array.

Otherwise, the rank of the array section is the number of vector subscripts and subscript triplets
that appear in the list. Its shape is arank-one array where each element is the number of integer
values in the sequence indicated by the corresponding subscript triplet or vector subscript.

If any of these sequencesis empty, the array section has a size of zero. The subscript order of the
elements of an array section isthat of the array object that the array section represents.

341

3 Intel Fortran Language Reference

3-42

Each array section inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array section cannot inherit the POINTER
attribute.

If an array (or array component) is of type character, it can be followed by a substring range in
parentheses. Consider the following declaration:

CHARACTER(LEN=15) (10, 10)

Inthis case, an array section referenced as C(;,:) (1:3) isan array of shape (10,10), whose elements
are substrings of length 3 of the corresponding elements of C.

The following shows valid references to array sections. Note that the syntax (/.../) denotes an
array constructor (see “Array Constructors’):

REAL, DI MENSI ON(20) :: B

PRINT *, B(2:20:5) ! The section consists of elements
! B(2), B(7), B(12), and B(17)

K= (/3, 1, 4/)

B(K) = 0.0 I Section B(K) is a rank-one array with shape (3) and
I size 3. (0.0 is assigned to B(1), B(3), and B(4).)

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section, the
upper bound of the array section, and the increment (stride) between them. It takes the following
form:

[first-bound] : [last-bound] [:stride]
first-bound

Isascalar integer (or other numeric) expression representing the first value in the subscript
seguence. If omitted, the declared lower bound of the dimension is used.

last-bound

Isascalar integer (or other numeric) expression representing the last value in the subscript
sequence. If omitted, the declared upper bound of the dimension is used.

When indicating sections of an assumed-size array, this subscript must be specified.
stride

Isascalar integer (or other numeric) expression representing the increment between successive
subscripts in the sequence. It must have anonzero value. If it is omitted, it is assumed to be 1.

The stride has the following effects:

Data Types, Constants, and Variables 3

* If thestrideis positive, the subscript range starts with the first subscript and isincremented by
the value of the stride, until the largest value less than or equal to the second subscript is
attained.

For example, if an array has been declared as B(6,3,2), the array section specified as
B(2:4,1:2,2) isarank-two array with shape (3,2) and size 6. It consists of the following six
elements:

B(2,1,2) B(2,2,2)

B(3,1,2) B(3, 2, 2)

B(4,1, 2) B(4, 2, 2)

If the first subscript is greater than the second subscript, the range is empty.

¢ |f the strideis negative, the subscript range starts with the value of the first subscript and is
decremented by the absolute value of the stride, until the smallest value greater than or equa
to the second subscript is attained.

For example, if an array has been declared as A(15), the array section specified as A(10:3:-2)
is arank-one array with shape (4) and size 4. It consists of the following four elements:
A(10)

A(8)

A(6)

A(4)

If the second subscript is greater than the first subscript, the range is empty.

If arange specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all

values used to select the array elements are within the declared bounds. For example, if an array

has been declared as A(15), the array section specified as A(4:16:10) isvalid. The sectionisa

rank-one array with shape (2) and size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only acolon (:), the entire declared

range for the dimension is used.

Vector Subscripts

A vector subscript is aone-dimensional (rank one) array of integer values (within the declared
bounds for the dimension) that selects a section of awhole (parent) array. The elementsin the
section do not have to be in order and the section can contain duplicate values.

For example, A isarank-two array of shape (4,6). B and C are rank- one arrays of shape (2) and
(3), respectively, with the following values:

B = (/1,4/) I Syntax (/.../) denotes an array constructor
C=(/2,1,1/) I WIIl result in a many-one array section

3-43

3 Intel Fortran Language Reference

344

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section A(C,1) consists of
dements A(2,1), A(1,1), and A(1,1). Array section A(B,C) consists of the following elements:
A(1, 2) A(1,1) A(1, 1)
A(4, 2) A(4,1) A(4,1)
An array section with a vector subscript that has two or more elements with the same valueis
called amany-one array section. A many-one section must not appear on the left of the equal sign
in an assignment statement, or as an input item in a READ statement.
The following assignments to C a so show examples of vector subscripts:
| NTEGER A(2), B(2), C(2)

B

(/1,2)
aAB) = A(B)

C A((/1,21))

An array section with avector subscript must not be any of the following:
®* Aninternd file

* Anactua argument associated with adummy array that is defined or redefined (if the
INTENT attribute is specified, it must be INTENT(IN))

®* Thetarget in apointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has a size of zero.

See Also

* “INTENT Attribute and Statement”

e “PARAMETER Attribute and Statement”

¢ “TARGET Attribute and Statement”

® “Character Substrings’

* “Array Constructors’

* “Structure Components’ for details on array sections as structure components

Array Constructors

An array constructor can be used to create and assign values to rank-one arrays (and array
constants). An array constructor takes the following form:

(/ac-value-list/)
ac-value-list

Isalist of one or more expressions or implied-DO loops. Each ac-value must have the same type
and kind parameters, and be separated by commas.

Data Types, Constants, and Variables 3

Animplied-DO loop in an array constructor takes the following form:
(ac-value-list, do-variable = exprl, expr2 [, expr3])

do-variable

Isthe name of a scalar integer variable. Its scope is that of the implied-DO loop.

expr

Isascalar integer expression. The exprl and expr2 specify arange of values for the loop; expr3
specifies the stride. The expr3 must be a nonzero value; if it is omitted, it is assumed to be 1.

Rules and Behavior
The array constructed has the same type as the ac-value-list expressions.

If the sequence of values specified by the array constructor is empty (there are no expressions or
the implied-DO loop produces no values), the rank-one array has a size of zero.

An ac-valueisinterpreted as follows:

Form of ac-value Result

A scalar expression Its value is an element of the new array.

An array expression The values of the elements in the expression (in array element
order) are the corresponding sequence of elements in the new
array.

An implied-DO loop It is expanded to form a list of array elements under control of the

DO variable (like a DO construct).

The following shows the three forms of an ac-value:

ClL =(/4,8,7,6/) ! A scal ar expression
c = (/B(l, 1.5, B(I1:3J, 7:91/) I An array expression
C3=(/(I, I=1, 4))) I An inplied-DO | oop
You can also mix these forms, for example:

A = (14, A(L:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array constructor isa
constant expression.

If the expressions are of type character, Fortran 95/90 requires each expression to have the same
character length.

However, Intel Fortran allows the character expressions to be of different character lengths. The
length of the resultant character array is the maximum of the lengths of the individual character
expressions. For example:

print *, len ((/'"a ,"ab',"abc',"'d /))

3-45

3 Intel Fortran Language Reference

3-46

print * "++ //(/"a ,"ab',"abc","'d" /)//]"--"'
This causes the following to be displayed:

3
++a --++ab --++abc--++d --

If animplied-DO loop is contained within another implied-DO loop (nested), they cannot have the
same DO variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic function.

The following are aternative forms for array constructors:

® Square brackets (instead of parentheses and slashes) to enclose array constructors; for
example, the following two array constructors are equivalent:
| NTEGER C(4)
C=(/4,8,7,6/)
C=14,8,7,6]

® A colon-separated triplet (instead of an implied-DO loop) to specify arange of values and a
stride; for example, the following two array constructors are equivalent:

| NTEGER X 3)

D= (/1:5:2/) I Triplet form

D=(/(l, 1=1, 5 2)/) I inplied-DO | oop form
Examples

The following example shows an array constructor using an implied-DO loop:
| NTEGER ARRAY_C(10)

ARRAY C = (/(1, 1=30, 48, 2)/)

The values of ARRAY _C are the even numbers 30 through 48.

The following example shows an array constructor of derived type that uses a structure
constructor:
TYPE EMPLOYEE
I NTEGER | D
CHARACTER(LEN=30) NANME
END TYPE EMPLOYEE
TYPE(EMPLOYEE) CC_4T(4)
CC 4T = (/ EMPLOYEE(2732, "JONES'), EMPLOYEE(0217,"LEE"), &
EMPLOYEE(1889, "RYAN'), EMPLOYEE(4339, "EMERSON') /)

The following example shows how the RESHAPE intrinsic function can be used to create a
multidimensional array:

Data Types, Constants, and Variables 3

E=(/2.3, 4.7, 6.6/)
D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))
D isarank-two array with shape (2,3) containing the following elements:

3.5 1.0 4.7
2.0 2.3 6.6

See Also
* “DO Constructs’
* “RESHAPE”

® “Subscript Triplets’

* “Derived Data Types’

® “Structure Constructors’

e “Array Elements’ for details on array element order

* “Array Assignment Statements’ for details on another way to assign values to arrays
* “Declaration Statements for Arrays’ for details on array specifications

3-47

3 Intel Fortran Language Reference

3-48

Expressions and
Assignment Satements 4

This chapter contains information on the following topics:

* “Expressions’
* “Assignment Statements’

Expressions

An expression represents either a data reference or a computation, and is formed from operators,
operands, and parentheses. The result of an expression is either a scalar value or an array of scalar
values.

If the value of an expression is of intrinsic type, it has akind type parameter. (If the valueis of
intrinsic type CHARACTER, it also has alength parameter.) If the value of an expression is of
derived type, it has no kind type parameter.

An operand isascaar or array. An operator can be either intrinsic or defined. Anintrinsic operator
is known to the compiler and is always available to any program unit. A defined operator is
described explicitly by auser in afunction subprogram and is available to each program unit that
uses the subprogram.

The simplest form of an expression (a primary) can be any of the following:

®* A constant; for example, 4.2

* A subobject of aconstant; for example, 'LMNOP' (2:4)

* Avaiable for example, VAR 1

® A structure constructor; for example, EMPLOY EE(3472, "JOHN DOE")

®* Anarray constructor; for example, (/12.0,16.0/)

® A function reference; for example, COS(X)

® Another expression in parentheses; for example, (1+5)

4-1

4 Intel Fortran Language Reference

Any variable or function reference used as an operand in an expression must be defined at thetime
the reference is executed. If the operand is a pointer, it must be associated with atarget object that
is defined. Aninteger operand must be defined with an integer value rather than a statement label
value. All of the characters in a character data object reference must be defined.

When areference to an array or an array section is made, all of the selected elements must be
defined. When a structure is referenced, all of the components must be defined.

In an expression that has intrinsic operators with an array as an operand, the operation is
performed on each element of the array. In expressions with more than one array operand, the
arrays must be conformable (they must have the same shape). The operation is applied to
corresponding elements of the arrays, and the result is an array of the same shape (the same rank
and extents) as the operands.

In an expression that has intrinsic operators with a pointer as an operand, the operation is
performed on the value of the target associated with the pointer.

For defined operators, operations on arrays and pointers are determined by the procedure defining
the operation.

A scalar is conformable with any array. If one operand of an expression is an array and another
operand isascaar, it isasif the value of the scalar were replicated to form an array of the same
shape as the array operand. The result is an array of the same shape as the array operand.

The following sections describe numeric, character, relational, and logical expressions; defined
operations; a summary of operator precedence; and initialization and specification expressions.

See Also
e “Arrays’

* “Derived Data Types’
* “Defining Generic Operators’ for details on function subprograms that define operators
* “POINTER Attribute and Statement” for details on pointers

Numeric Expressions

4-2

Numeric expressions express numeric computations, and are formed with numeric operands and
numeric operators. The evaluation of a numeric operation yields a single numeric value.

Theterm numericincludeslogical data, because logical dataistreated asinteger datawhen usedin
anumeric context. The default for TRUE. is—1; .FALSE. is0. The default can changeif a
specific compiler option is used.

Numeric operators specify computations to be performed on the values of numeric operands. The
result isa scalar numeric value or an array whose elements are scalar numeric values. The
following are numeric operators:

Expressions and Assignment Satements 4

Operator Function

*x Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

- Subtraction or unary minus (negation)

Unary operators operate on a single operand. Binary operators operate on a pair of operands. The
plus and minus operators can be unary or binary. When they are unary operators, the plus or minus
operators precede a single operand and denote a positive (identity) or negative (negation) value,
respectively. The exponentiation, multiplication, and division operators are binary operators.

Valid numeric operations must have results that are defined by the arithmetic used by the
processor. For example, raising a negative-valued base to areal power isinvalid.

Numeric expressions are evaluated in an order determined by a precedence associated with each
operator, as follows (see also “Summary of Operator Precedence”):

Operator Precedence
*x Highest
*and /

Unary + and —

Binary + and — Lowest

Operators with equal precedence are evaluated in | eft-to-right order. However, exponentiation is
evaluated from right to left. For example, A**B**C is evauated as A**(B**C). B**C s
evaluated first, then A israised to the resulting power.

Normally, two operators cannot appear together. However, Intel® Fortran allows two consecutive
operators if the second operator is a plus or minus.

Examples

In the following example, the exponentiation operator is evaluated first because it takes
precedence over the multiplication operator:

A**B*C is evaluated as (A**B)*C
Ordinarily, the exponentiation operator would be evaluated first in the following example.

However, because Intel Fortran allows the combination of the exponentiation and minus operators,
the exponentiation operator is not evaluated until the minus operator is eval uated:

4-3

4 Intel Fortran Language Reference

4-4

A**-B*C is evaluated as A**(-(B*QC))

Note that the multiplication operator is evaluated first, since it takes precedence over the minus
operator.

When consecutive operators are used with constants, the unary plus or minus before the constant is
treated the same as any other operator. This can produce unexpected results. In the following
example, the multiplication operator is evaluated first, since it takes precedence over the minus
operator:

X/ -15.0*Y is evaluated as X/ -(15.0*Y)

Using Parentheses in Numeric Expressions

You can use parentheses to force a particular order of evaluation. When part of an expression is
enclosed in parentheses, that part is evaluated first. The resulting value is used in the evaluation of
the remainder of the expression.

In the following examples, the numbers below the operators indicate a possible order of
evaluation. Alternative evaluation orders are possible in the first three examples because they
contain operators of equal precedence that are not enclosed in parentheses. In these cases, the
compiler is free to evaluate operators of equal precedence in any order, aslong as the result is the
same as the result gained by the algebraic left-to-right order of evaluation.

4+3*2-6/2 =7
AN N ZANEAY

2 1 4 3

(4 +3) *2-6/2 =11
AN N NN

1 2 4 3
(4+3*2-6)/2 =2
AN AN N N

2 1 3 4
((4+3) *2-6)/2 =4

N N N AN

1 2 3 4

Expressions within parentheses are evaluated according to the normal order of precedence. In
expressions containing nested parentheses, the innermost parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the following example:
4 + (3 *2) - (6/2)

Expressions and Assignment Satements 4

However, using parentheses to specify the evaluation order is often important in high-accuracy
numerical computations. In such computations, evaluation orders that are algebraically equivalent
may not be computationally equivalent when processed by a computer (because of the way
intermediate results are rounded off).

Parentheses can be used in argument lists to force a given argument to be treated as an expression,
rather than as the address of a memory item.

Data Type of Numeric Expressions
If every operand in a numeric expression is of the same data type, the result is also of that type.

If operands of different data types are combined in an expression, the evaluation of that expression
and the data type of the resulting value depend on the ranking associated with each data type. The
following table shows the ranking assigned to each data type:

Data Type Ranking
LOGICAL(1) and BYTE Lowest
LOGICAL(2)

LOGICAL(4)

LOGICAL(8)

INTEGER(1)

INTEGER(2)

INTEGER(3)

INTEGER(4)

REAL(4)

REAL(8)!

REAL(16)

COMPLEX(4)

COMPLEX(8) .
COMPLEX(16)2 Highest

1. DOUBLE PRECISION
2. DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands of different data
typesisthe datatype of the highest- ranking operand in the operation. For example, the value
resulting from an operation on an integer and areal operand is of real type. However, an operation
involving a COMPLEX(4) or COMPLEX(8) data type and a DOUBLE PRECISION datatype
produces a COMPLEX (8) result.

4 Intel Fortran Language Reference

The datatype of an expression isthe datatype of the result of the last operation in that expression,
and is determined according to the following conventions:

Integer operations: Integer operations are performed only on integer operands. (Logical
entities used in a numeric context are treated as integers.) In integer arithmetic, any fraction
resulting from division is truncated, not rounded. For example, theresultof 1/4 + 1/ 4 +
1/4 + 1/4is0, not 1.

Real operations: Real operations are performed only on real operands or combinations of real,
integer, and logical operands. Any integer operands present are converted to real datatype by
giving each afractional part equal to zero. The expression is then evaluated using real
arithmetic. However, inthe statement Y = (I /J) * X, aninteger division operation is
performed on | and J, and areal multiplication is performed on that result and X.

If one operand is a higher-precision real (REAL(8) or REAL(16)) type, the other operand is
converted to that higher-precision real type before the expression is evaluated.

When a single-precision real operand is converted to a double-precision real operand,
low-order binary digits are set to zero. This conversion does not increase accuracy;
conversion of adecimal number does not produce a succession of decimal zeros. For
example, aREAL variable having the value 0. 3333333 is converted to approximately
0. 3333333134651184D0. It isnot converted to either 0. 3333333000000000D0 or
0. 3333333333333333D0.

Complex operations. In operations that contain any complex operands, integer operands are
converted to real type, as previously described. The resulting single-precision or
double-precision operand is designated as the real part of a complex number and the
imaginary part is assigned avalue of zero. The expression is then evaluated using complex
arithmetic and the resulting value is of complex type. Operations involving a COMPLEX (4)
or COMPLEX(8) operand and a DOUBLE PRECISION operand are performed as
COMPLEX(8) operations; the DOUBLE PRECISION operand is not rounded.

These rules also generally apply to numeric operations in which one of the operandsis a constant.
However, if area or complex constant is used in a higher-precision expression, additional
precision will be retained for the constant. The effect isasif aDOUBLE PRECISION (REAL(8))
or REAL(16) representation of the constant were given. For example, the expression 1. 0D0 +
0. 3333333 istreated asif itis1. 0D0 + 0. 3333333000000000D0.

Character Expressions

A character expression consists of acharacter operator (/) that concatenates two operands of type
character. The evaluation of a character expression produces a single value of that type.

4-6

Expressions and Assignment Satements 4

The result of a character expression is a character string whose value is the value of the left
character operand concatenated to the value of the right operand. The length of a character
expression is the sum of the lengths of the values of the operands. For example, the value of the
character expression’ AB' / /' CDE' is ' ABCDE , which hasalength of five.
Parentheses do not affect the evaluation of a character expression; for example, the following
character expressions are equivalent:

("ABC //'DE)/I'F

"ABC //("'DE /I’ F)

"ABC /I'DE/I'F
Each of these expressions hasthevalue’ ABCDEF’ .

If acharacter operand in a character expression contains blanks, the blanks are included in the
value of the character expression. For example,” ABC ' //* D E' //’ F * hasavalue of
"ABC D EF ’

Relational Expressions

A relational expression consists of two or more expressions whose values are compared to
determine whether the relationship stated by the relational operator is satisfied. The following are
relational operators:

Operator Relationship

LT. or < Less than

.LE. or <= Less than or equal to
EQ. or == Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

The result of therelational expression is . TRUE. if the relation specified by the operator is
satisfied; theresult is .FALSE. if the relation specified by the operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the character operator // have
ahigher precedence than relational operators.

In anumeric relational expression, the operands are numeric expressions. Consider the following
example:

APPLE+PEACH > PEAR+ORANGE

4-7

4 Intel Fortran Language Reference

This expression states that the sum of APPLE and PEACH is greater than the sum of PEAR and
ORANGE. If thisrelationship is valid, the value of the expression is . TRUE.; if not, thevalueis
.FALSE..

Operands of type complex can only be compared using the equal operator (= = or .EQ.) or the not
equal operator (/= or .NE.). Complex entities are equal if their corresponding real and imaginary
parts are both equal.

In acharacter relational expression, the operands are character expressions. In character relational
expressions, less than (< or .LT.) means the character value precedes in the ASCI| collating
sequence, and greater than (> or .GT.) means the character value follows in the ASCI| collating
sequence. For example:

"AB'//'ZzzZzZ .LT. 'CCCCC
This expression statesthat ' ABZzz' islessthan' CCCCC . In this case, the relation specified by
the operator is satisfied, so the result is . TRUE..

Character operands are compared one character at atime, in order, starting with the first character
of each operand. If the two character operands are not the same length, the shorter oneis padded
on the right with blanks until the lengths are equal; for example:

"ABC .EQ 'ABC

"AB" .LT. 'C
Thefirst relational expression hasthe value . TRUE. even though the lengths of the expressions are
not equal, and the second has the value .TRUE. even though' AB' islonger than' C .

A relational expression can compare two numeric expressions of different datatypes. In this case,
the value of the expression with the lower-ranking data type is converted to the higher-ranking
data type before the comparison is made.

See Also
“Data Type of Numeric Expressions’ for details on the ranking of datatypes

Logical Expressions

4-8

A logical expression consists of one or more logical operators and logical, numeric, or relationa
operands. The following are logical operators:

Operator Example Meaning

.AND. A .AND. B Logical conjunction: the expression is true if both A and B
are true.

.OR. A .OR.B Logical disjunction (inclusive OR): the expression is true if

either A, B, or both, are true.

Expressions and Assignment Statements 4

Operator Example Meaning

.NEQV. A .NEQV. B Logical inequivalence (exclusive OR): the expression is true
if either A or B is true, but false if both are true.

XOR. A XOR. B Same as .NEQV.

.EQV. A .EQV.B Logical equivalence: the expression is true if both A and B

are true, or both are false.

.NoT.! .NOT. A Logical negation: the expression is true if A is false and
false if A is true.

1. .NOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT. For example, the
following logical expressionisvalid:
A+B/ (A-1) . AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations

Logical operations on logical operands produce single logical values (TRUE. or .FALSE.) of
logical type.

Logical operations on integers produce single values of integer type. The operation is carried out
bit-by-bit on corresponding bits of the internal (binary) representation of the integer operands.

Logical operations on a combination of integer and logical values also produce single values of
integer type. The operation first convertslogical values to integers, then operates as it does with
integers.

Logical operations cannot be performed on other data types.

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their operators. Consider the
following expression:
A*B+C*ABC == X*Y+DM ZZ . AND. .NOT. K*B> TT
This expression is evaluated in the following sequence:
(((A*B)+(C*ABC)) == ((X*Y)+(DM ZZ))) .AND. (.NOT. ((K*B)> TT))
As with numeric expressions, you can use parentheses to alter the sequence of evaluation.

When operators have equal precedence, the compiler can evaluatethem in any order, aslong asthe
result is the same as the result gained by the algebraic |eft-to-right order of evaluation (except for
exponentiation, which is evaluated from right to |eft).

4-9

4 Intel Fortran Language Reference

You should not write logical expressions whose results might depend on the evaluation order of
subexpressions. The compiler is free to evaluate subexpressionsin any order. In the following
example, either (A(1)+1. 0) or B(1)*2. 0 could be evaluated first:

(A(1)+1.0) .GT. B(1)*2.0
Some subexpressions might not be evaluated if the compiler can determine the result by testing
other subexpressions in the logical expression. Consider the following expression:

A .AND. (F(X Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine that the expression
isfalse and might not call the subprogram F(X,Y).

See Also

“Summary of Operator Precedence” for details on the precedence of numeric, relational, and
logical operators

Defined Operations

4-10

When operators are defined for functions, the functions can then be referenced as defined
operations.

The operators are defined by using a generic interface block specifying OPERATOR, followed by
the defined operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a defined operation to
extend the meaning of an intrinsic operator.

For defined unary operations, the function must contain one argument. For defined binary
operations, the function must contain two arguments.

Interpretation of the operation is provided by the function that defines the operation.

A Fortran 95/90 defined operator can contain up to 31 letters, and is enclosed in periods (.). Its
name cannot be the same name as any of the following:

®* Theintrinsic operators (NOT., .AND., .OR., .XOR., .EQV.,, .NEQV.,, .EQ., .NE., .GT., .GE.,
LT.,,and .LE.)

®* Thelogica literal constants (TRUE. or .FALSE.).
Anintrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result (and its value) must be
specified by the defining function.
The following examples show expressions containing defined operators:

. COWPLEMENT. A

X .PLUS. Y .PLUS. Z

Expressions and Assignment Satements 4

M* _MNUS. N

See Also

* “Defining Generic Operators’

* “Summary of Operator Precedence’

Summary of Operator Precedence

Table 4-1 shows the precedence of al intrinsic and defined operators:

Table 4-1 Precedence of Expression Operators

Category Operator Precedence
Defined unary operators Highest

Numeric **

Numeric *or/

Numeric Unary + or —

Numeric Binary + or —

Character I

Relational .EQ., .NE., .LT, .LE., .GT,, .GE. ==,
/=, <, <=, > >=

Logical .NOT.

Logical .AND.

Logical .OR.

Logical XOR., .EQV., .NEQV.
Defined binary operators Lowest

Initialization and S pecification Expressions

A constant expression contains intrinsic operations and parts that are al constants. An
initialization expression is a constant expression that is evaluated when a program is compiled. A
specification expression is a scalar, integer expression that is restricted to declarations of array
bounds and character lengths.

Initialization and specification expressions can appear in specification statements, with some

restrictions.

4-11

4 Intel Fortran Language Reference

4-12

Initialization Expressions

An initialization expression must evaluate at compile time to a constant. It is used to specify an
initial value for an entity.

Inaninitialization expression, each operation isintrinsic and each operand is one of thefollowing:

A constant or subobject of a constant

An array constructor where each element and the bounds and strides of each implied-DO, are
expressions whaose primaries are initialization expressions

A structure constructor whose components are initialization expressions

An elementa intrinsic function reference of type integer or character, whose arguments are
initialization expressions of type integer or character

A reference to one of the following inquiry functions:

BIT_SIZE MINEXPONENT
DIGITS PRECISION
EPSILON RADIX

HUGE RANGE

ILEN SHAPE

KIND SIZE

LBOUND TINY

LEN UBOUND
MAXEXPONENT

Each function argument must be one of the following:

— Aninitidization expression

— A variable whose kind type parameter and bounds are not assumed or defined by an
ALLOCATE statement, pointer assignment, or an expression that isnot an initialization
expression

A reference to one of the following transformational functions (each argument must be an

initialization expression): functions:

REPEAT SELECTED_REAL_KIND
RESHAPE TRANSFER
SELECTED_INT_KIND TRIM

A reference to the transformational function NULL

Animplied-DO variable within an array constructor where the bounds and strides of the
corresponding implied-DO are initialization expressions

Expressions and Assignment Satements 4

® Another initialization expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be an initialization
expression.

In an initialization expression, the exponential operator (**) must have a power of type integer.

If an initialization expression invokes an inquiry function for atype parameter or an array bound
of an object, the type parameter or array bound must be specified in a prior specification statement
(or to the left of the inquiry function in the same statement).

Examples
The following examples show valid and invalid initialization (constant) expressions:

Valid

-1+3

SIZE(B) I B is a named constant
72

INT(J, 4) I J is a named constant

SELECTED_INT_KIND (2)

Invalid Explanation

SUM(A) Not an allowed function.

A/4.1 — K**1.2 Exponential does not have integer power (A and K are named
constants).

HUGE(4.0) Argument is not an integer.

See Also

* “Array Constructors’
® “Structure Constructors’
® “Intrinsic Procedures’ for details on intrinsic functions

Specification Expressions

A specification expression is arestricted expression that is of type integer and has a scalar value.
This type of expression appears only in the declaration of array bounds and character lengths.

In arestricted expression, each operation isintrinsic and each operand is one of the following:
* A constant or subobject of a constant
* A variablethat is one of the following:

4-13

4 Intel Fortran Language Reference

4-14

— A dummy argument that does not have the OPTIONAL or INTENT (OUT) attribute (or
the subobject of such avariable)

— Inacommon block (or the subabject of such avariable)

— Made accessible by use or host association (or the subobject of such avariable)

A structure constructor whose components are restricted expressions

Animplied-DO variable within an array constructor where the bounds and strides of the
corresponding implied-DO are restricted expressions

A reference to one of the following inquiry functions:

BIT_SIZE MINEXPONENT
DIGITS PRECISION
EPSILON RADIX

HUGE RANGE

ILEN SHAPE

KIND SIZE

LBOUND SIZEOF

LEN TINY
MAXEXPONENT UBOUND

Each function argument must be one of the following:

— A restricted expression

— A variable whose properties inquired about are not dependent on the upper bound of the
last dimension of an assumed-size array, are not defined by an expression that is not a
restricted expression, or are not definable by an ALLOCATE or pointer assignment
statement.

A reference to any other intrinsic function where each argument is a restricted expression.
A reference to a specification function where each argument is arestricted expression

An array constructor where each element and the bounds and strides of each implied-DO, are
expressions whose primaries are restricted expressions

Another restricted expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be a restricted
expression.

Soecification functions can be used in specification expressions to indicate the attributes of data
objects. A specification function is a pure function. It cannot have a dummy procedure argument
or be any of the following:

Anintrinsic function

Expressions and Assignment Satements 4

®* Aninterna function

® A statement function

* Defined as RECURSIVE

A variable in a specification expression must have its type and type parameters (if any) specified
in one of the following ways:

® By aprevious declaration in the same scoping unit

* By theimplicit typing rules currently in effect for the scoping unit

® By host or use association

If avariable in a specification expression is typed by the implicit typing rules, its appearancein
any subsequent type declaration statement must confirm the implied type and type parameters.

If a specification expression invokes an inquiry function for atype parameter or an array bound of

an object, the type parameter or array bound must be specified in a prior specification statement
(or to the left of the inquiry function in the same statement).

In a specification expression, the number of arguments for a function referenceis limited to 255.

Examples

The following shows valid specification expressions.

MAX(1) + J ' | and J are scalar integer variables
UBOUND(ARRAY_B, 20) ! ARRAY_B is an assuned-shape dunmy array

See Also

* “Array Constructors’

“Implicit Typing Rules’

® “Structure Constructors’

* “Useand Host Association”

* “Pure Procedures’

® Chapter 9, “Intrinsic Procedures’, for details on intrinsic functions

Assignment Statements

An assignment statement causes variables to be defined or redefined. This section describes the
following kinds of assignment statements: intrinsic, defined, pointer, masked array (WHERE), and
element array (FORALL).

The ASSIGN statement assigns alabel to an integer variable. It isdiscussed in “The ASSIGN and
Assigned GO TO Statements”.

4-15

4 Intel Fortran Language Reference

Intrinsic Assignments

4-16

Intrinsic assignment is used to assign a value to a nonpointer variable. In the case of pointers,
intrinsic assignment is used to assign a value to the target associated with the pointer variable. The
value assigned to the variable (or target) is determined by evaluation of the expression to the right
of the equal sign.

An intrinsic assignment statement takes the following form:
variable = expression
variable

Isthe name of ascalar or array of intrinsic or derived type (with no defined assignment). The array
cannot be an assumed-size array, and neither the scalar nor the array can be declared with the
PARAMETER or INTENT(IN) attribute.

expression

Is of intrinsic type or the same derived type as variable. Its shape must conform with variable. If
necessary, it is converted to the same type and kind as variable.

Rules and Behavior

Before avalue is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evauated. No definition of expressionsin the variable can
affect or be affected by the evaluation of the expression part of the assignment statement.

g NOTE. When the run-time system assigns a value to a scalar integer or

= character variable and the variable is shorter than the value being assigned,
the assigned value may be truncated and significant bits (or characters) lost.
Thistruncation can occur without warning, and can cause the run- time system
to pass incorrect information back to the program.

If the variableisapointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.

The following sections discuss numeric, logical, character, derived- type, and array intrinsic
assignment.

See Also
e “Arrays’

* “Derived Data Types’
* “Defining Generic Assignment” for details on subroutine subprograms that define assignment

Expressions and Assignment Satements 4

* “POINTER Attribute and Statement” for details on pointers

Numeric Assignment Statements
For numeric assignment statements, the variable and expression must be numeric type.

The expression must yield a value that conforms to the range requirements of the variable. For
example, areal expression that produces a value greater than 32767 isinvalid if the entity on the
left of the equal signisan INTEGER(2) variable.

Significance can be lost if an INTEGER(4) vaue, which can exactly represent values of
approximately the range —2* 10**9 to +2* 10**9, is converted to REAL (4) (including the real part
of acomplex constant), which is accurate to only about seven digits.

If the variable has the same data type as that of the expression on the right, the statement assigns
the value directly. If the data types are different, the value of the expression is converted to the
data type of the variable beforeit is assigned.

Table 4-2 summarizes the data conversion rules for numeric assignment statements.

Table 4-2 Conversion Rules for Numeric Assignment Statements

Expression (E)

Scalar Memory

Reference (V) Integer, Logical, or Real Complex
Integer or Logical V=INT(E) V=INT(REAL(E))
Imaginary part of E is not used.
REAL V=REAL(E) V=REAL(REAL(E))
(KIND=4) Imaginary part of E is not used.
REAL V=DBLE(E) V=DBLE(REAL(E))
(KIND=8) Imaginary part of E is not used.
REAL V=QEXT(E) V=QEXT(REAL(E))
(KIND=16) Imaginary part of E is not used.
COMPLEX V=CMPLX(REAL(E), 0.0) V=CMPLX(REAL(REAL(E)), REAL(AIMAG(E)))
(KIND=4)
COMPLEX V=CMPLX(DBLE(E), 0.0) V=CMPLX(DBLE(REAL(E)), DBLE(AIMAG(E)))
(KIND=8)
COMPLEX V=CMPLX(QEXT(E), 0.0) V=CMPLX(QEXT(REAL(E)), QEXT(AIMAG(E)))
(KIND=16)

4-17

4 Intel Fortran Language Reference

4-18

Examples
The following examples show valid and invalid numeric assignment statements:

Valid

BETA = -1./(2.*X)+A*A [(4.*(X*X))

Pl =3.14159

SUM = SUM + 1.

ARRAY_A = ARRAY_B + ARRAY_C + SCALAR_I I Valid if all arrays conform in shape.
Invalid Explanation

3.14=A-B Entity on the left must be a variable.
ICOUNT = A//B(3:7) Implicitly typed data types do not match.
SCALAR_I = ARRAY_A(?) Shapes do not match.

See Also

¢ ZINT”

* “REAL”

* “DBLE’

* “QEXT”

* “CMPLX”
e “AIMAG’

Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the expression can be
of logical or numeric type.

If necessary, the expression is converted to the same type and kind as the variable.

Examples

The following examples show valid logical assignment statements:

PAGEND = . FALSE.

PRNTOK LINE .LE. 132 . AND. .NOT. PAGEND

ABIG = AGI.B .AND. AAGI.C .AND. A GI.D

LOGE CAL_VAR = 123 I Moves binary value of 123 to LOd CAL_VAR

Character Assignment Statements

For character assignment statements, the variable and expression must be of character type and
have the same kind parameter.

Expressions and Assignment Satements 4

The variable and expression can have different lengths. If the length of the expression is greater
than the length of the variable, the character expression is truncated on the right. If the length of
the expression is less than the length of the variable, the character expression isfilled on the right
with blank characters.

If you assign avalue to a character substring, you do not affect character positionsin any part of
the character scalar variable not included in the substring. If a character position outside of the
substring has a value previously assigned, it remains unchanged. If the character positionis
undefined, it remains undefined.

Examples

The following examples show valid and invalid character assignment statements. (In the valid
examples, all variables are of type character.)

Valid

FILE = 'PROG2'

REVOL(1) = 'MAR//'CIA'
LOCA(3:8) = 'PLANTS'
TEXT(1,J+1)(2:N-1) = NAME/ /X

Invalid Explanation

'ABC'= CHARS Left element must be a character variable, array element, or
substring reference.

CHARS =25 Expression does not have a character data type.

STRING = 5HBEGIN Expression does not have a character data type. (Hollerith

constants are numeric, not character.)

Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be of the same derived
type. There must be no accessible interface block with defined assignment for objects of this
derived type.

The derived-type assignment is performed as if each component of the expression is assigned to
the corresponding component of the variable. Pointer assignment is performed for pointer
components, and intrinsic assignment is performed for nonpointer components.

Examples
The following example shows derived-type assignment:

4-19

4 Intel Fortran Language Reference

4-20

TYPE DATE
LOGI CAL(1) DAY, MONTH
| NTEGER(2) YEAR

END TYPE DATE

TYPE(DATE) TODAY, THI S EEK(7)

TYPE APPO NTMENT

TYPE(DATE) APP_DATE
END TYPE

TYPE(APPOl NTMVENT) MEETI NG
DOl =1,7

CALL GET_DATE(TODAY)

THI S_VEEK(1) = TODAY
END DO
MEETI NGYAPP_DATE = TODAY

See Also

* “Derived Data Types’
* “Pointer Assignments’

Array Assignment Statements

Array assignment is permitted when the array expression on the right has the same shape as the
array variable on the left, or the expression on theright isa scalar.

If the expression is ascalar, and the variable is an array, the scalar value is assigned to every
element of the array.

If the expression is an array, the variable must also be an array. The array element values of the
expression are assigned (element by element) to corresponding elements of the array variable.

A many-one array section is a vector-valued subscript that has two or more elements with the
same value. In intrinsic assignment, the variable cannot be a many-one array section because the
result of the assignment is undefined.

Examples

In the following example, X and Y are arrays of the same shape:
X=Y

Expressions and Assignment Satements 4

The corresponding elements of Y are assigned to those of X element by element; the first element
of Y isassigned to the first element of X, and so forth. The processor can perform the
element-by-element assignment in any order.

The following example shows a scalar assigned to an array:
B(C+t1:N, O =0

This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be reversed:
REAL A(20) ... A(1:20) = A(20:1:-1)

See Also

e “Arrays’

¢ “WHERE Statement and Construct” for details on masked array assignment
* “FORALL Statement and Construct” for details on element array assignment

Defined Assignments

Defined assignment specifies an assignment operation. It is defined by a subroutine subprogram
containing a generic interface block with the specifier ASSIGNMENT (=). The subroutineis
specified by a SUBROUTINE or ENTRY statement that has two nonoptional dummy arguments.

Defined elemental assignment isindicated by specifying ELEMENTAL in the SUBROUTINE
statement.

The dummy arguments represent the variable and expression, in that order. Therank (and shape, if
either or both are arrays), type, and kind parameters of the variable and expression in the
assignment statement must match those of the corresponding dummy arguments.

The dummy arguments must not both be numeric, or of typelogical or character with the same
kind parameter.

If the variablein an elemental assignment is an array, the defined assignment is performed
element-by-element, in any order, on corresponding elements of the variable and expression. If the
expressionis scalar, itistreated asif it were an array of the same shape as the variable with every
element of the array equal to the scalar value of the expression.

See Also

¢ “Derived Data Types’

® “Subroutines’ for details on subroutine subprograms

* “Defining Generic Assignment” for details on subroutine subprogramsthat define assignment
* “Numeric Expressions’ and “Character Expressions’ for details on intrinsic operations

4-21

4 Intel Fortran Language Reference

Pointer Assignments

4-22

In ordinary assignment involving pointers, the pointer is an alias for its target. In pointer
assignment, the pointer is associated with atarget. If the target is undefined or disassociated, the
pointer acquires the same status as the target. The pointer assignment statement has the following
form:

pointer-object => target
pointer-object
Is avariable name or structure component declared with the POINTER attribute.
target

Isavariable or expression. Its type and kind parameters, and rank must be the same as
pointer-object. It cannot be an array section with a vector subscript.

Rules and Behavior

If the target isavariable, it must have the POINTER or TARGET attribute, or be a subobject
whose parent object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If thetarget is not apointer (it hasthe TARGET attribute), the pointer object is associated with the
target.

If the target is a pointer (it has the POINTER attribute), its status determines the status of the
pointer object, asfollows:

* |f the pointer is associated, the pointer object is associated with the same object as the target.
* |f the pointer is disassociated, the pointer object becomes disassociated.
* |f the pointer is undefined, the pointer object becomes undefined.

A pointer must not be referenced or defined unlessiit is associated with atarget that can be
referenced or defined.

When pointer assignment occurs, any previous association between the pointer object and atarget
is terminated.

Pointers can also be assigned for a pointer structure component by execution of a derived-type
intrinsic assignment statement or a defined assignment statement.

Pointers can also become associated by using the ALLOCATE statement to allocate the pointer.

Pointers can become disassociated by deallocation, nullification of the pointer (using the
DEALLOCATE or NULLIFY statements), or by reference to the NULL intrinsic function.

Examples
The following are examples of pointer assignments:

Expressions and Assignment Satements 4

HOUR => M NUTES(1: 60) ! target is an array

M _YEAR => MY_CARUWEAR I target is a structure conmponent

NEW ROW/RI GHT => CURRENT_ROW ! pointer object is a structure conmponent
PTR => M ! target is a variable

PO NTER_C => NULL () ! reference to NULL intrinsic

The following example shows atarget as a pointer:

I NTEGER, PONTER :: P, N
I NTEGER, TARGET :: M

| NTEGER S

M= 14

N=>M ! Nis associated with M

P=>N ! Pis associated with Mthrough N
S=P+5

Thevalue assigned to Sis 19 (14 + 5).

See Also

e “Arrays’

* “Defined Assignments’
* “NULL”

¢ “POINTER Attribute and Statement” for details on pointers

® Chapter 6, “Dynamic Allocation”, for details on the ALLOCATE, DEALLOCATE, and
NULLIFY statements

®* ‘“Intrinsic Assignments’ for details on derived-type intrinsic assignments

WHERE Statement and Construct

The WHERE statement and construct let you use masked array assignment, which performs an
array operation on selected elements. This kind of assignment applies alogical test to an array on
an element-by-element basis.

The WHERE statement takes the following form:
WHERE (mask-expr 1) assign-stmt
The WHERE construct takes the following form:
[name:] WHERE (mask-expr 1)
[where-body-stnt]...
[EL SE WHERE (mask-expr2) [name]
[where-body-stnt]...]

4-23

4 Intel Fortran Language Reference

4-24

[ELSE WHERE [name]
[where-body-stnt]...]
END WHERE [name]

mask-expr 1, mask-expr2
Arelogical array expressions (called mask expressions).

assign-stmt

Is an assignment statement of the form: array variable = array expression.
name

I's the name of the WHERE construct.

where-body-stmt

Is one of the following:

®* Anassign-stmt
The assignment can be a defined assignment only if the routine implementing the defined
assignment is elemental.

* A WHERE statement or construct

Rules and Behavior

If aconstruct name is specified in a WHERE statement, the same name must appear in the
corresponding END WHERE statement. The same construct name can optionally appear in any
EL SE WHERE statement in the construct. (EL SE WHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being assigned to, and the
expression on the right side, must all be conformable. Also, the assignment statement cannot be a
defined assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be labeled as a branch
target statement.

The following is an example of a WHERE statement:

I NTEGER A, B, C

DI MENSI ON A(5), B(5), C(5)

DATA A /0,1,1,1,0/

DATA B /10, 11, 12,13, 14/

c=-1

WHERE(A .NE. 0) C=B/ A
Theresulting array C contains: —1,11,12,13, and —1.

Expressions and Assignment Satements 4

The assignment statement is only executed for those elements where the mask istrue. Think of the
mask expression as being evauated first into alogical array that has the value true for those
elements where A is positive. Thisarray of trues and falsesis applied to the arrays A, Band C in
the assignment statement. The right sideis only evaluated for elements for which the mask istrue;
assignment on the left side is only performed for those elements for which the mask is true. The
elements for which the mask is false do not get assigned avalue.

In aWHERE construct, the mask expression is evaluated first and only once. Every assignment
statement following the WHERE is executed asif it were aWHERE statement with "mask-expr1*
and every assignment statement following the EL SE WHERE is executed asif it were a WHERE
statement with *.NOT. mask-expr1". If EL SE WHERE specifies "mask-expr2", it is executed as
"(.NOT. mask-expr1) .AND. mask-expr2" during the processing of the EL SE WHERE statement.

You should be careful if the statements have side effects, or modify each other or the mask
expression.
The following is an example of the WHERE construct:
DI MENSI ON PRESSURE(1000), TEMP(1000), PRECI PI TATI ON(1000)
WHERE(PRESSURE . GE. 1.0)
PRESSURE = PRESSURE + 1.0
TEMP = TEMP - 10.0
EL SEWHERE
PREC!I PI TATI ON = . TRUE.
ENDVWHERE
The mask is applied to the arguments of functions on the right side of the assignment if they are
considered to be elemental functions. Only elemental intrinsics are considered elemental
functions. Transformational intrinsics, inquiry intrinsics, and functions or operations defined in
the subprogram are considered to be nonelemental functions.
Consider the following example using LOG, an elemental function:
WHERE(A . GT. 0) B = LOGA)
Themask isappliedto A, and LOG is executed only for the positive values of A. Theresult of the
LOG is assigned to those elements of B where the mask istrue.
Consider the following example using SUM, a nonelementa function:
REAL A, B
DI MENSI ON A(10, 10), B(10)
WHERE(B . GT. 0.0) B = SUMA, DI M1)

Since SUM is nonelemental, it is evaluated fully for al of A. Then, the assignment only happens
for those elements for which the mask evaluated to true.

Consider the following example:

4-25

4 Intel Fortran Language Reference

REAL A, B, C

DI MENSI ON A(10, 10), B(10), C(10)

WHERE(C . GT. 0.0) B = SUMLOZA), DI M1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully regardless of whether they
are elemental or not. In this example, LOG(A) isfully evaluated for all elementsin A even though
LOG iselemental. Notice that the mask is applied to the result of the SUM and to C to determine
the right side. One way of thinking about this is that everything inside the argument list of a
nonelemental function does not use the mask, everything outside does.

See Also

“FORALL Statement and Construct” for details on a generalized form of masked array
assignment

FORALL Statement and Construct

4-26

The FORALL statement and construct is a generalization of the Fortran 95/90 masked array
assignment (WHERE statement and construct). It allows more general array shapesto be assigned,
especially in construct form.

FORALL isafeature of Fortran 95. It takes the following form:
FORALL (triplet-spec [, triplet-spec]...[, mask-expr]) assign-stmt
The FORALL construct takes the following form:
[name:] FORALL (triplet-spec [, triplet-spec]...[, mask-expr])
forall-body-stmt
[forall-body-stmt]...
END FORALL [name]

triplet-spec
Isatriplet specification with the following form:
subscript-name = subscript-1 : subscript-2 [:stride]

The subscript-name must be a scalar of typeinteger. It is valid only within the scope of the
FORALL; its value is undefined on completion of the FORALL.

The subscripts and stride cannot contain areference to any subscript-name in triplet-spec.
The stride cannot be zero. If it is omitted, the default valueis 1.

Evaluation of an expression in atriplet specification must not affect the result of evaluating any
other expression in another triplet specification.

Expressions and Assignment Satements 4

mask-expr

Isalogical array expression (called the mask expression). If it is omitted, the value . TRUE. is
assumed. The mask expression can reference the subscript name in triplet-spec.

assign-stmt

I's an assignment statement or a pointer assignment statement. It may be a scalar or array

assignment statement, or a defined assignment statement. The variable being defined will
normally use each subscript-name in the triplet-spec.

name
Is the name of the FORALL construct.
forall-body-stmt

Is one of the following:

®* Anassign-stmt

* A WHERE statement or construct

The WHERE statement and construct use a mask to make the array assignments (see
“WHERE Statement and Construct”).

* A FORALL statement or construct

Rules and Behavior

If aconstruct name is specified in the FORALL statement, the same name must appear in the
corresponding END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride expressionsin the
triplet specifications, giving a set of values for each subscript name. The FORALL assignment
statement is executed for all combinations of subscript name values for which the mask expression
istrue.

The FORALL assignment statement is executed asiif all expressions (on both sides of the
assignment) are completely evaluated before any part of the left side is changed. Valid values are
assigned to corresponding elements of the array being assigned to. No element of an array can be
assigned a value more than once.

A FORALL construct is executed asiif it were multiple FORALL statements, with the sametriplet
specifications and mask expressions. Each statement in the FORALL body is executed completely
before execution begins on the next FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment statement must be pure.

Pure functions can be used in the mask expression or called directly in a FORALL statement. Pure
subroutines cannot be called directly in a FORALL statement, but can be called from other pure
procedures.

4-27

4 Intel Fortran Language Reference

4-28

Examples

Consider the following:
FORALL(l = 1:N, J = 1:N, A(l, J) .NE. 0.0) B(l, J) = 1.0/ A(l, J)
This statement takes the reciprocal of each nonzero element of array A(1:N, 1:N) and assignsit to

the corresponding element of array B. Elements of A that are zero do not have their reciprocal
taken, and no assignments are made to corresponding elements of B.

Every array assignment statement and WHERE statement can be written asa FORALL statement,
but some FORALL statements cannot be written using just array syntax. For example, the
preceding FORALL statement is equivalent to the following:
WHERE(A /= 0.0) B=1.0/ A
Itisaso equivalent to:
FORALL (I = 1:N, J = 1:N)
WHERE(A(l, J) .NE. 0.0) B(l, J) = 1.0/A(l, J)

END FORALL
However, the following FORALL example cannot be written using just array syntax:
FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)
This statement setsarray element H(l, J) tothevalue1. 0 / REAL(I + J - 1) for valuesof | and
Jbetween 1 and N.
Consider the following:
TYPE MONARCH

| NTECER, PO NTER :: P
END TYPE MONARCH

TYPE(MONARCH) , DI MENSI ON(8) :: PATTERN
| NTEGER, DI MENSI ON(8), TARGET :: OBJECT
FORALL(J=1:8) PATTERN(J) % => OBJECT(1+l EOR(J-1, 2))
ThisFORALL statement causes elements 1 through 8 of array PATTERN to point to elements 3, 4,
1,2,7,8,5, and 6, respectively, of OBJECT. IEOR can be referenced here because it is pure.
The following example shows a FORALL construct:
FORALL(l = 3:N+ 1, J = 3:N + 1)
Cl, J) =, J+2) +Cl, J-2 +Cl +2 3 +Cl -2, 3
o, J) =<1, J)
END FORALL

The assignment to array D uses the values of C computed in the first statement in the construct,
not the values before the construct began execution.

Expressions and Assignment Statements 4

See Also

“Subscript Triplets’

“Pointer Assignments’

“WHERE Statement and Construct”

“Pure Procedures’

4-29

4 Intel Fortran Language Reference

4-30

Soecification Satements 5

A specification statement is a nonexecutable statement that declares the attributes of data objects.
In Fortran 95/90, many of the attributes that can be defined in specification statements can also be
optionally specified in type declaration statements.
This chapter contains information on the following topics:
® “Type Declaration Statements’
Explicitly specifies the properties (for example: data type, rank, and extent) of data objects.
e “ALLOCATABLE Attribute and Statement”
Specifiesalist of array names that are allocatable (have a deferred-shape).
¢ “AUTOMATIC and STATIC Attributes and Statements”
Control the storage allocation of variables in subprograms.
* “COMMON Statement”
Defines one or more contiguous areas, or blocks, of physical storage (called common blocks).
* “DATA Statement”
Assignsinitial values to variables before program execution.
e “DIMENSION Attribute and Statement”
Specifies that an object is an array, and defines the shape of the array.
e "EQUIVALENCE Statement”
Specifies that a storage areais shared by two or more objectsin a program unit.
e “EXTERNAL Attribute and Statement”
Allows external (user-supplied) procedures to be used as arguments to other subprograms.
e “IMPLICIT Statement”
Overrides the implicit data type of names.
¢ “INTENT Attribute and Statement”
Specifies the intended use of a dummy argument.

5 Intel Fortran Language Reference

* “INTRINSIC Attribute and Statement”
Allows intrinsic procedures to be used as arguments to subprograms.
* “NAMELIST Statement”

Associates a name with alist of variables. This group name can be referenced in some
input/output operations.

* “OPTIONAL Attribute and Statement”
Allows a procedure reference to omit arguments.
e “PARAMETER Attribute and Statement”
Defines a named constant.
¢ “POINTER Attribute and Statement”
Specifies that an object is a pointer.
e “PRIVATE and PUBLIC Attributes and Statements’
Declare the accessibility of entitiesin amodule.
* “SAVE Attribute and Statement”

Causes the definition and status of objects to be retained after the subprogram in which they
are declared compl etes execution.

* “TARGET Attribute and Statement”
Specifies a pointer target.
* “VOLATILE Attribute and Statement”
Prevents optimizations from being performed on specified objects.

See Also

Chapter 8, “ Program Units and Procedures’, for details on BLOCK DATA and PROGRAM
statements

Type Declaration Statements

5-2

A type declaration statement explicitly specifies the properties of data objects or functions.
The general form of atype declaration statement follows:
type|[, att]... ;] v [/c-list/] [, v [/c-list/]]...
type
Is one of the following data type specifiers:
BYTE DOUBLE COMPLEX
INTEGER[([KIND=]K)] CHARACTER[([LEN=]n)[,[KIND=]K]]

Secification Satements 5

REAL[([KIND=]K)] LOGICAL[([KIND=]k)]
DOUBLE PRECISION TY PE (derived-type-name)
COMPLEX[([KIND=]K)]

In the optional kind selector "([KIND=]K) ", k isthe kind parameter. It must be an acceptable kind
parameter for that datatype. If the kind selector is not present, entities declared are of default type.
(For alist of the valid noncharacter data types, see Table 5-2.)

Kind parameters for intrinsic numeric and logical datatypes can also be specified using the *n
format, where n is the length (in bytes) of the entity; for example, INTEGER*4.

att
Is one of the following attribute specifiers:

ALLOCATABLE POINTER
AUTOMATIC PRIVATE!
DIMENSION PUBLIC!
EXTERNAL SAVE
INTENT STATIC
INTRINSIC TARGET
OPTIONAL VOLATILE
PARAMETER

1. These are access specifiers.

Y
I's the name of a data object or function. It can optionally be followed by:
* Anarray specification, if the object is an array.
In afunction declaration, an array must be a deferred-shape array if it has the POINTER
attribute; otherwise, it must be an explicit-shape array.
® A character length, if the object is of type character.
* Aninitialization expression or, for pointer objects, => NULL().
A function name must be the name of an intrinsic function, external function, function dummy
procedure, or statement function.
c-list
Isalist of constants, asin a DATA statement. If v isthe name of a constant or an initialization
expression, the c-list cannot be present.

5 Intel Fortran Language Reference

54

The c-list cannot specify more than one value unlessit initializes an array. When initializing an
array, the c-list must contain avalue for every element in the array.

Rules and Behavior
Type declaration statements must precede all executable statements.

In most cases, atype declaration statement overrides (or confirms) the implicit type of an entity.
However, avariable that appearsin a DATA statement and is typed implicitly can appear in a
subsequent type declaration only if that declaration confirms the implicit typing.

The double colon separator (::) isrequired only if the declaration contains an attribute specifier or
initialization; otherwiseit is optional.

If att appears, c-list cannot be specified; for example:

I NTEGER | [2/ I Valid

I NTEGER, SAVE :: | [2/ I Invalid

The same attribute must not appear more than once in a given type declaration statement, and an
entity cannot be given the same attribute more than once in a scoping unit.

If the PARAMETER attribute is specified, the declaration must contain an initialization
expression.

If =>NULL() isspecified for apointer, itsinitial association status is disassociated.

A variable (or variable subobject) can only be initialized once in an executable program.

If a declaration contains an initialization expression, but no PARAMETER attribute is specified,

the object isavariable whose valueisinitialy defined. The object becomes defined with the value
determined from the initialization expression according to the rules of intrinsic assignment.

The presence of initialization implies that the name of the object is saved, except for objectsin

named common blocks or objects with the PARAMETER attribute.

The following objects cannot be initialized in atype declaration statement:

e A dummy argument

® A function result

®* Anobject in anamed common block (unless the type declaration isin ablock data program
unit)

®* Anoabject in blank common

* Analocatable array

®* Anexternal name

® Anintrinsic name

®* Anautomatic object

®* An object that hasthe AUTOMATIC attribute

Secification Satements 5

An object can have more than one attribute. Table 5-1 lists the compatibl e attributes.

Table 5-1 Compatible Attributes

Attribute Compatible with;

ALLOCATABLE AUTOMATIC, DIMENSION?, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET, VOLATILE

AUTOMATIC ALLOCATABLE, DIMENSION, POINTER, TARGET, VOLATILE

DIMENSION ALLOCATABLE, AUTOMATIC, INTENT, OPTIONAL, PARAMETER,
POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET, VOLATILE

EXTERNAL OPTIONAL, PRIVATE, PUBLIC

INTENT DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL DIMENSION, EXTERNAL, INTENT, POINTER, TARGET, VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER AUTOMATIC, DIMENSION?, OPTIONAL, PRIVATE, PUBLIC, SAVE,
STATIC, VOLATILE

PRIVATE ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

PUBLIC ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

SAVE ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, SAVE,
TARGET, VOLATILE

STATIC ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, SAVE,
TARGET, VOLATILE

TARGET ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT, OPTIONAL,
PRIVATE, PUBLIC, SAVE, STATIC, VOLATILE

VOLATILE ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT, OPTIONAL,

POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET

1. With deferred shape

Examples

The following show valid type declaration statements:
DOUBLE PRECI SI ON B(6)

| NTEGER(KI ND=2) |

REAL(KI ND=4) X, Y

REAL(4) X, Y

LOG CAL, DI MENSI ON(10,10) :: ARRAY_A, ARRAY B

5-5

5 Intel Fortran Language Reference

| NTEGER, PARANMETER :: SMALLEST = SELECTED REAL_KI NI 6,
REAL(KIND (0.0)) M

COVPLEX(KIND=8) :: D

TYPE(EMPLOYEE) :: MANAGER

REAL, INTRINSIC :: COS CHARACTER(15) PROVPT
CHARACTER* 12, SAVE :: HELLO MSG

| NTEGER COUNT, MATRI X(4,4), SUM

LOd CAL*2 SW TCH

REAL :: X =2.0

TYPE (NUM, PO NTER :: FIRST => NULL()

See Also

* ‘“Derived Data Types’

* “Implicit Typing Rules’

* “DATA Statement”

* “Initialization Expressions’

70)

* ‘“Intrinsic Data Types’ for details on specific kind parameters of intrinsic data types

Declaration Statements for Noncharacter Types

Table 5-2 shows the data types that can appear in noncharacter type declaration statements.

Table 5-2 Noncharacter Data Types

5-6

BYTE?

LOGICAL?

LOGICAL(1) (or LOGICAL*1
LOGICAL(2) (or LOGICAL*2
LOGICAL(4) (or LOGICAL*4
LOGICAL(8) (or LOGICAL*8
INTEGER3

INTEGER(1) (or INTEGER*1)
INTEGER(2) (or INTEGER*2)
INTEGER(4) (or INTEGER*4)
INTEGER(8) (or INTEGER*8)
REAL*

REAL(4) (or REAL*4)

O — ~—

Secification Satements 5

Table 5-2 Noncharacter Data Types

DOUBLE PRECISION (REAL(8) or REAL*8)
REAL(16) (or REAL*16)

COMPLEX®

COMPLEX(4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX(8) or COMPLEX*16)
COMPLEX(16) (or COMPLEX*32)

. Same as INTEGER(1).

. This is treated as default logical.

. This is treated as default integer.

. This is treated as default real.

. This is treated as default complex.

a b~ W NP

In noncharacter type declaration statements, you can optionally specify the name of the data object
or function as v*n, where n is the length (in bytes) of v. The length specified overrides the length
implied by the data type.

The value for n must be avalid length for the type of v (see Table 15-2). The type specifiers
BYTE, DOUBLE PRECISION, and DOUBLE COMPLEX have one valid length, so then
specifier isinvalid for them.

For an array specification, the n must be placed immediately following the array name; for
example, in an INTEGER declaration statement, IVEC*2(10) isan INTEGER(2) array of 10
elements.

Examples

In a noncharacter type declaration statement, a subsequent kind parameter overrides any initial
kind parameter. For example, consider the following statements:

INTEGER(2) |, J, K, M2*4, Q |VEC 4(10)

REAL(8) WK1, WKZ, WK3*4, WK5, WK6*4

REAL(8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M 12*4 and | VEC* 4 override the KIND=2 specification. In the second

statement, WX 3*4 and WX 6*4 override the KIND=8 specification. In the third statement,
QARRAY isinitialized with implicit conversion of the REAL (4) constantsto a REAL (8) data

type.

See Also

* “Type Declaration Statements’ for details on the general form and rules for type declaration
statements

5-7

5 Intel Fortran Language Reference

® Your user's guide for details on compiler options that can affect the defaults for numeric and
logical datatypes

Declaration Statements for Character Types

5-8

A CHARACTER type specifier can beimmediately followed by the length of the character object
or function. It takes one of the following forms:
Keyword Forms

CHARACTER [([LEN=]len)]

CHARACTER [([LEN=]len [, [KIND=]n])]

CHARACTER [(KIND=n [, LEN=len])]

Nonkeyword Form
CHARACTER*Ien[,]
len

Is one of the following:

® Inkeyword forms
Thelen is a specification expression or an asterisk (*). If no length is specified, the default
lengthis 1.
If the length evaluates to a negative value, the length of the character entity is zero.

® Innonkeyword form
Thelen isaspecification expression or an asterisk enclosed in parentheses, or a scalar integer
literal constant (with no kind parameter). The commais permitted only if no double colon (::)
appears in the type declaration statement.
Thisform can aso (optionally) be specified following the name of the data object or function
(v*len). In this case, the length specified overrides any length following the CHARACTER
type specifier.

The largest valid value for len in both formsis 2**31-1 on | A-32 processors; 2**63—1 on Intel®

Itanium® processors. Negative values are treated as zero.

n

Isascalar integer initialization expression specifying avalid kind parameter. Currently the only
kind availableis 1.

Rules and Behavior

An automatic object can appear in a character declaration. The object cannot be a dummy
argument, and its length must be declared with a specification expression that is not a constant
expression.

Secification Satements 5

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

When an asterisk length specification * (*) is used for a function name or dummy argument, it
assumes the length of the corresponding function reference or actual argument. Similarly, when an
asterisk length specification is used for a named constant, the name assumes the length of the
actual constant it represents. For example, STRING assumes a 9-byte length in the following
statements:

CHARACTER* (*) STRI NG

PARAVETER (STRING = "VALUE | S: ")

A function name must not be declared with a* length if the function is an internal or module
function, or if it is array-valued, pointer-valued, recursive, or pure.

The form CHARACTER* (*) is an obsolescent feature in Fortran 95.

Examples

The following example declares an array NAMES containing 100 32-character elements, an array
SOCSEC containing 100 9-character elements, and avariable NAMETY that is 10 characterslong
and has an initial value of ' ABCDEFGHI J' .

CHARACTER* 32 NAMES(100) , SOCSEC(100) *9, NAMETY* 10 /* ABCDEFGHI J' /

The following example includes a CHARACTER statement declaring two 8-character variables,
LAST and FIRST.

| NTEGER, PARANMETER :: LENGTH=4

CHARACTER* (4+LENGTH) LAST, FI RST

The following example shows a CHARACTER statement declaring an array LETTER containing
26 one-character elements. It also declares a dummy argument BUBBLE that has a passed length
defined by the calling program.

SUBROUTI NE S1(BUBBLE)

CHARACTER LETTER(26), BUBBLE*(*)

In the following example, NAME2 is an automatic object:

SUBROUTI NE AUTO_NANME(NAVE1)

CHARACTER(LEN = *) NAVEL
CHARACTER(LEN = LEN(NAME1)) NAVE2

See Also
* “Type Declaration Statements” for details on the general form and rules for type declaration
statements

®* “Specification of Data Type” and “Assumed-L ength Character Arguments’ for details on
asterisk length specifications

5-9

5 Intel Fortran Language Reference

* Appendix A, “Deleted and Obsolescent L anguage Features”, for details on obsol escent
featuresin Fortran 95

Declaration Statements for Derived Types
The derived-type (TY PE) declaration statement specifies the properties of objects and functions of
derived (user-defined) type.
The derived type must be defined before you can specify objects of that typein a TY PE type
declaration statement.
An object of derived type must not have the PUBLIC attribute if its type is PRIVATE.

A structure constructor specifies values for derived-type objects.

Examples

The following are examples of derived-type declaration statements:
TYPE(EMPLOYEE) CONTRACT

TYPE(SETS), DI MENSI ON(:,:), ALLOCATABLE :: SUBSET_ 1
The following example shows a public type with private components:

TYPE LI ST_I TEM5
PRI VATE

TYPE(LI ST_I TEMS), PO NTER :: NEXT, PREVI QUS
END TYPE LI ST_I TEMS

See Also

* ‘“Derived Data Types’

* “Useand Host Association”

* “PRIVATE and PUBLIC Attributes and Statements’
® “Structure Constructors’

* “TypeDeclaration Statements’ for details on the general form and rules for type declaration
statements

Declaration Statements for Arrays

An array declaration (or array declarator) declares the shape of an array. It takes the following
form:

(a-spec)

5-10

Secification Satements 5

a-spec
Is one of the following array specifications.

* “Explicit-Shape Specifications’

* “Assumed-Shape Specifications’

® “Assumed-Size Specifications’

* “Deferred-Shape Specifications’

The array specification can be appended to the name of the array when the array is declared.

Examples

The following examples show array declarations:
SUBRQUTI NE SUB(N, C, D, 2)
REAL, DI MENSI ON(N, 15) :: | ARRY I An explicit-shape array
REAL C(:), D(0:) ! An assuned-shape array
REAL, PO NTER :: B(:,:) I A deferred-shape array pointer
REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array
REAL :: Z(N, *) I An assuned-size array

See Also

“Type Declaration Statements” for details on the general form and rules for type declaration
statements

Explicit-Shape Specifications

An explicit-shape array is declared with explicit values for the bounds in each dimension of the
array. An explicit-shape specification takes the following form:

([dl:] duf, [dI:] du]...)
dl

Is aspecification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.
du

I's a specification expression indicating the upper bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

The bounds can be specified as constant or nonconstant expressions, as follows:

5-11

5 Intel Fortran Language Reference

5-12

* |f the bounds are constant expressions, the subscript range of the array in adimension isthe
set of integer values between and including the lower and upper bounds. If the lower bound is
greater than the upper bound, the range is empty, the extent in that dimension is zero, and the
array has asize of zero.

¢ |f the bounds are nonconstant expressions, the array must be declared in a procedure. The
bounds can have different values each time the procedure is executed, since they are
determined when the procedure is entered.

The bounds are not affected by any redefinition or undefinition of the variablesin the
specification expression that occurs while the procedure is executing.

The following explicit-shape arrays can specify nonconstant bounds:
— Anautomatic array (the array isalocal variable)
— Anadjustable array (the array is a dummy argument to a subprogram)

The following are examples of explicit-shape specifications:
INTEGER 1(3:8, -2:5) ! Rank-two array; range of dinmension one is
! 3to 8, range of dinmension two is -2 to 5
SUBROUTI NE SUB(A, B, C
INTEGER :: B, C
REAL, DIMENSION(B: C) :: A | Rank-one array; range is Bto C

Automatic Arrays

An automatic array is an explicit-shape array that isalocal variable. Automatic arrays are only
allowed in function and subroutine subprograms, and are declared in the specification part of the
subprogram. At least one bound of an automatic array must be a nonconstant specification
expression. The bounds are determined when the subprogram is called.
The following example shows automatic arrays:
SUBROUTI NE SUB1 (A, B)

I NTEGER A, B, LOWNER

COVMON / BOUND/ LOVNER

| NTEGER AUTO ARRAY1(B)
| NTEGER AUTO_ARRAY2(LOVER: B)

| NTEGER AUTO ARRAY3(20, B*A/2)
END SUBROUTI NE

Secification Satements 5

Adjustable Arrays

An adjustable array is an explicit-shape array that is adummy argument to a subprogram. At least
one bound of an adjustable array must be a nonconstant specification expression. The bounds are
determined when the subprogram is called.

The array specification can contain integer variables that are either dummy arguments or variables
in acommon block.

When the subprogram is entered, each dummy argument specified in the bounds must be
associated with an actual argument. If the specification includes a variable in acommon block, the
variable must have a defined value. The array specification is evaluated using the values of the
actual arguments, aswell as any constants or common block variables that appear in the
specification.

The size of the adjustable array must be less than or equal to the size of the array that isits
corresponding actual argument.

To avoid possible errors in subscript evaluation, make sure that the bounds expressions used to
declare multidimensional adjustable arrays match the bounds as declared by the caller.

In the following example, the function computes the sum of the elements of arank-two array.
Notice how the dummy arguments M and N control the iteration:
FUNCTI ON THE_SUMA, M N)
DI MENSI ON A(M N)
SUMX = 0.0
DOJ =1, N
DOl =1, M
SUMX = SUMK + A(l, J)
END DO
END DO
THE_SUM = SUMX
END FUNCTI ON

The following are examples of callson THE_SUM:

DI MENSI ON A1(10, 35), A2(3,56)

SUML = THE_SUM A1, 10, 35)

SUMR = THE_SUM A2, 3, 56)

The following exampl e shows how the array bounds determined when the procedureis entered do
not change during execution:

DI MENSI ON ARRAY(9, 5)

L=29

M=5

5-13

5 Intel Fortran Language Reference

5-14

CALL SUB(ARRAY, L, M
END

SUBROUTI NE SUB(X, I, J)
DI MENSI ON X(-1/2:1/2,J)
X(1/2,3) = 999
J=1
| =2
END

The assignmentsto | and Jdo not affect the declaration of adjustable array X as X(—4:4,5) on entry
to subroutine SUB.

See Also
“ Specification Expressions’

Assumed-Shape Specifications

An assumed-shape array is adummy argument array that assumes the shape of its associated
actual argument array. An assumed-shape specification takes the following form:

QAL [0
dl

I's a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.
Therank of the array is the number of colons (:) specified.

The value of the upper bound is the extent of the corresponding dimension of the associated actual
argument array + lower-bound — 1.

The following is an example of an assumed-shape specification:
| NTERFACE
SUBROUTI NE SUB(M)
I NTEGER M:, 1:, 5:)
END SUBROUTI NE
END | NTERFACE
I NTEGER L(20, 5:25, 10)
CALL SUB(L)

Secification Satements 5

SUBROUTI NE SUB(M
I NTEGER M :, 1., 5:!)
END SUBROUTI NE
Array M has the same extents as array L, but array M has bounds (1:20, 1:21, 5:14).

Note that an explicit interface is required when calling aroutine that expects an assumed-shape or
pointer array.

Assumed-Size Specifications
An assumed-size array isadummy argument array that assumes the size (only) of its associated
actual argument array; the rank and extents can differ for the actual and dummy arrays. An
assumed-size specification takes the following form:
([expli-shape-spec,] [expli-shape-spec)]... [dI:] *)
expli-shape-spec
I's an explicit-shape specification (see “ Explicit-Shape Specifications’).
d

I's a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type. <p> If
the lower bound is not specified, it is assumed to be 1.

*

I's the upper bound of the last dimension.

Therank of the array is the number of explicit-shape specifications plus 1.

The size of the array is assumed from the actual argument associated with the assumed-size

dummy array as follows:

¢ |f theactua argument is an array of type other than default character, the size of the dummy
array isthe size of the actual array.

* |f theactual argument is an array element of type other than default character, the size of the
dummy array is a + 1 - s, wheres isthe subscript order value and a isthe size of the
actual array.

¢ |f theactual argument is a default character array, array element, or array element substring,
and it begins at character storage unit b of an array with n character storage units, the size of
the dummy array is as follows:

MAX(INT((n + 1 - b)/y), 0)
They isthe length of an element of the dummy array.
An assumed-size array can only be used as awhole array reference in the following cases:

®* Whenitisan actua argument in a procedure reference that does not require the shape

5-15

5 Intel Fortran Language Reference

5-16

®* [ntheintrinsic function LBOUND

Because the actua size of an assumed-size array is unknown, an assumed-size array cannot be
used as any of the following in an /O statement:
® Anarray nameinthel/O list
® A unitidentifier for an interna file
* A run-timeformat specifier
The following is an example of an assumed-size specification:
SUBROUTI NE SUB(A, N)
REAL A, N
DI MENSI ON A(1: N, *)

See Also
“Array Elements’ for details on array element order

Deferred-Shape Specifications

A deferred-shape array is an array pointer or an allocatable array.

The array specification contains acolon (:) for each dimension of the array. No bounds are
specified. The bounds (and shape) of alocatable arrays and array pointers are determined when
spaceis alocated for the array during program execution.

An array pointer is an array declared with the POINTER attribute. Its bounds and shape are

determined when it is associated with atarget by pointer assignment, or when the pointer is
allocated by execution of an ALLOCATE statement.

In pointer assignment, the lower bound of each dimension of the array pointer is the result of the
LBOUND intrinsic function applied to the corresponding dimension of the target. The upper
bound of each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.

A pointer dummy argument can be associated only with a pointer actual argument. An actual
argument that is a pointer can be associated with a nonpointer dummy argument.

A function result can be declared to have the pointer attribute.

An allocatable array is declared with the ALLOCATABLE attribute. Its bounds and shape are
determined when the array is allocated by execution of an ALLOCATE statement.

The following are examples of deferred-shape specifications:

REAL, ALLOCATABLE :: A(:,:) ! All ocatable array

REAL, PONTER :: C(:), D (:,:,:) I Array pointers

Secification Satements 5

See Also

* “POINTER Attribute and Statement”

e “ALLOCATABLE Attribute and Statement”
* “ALLOCATE Statement”

* “Pointer Assignments’

* “| BOUND”

* “UBOUND”

ALLOCATABLE Attribute and Statement

The ALLOCATABLE attribute specifiesthat an array isan allocatable array with a deferred shape.
The shape of an alocatable array is determined when an ALLOCATE statement is executed,
dynamically allocating space for the array.

The ALLOCATABLE attribute can be specified in atype declaration statement or an
ALLOCATABLE statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is] ALLOCATABLE[, att-Is] :: a[(d-spec)] [, a[(d-spec)]]...
Statement:
ALLOCATABLE [::] a[(d-spec)] [, a[(d-spec)]]...
type
|s a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
a
Isthe name of the allocatable array; it must not be adummy argument or function result.
d-spec
I's a deferred-shape specification (: [, :]...). Each colon represents a dimension of the array.

Rules and Behavior

If the array is given the DIMENSION attribute elsewhere in the program, it must be declared as a
deferred-shape array.

When the allocatable array is no longer needed, it can be deallocated by execution of a
DEALLOCATE statement.

5-17

5 Intel Fortran Language Reference

An dlocatable array cannot be specifiedinaCOMMON, EQUIVALENCE, DATA, or
NAMELIST statement.

Allocatable arrays are not saved by default. If you want to retain the values of an allocatable array
across procedure calls, you must specify the SAVE attribute for the array.

Examples

The following example shows atype declaration statement specifying the ALLOCATABLE
attribute:

REAL, ALLOCATABLE :: Z(:, :, :)

The following is an example of the ALLOCATABLE statement:
REAL A, B(:) ALLOCATABLE :: A(:,:), B

See Also

* “Type Declaration Statements”

e “ALLOCATE Statement”

* “DEALLOCATE Statement”

* “Allocation of Allocatable Arrays’ for details on allocation status
Table 5-1 for details on compatible attributes

AUTOMATIC and STATIC Attributes and Statements
The AUTOMATIC and STATIC attributes control the storage allocation of variablesin
subprograms.

The AUTOMATIC and STATIC attributes can be specified in atype declaration statement or an
AUTOMATIC or STATIC statement, and take one of the following forms:

Type Declaration Statement:
type, [att-Is] AUTOMATIC [, att-Is] :: v [, V]...
type, [att-1s,] STATIC [, att-Is] :: v [, v]...
Statement:
AUTOMATIC V[, V]...
STATIC V[, V]...
type
Is a data type specifier.
att-Is
Isan optional list of attribute specifiers.

5-18

Secification Satements 5

v
Is the name of avariable or an array specification. It can be of any type.

Rules and Behavior

AUTOMATIC and STATIC declarations only affect how datais allocated in storage, asfollows:

®* A variabledeclared as AUTOMATIC and alocated in memory resides in the stack storage
area.

® A variable declared as STATIC and allocated in memory resides in the static storage area.

If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE
attribute.

Automatic variables can reduce memory use because only the variables currently being used are
allocated to memory.

Automatic variables allow possible recursion. With recursion, a subprogram can call itself
(directly or indirectly), and resulting values are available upon a subsequent call or return to the
subprogram. For recursion to occur, RECURSIV E must be specified in one of the following ways:
®* AsakeywordinaFUNCTION or SUBROUTINE statement

®* Asacompiler option

® Asanoptioninan OPTIONS statement

By default, the compiler allocates local variables of non-recursive subprograms, except for
alocatable arrays, in the static storage area. The compiler may choose to allocate avariable in
temporary (stack or register) storage if it notices that the variable is always defined before use.
Appropriate use of the SAVE attribute can prevent compiler warningsif avariableisused beforeit
is defined.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE (in
one of the ways mentioned above).

To override any compiler option that may affect variables, explicitly specify the variables as
AUTOMATIC or STATIC.

% NOTE. Variables that are data-initialized, and variablesin COMMON and
= SAVE statements are always static. Thisis regardless of whether a compiler
option specifies recursion.

A variable cannot be specified as AUTOMATIC or STATIC more than once in the same scoping
unit.

5-19

5 Intel Fortran Language Reference

If the variableis a pointer, AUTOMATIC or STATIC apply only to the pointer itself, not to any

associated target.
Some variables cannot be specified as AUTOMATIC or STATIC. The following table shows these
restrictions:

Variable AUTOMATIC STATIC

Dummy argument No No

Automatic object No No

Common block item No Yes

Use-associated item No No

Function result No No

Component of a derived type No No

A variable can be specified with both the STATIC and SAVE attributes.
If avariableisin amodul€e's outer scope, it can be specified as STATIC, but not as AUTOMATIC.

Examples

The following examples show type declaration statements specifying the AUTOMATIC and
STATIC attributes:

REAL, AUTOVATIC :: A B, C

| NTEGER, STATIC :: ARRAY_A

The following example shows an AUTOMATIC and a STATIC statement:

CONTAI NS
| NTEGER FUNCTI ON REDO_FUNC
INTEGER I, J(10), K
REAL C, D, E(30)
AUTOMATI C |, J, K(20)
STATICC, D, E

END FUNCTI ON
See Also

* “Type Declaration Statements’
* “OPTIONS Statement”

5-20

Secification Satements 5

* “SAVE Attribute and Statement”

* “Functions, Subroutines, and Statement Functions’ for details on subprograms
* “Recursive Procedures’ for details on specifying recursive subprograms

® Table5-1 for details on compatible attributes

* “POINTER Attribute and Statement” for details on pointers

® “Modulesand Module Procedures’ for details on modules

® Your user’'sguide for details on compiler options

COMMON Statement

A COMMON statement defines one or more contiguous areas, or blocks, of physical storage
(called common blocks) that can be accessed by any of the scoping unitsin an executable
program. COMMON statements also define the order in which variables and arrays are stored in
each common block, which can prevent misaligned data items.

Common blocks can be named or unnamed (a blank common).
The COMMON statement takes the following form:
COMMON [/[cname]/] var-list [[,] /[cname]/ var-list]...
chame
I's the name of the common block. The name can be omitted for blank common (//).
var-list
Isalist of variable names, separated by commas.

The variable must not be adummy argument, allocatable array, automatic object, function,
function result, or entry to a procedure. It must not have the PARAMETER attribute. If an object
of derived typeis specified, it must be a sequence type.

Rules and Behavior

A common block isaglobal entity, and must not have the same name as any other global entity in
the program, such as a subroutine or function.

Any common block name (or blank common) can appear more than once in one or more
COMMON statements in a program unit. The list following each successive appearance of the
same common block name is treated as a continuation of the list for the block associated with that
name.

A variable can appear in only one common block within a scoping unit.

5-21

5 Intel Fortran Language Reference

5-22

If an array is specified, it can be followed by an explicit-shape array specification, each bound of
which must be a constant specification expression. Such an array must not have the POINTER
attribute.

A pointer can only be associated with pointers of the same type and kind parameters, and rank.

An object with the TARGET attribute can only be associated with another object with the
TARGET attribute and the same type and kind parameters.

A nonpointer can only be associated with another nonpointer, but association depends on their
types, asfollows:

Type of Variable Type of Associated Variable

1 2

Intrinsic numeric™ or numeric sequence Can be of any of these types

Default character or character sequence2

Can be of either of these types
Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

1. Default integer, default real, double precision real, default complex, double complex, or default logical.

2. If an object of numeric sequence or character sequence type appears in a common block, it is as if the individual components were
enumerated directly in the common list.

So, variables can be associated if they are of different numeric type. For example, the following is
valid:

| NTEGER A(20)

REAL Y(20)

COVMMON / QUANTA! A, Y

When common blocks from different program units have the same name, they share the same
storage area when the units are combined into an executable program.

Entities are assigned storage in common blocks on aone-for-one basis. So, the datatype of entities
assigned by aCOMMON statement in one program unit should agree with the data type of entities
placed in acommon block by another program unit. For example:

Program Unit A Program Unit B
COMMON CENTS INTEGER(2) MONEY
COMMON MONEY

When these program units are combined into an executable program, incorrect results can occur if
the 2-byteinteger variable MONEY is made to correspond to the lower-addressed two bytes of the
real variable CENTS.

Secification Satements 5

Named common blocks must be declared to have the same size in each program unit. Blank
common can have different lengths in different program units.

% NOTE. If acommon blockisinitialized by a DATA statement, the module

e containing the initialization must declare the common block to be its maximum
defined length. Thislimitation does not apply if you compile all source modules
together.

Examples

In the following example, the COMMON statement in the main program puts HEAT and X in
blank common, and KILO and Q in a named common block, BLK 1:

Main Program Subprogram
COMMON HEAT, X /BLK1/KILO, Q SUBROUTINE FIGURE
COMMON /BLK1/LIMA, R / /ALFA,BET

CALL FIGURE RETURN
END

The COMMON statement in the subroutine makes ALFA and BET share the same storage
location as HEAT and X in blank common. It makes LIMA and R share the same storage location
asKILOand Qin BLK1.

The following example shows how a COMMON statement can be used to declare arrays:
COWON / M XED / SPOTTED(100), STRI PED(50, 50)

See Also

® “Specification Expressions’

* “Storage Association”

* “Derived Data Types’

e "EQUIVALENCE Statement”

* “EQUIVALENCE and COMMON Interaction”

® Your user’'sguide for details on aignment of dataitemsin common blocks

5-23

5 Intel Fortran Language Reference

DATA Statement

5-24

The DATA statement assignsinitial values to variables before program execution. It takes the
following form:

DATA var-list /c-list/[[,] var-list /c-list/]...
var-list
Isalist of variables or implied-DO lists, separated by commas.
Subscript expressions and expressions in substring references must be initialization expressions.
Animplied-DO list in a DATA statement takes the following form:
(do-list, var = exprl, expr2 [, expr3])
do-list
Isalist of one or more array elements, substrings, scalar structure components, or implied-DO

lists, separated by commas. Any array elements or scalar structure components must not have a
constant parent.

var
Is the name of a scalar integer variable (the implied-DO variable).
expr

Are scaar integer expressions. The expressions can contain variables of other implied-DO lists
that have thisimplied-DO list within their ranges.

c-list

Isalist of constants (or names of constants), or for pointer objects, NULL(); constants must be
separated by commas. If the constant is a structure constructor, each component must be an
initialization expression. If the constant isin binary, octal, or hexadecimal form, the corresponding
object must be of type integer.

A constant can be specified in the form r* constant, where r is arepeat specification. Itisa
nonnegative scalar integer constant (with no kind parameter). If it is a named constant, it must
have been declared previously in the scoping unit or made accessible through use or host
association. If r isomitted, it is assumed to be 1.

Rules and Behavior

A variable can beinitialized only once in an executable program. A variable that appearsin a
DATA statement and is typed implicitly can appear in a subsequent type declaration only if that
declaration confirms the implicit typing.

The number of constantsin c-list must equal the number of variablesin var-list. The constants are
assigned to the variables in the order in which they appear (from left to right).

Secification Satements 5

The following objects cannot be initialized in a DATA statement:

A dummy argument

A function

A function result

An automatic object

An alocatable array

A variable that is accessible by use or host association

A variable in anamed common block (unless the DATA statement isin ablock data program
unit)

A variable in blank common

Except for variablesin named COMMON blocks, a named variable has the SAVE attribute if any
part of itisinitialized in aDATA statement. You can confirm this property by specifying the
variable in a SAVE statement or atype declaration statement containing the SAVE attribute.

When an unsubscripted array name appearsin a DATA statement, values are assigned to every
element of that array in the order of subscript progression. The associated constant list must
contain enough valuesto fill the array.

Array element values can be initialized in three ways. by name, by element, or by an implied-DO
list (interpreted in the same way as a DO construct).

The following conversion rules and restrictions apply to variable and constant list items:

If the constant and the variable are both of numeric type, the following conversion occurs:

— The constant value is converted to the data type of the variable being initialized, if
necessary.

— When abinary, octal, or hexadecimal constant is assigned to avariable or array element,
the number of digitsthat can be assigned depends on the data type of the dataitem. If the
constant contains fewer digits than the capacity of the variable or array element, the
constant is extended on the left with zeros. If the constant contains more digits than can
be stored, the constant is truncated on the | eft.

If the constant and the variable are both of character type, the following conversion occurs:

— If thelength of the constant isless than the length of the variable, the rightmost character
positions of the variable areinitialized with blank characters.

— If thelength of the constant is greater than the length of the variable, the character
constant is truncated on the right.

If the constant is of numeric type and the variable is of character type, the following

restrictions apply:

— The character variable must have alength of one character.

5-25

5 Intel Fortran Language Reference

— The constant must be an integer, binary, octal, or hexadecimal constant, and must have a
value in the range O through 255.

When the constant and variable conform to these restrictions, the variableisinitialized with

the character that has the ASCII code specified by the constant. (Thisletsyou initialize a

character object to any 8-bit ASCII code.)

* |f the constant isaHollerith or character constant, and the variable is a numeric variable or
numeric array element, the number of characters that can be assigned depends on the data
type of the data item.

If the Hollerith or character constant contains fewer characters than the capacity of the
variable or array element, the constant is extended on the right with blank characters. If the
constant contains more characters than can be stored, the constant is truncated on the right.

Examples
The following example shows the three ways that DATA statements can initialize array element
values:

DI MENSI ON A(10, 10)

DATA A/ 100*1. 0/ ! initialization by name

DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by el ement

DATA ((A(1,J), 1=1,5,2), J=1,5) /15*1.0/ ! initialization by inplied-DO Ilist

The following example shows DATA statements containing structure components:
TYPE EMPLOYEE
I NTEGER I D
CHARACTER(LEN=40) NAME
END TYPE EMPLOYEE
TYPE(EMPLOYEE) MAN _NAME, CON_NAME
DATA MAN NAMVE / EMPLOYEE(417, 'Henry Adans’) /
DATA CON_NAME% D, CON_NAVEYWNAME /891, "David Janmes "/
In the following example, the first DATA statement assigns zero to all 10 elements of array A, and
four asterisks followed by two blanks to the character variable STARS:
| NTEGER A(10), B(10)
CHARACTER BELL, TAB, LF, FF, STARS*6
DATA A, STARS /10*0Q, " ***** [
DATA BELL, TAB, LF, FF /7,9, 10, 12/
DATA (B(1), 1=1,10,2) /5*1/
In this case, the second DATA statement assigns ASCII control character codes to the character

variablesBELL, TAB, LF, and FF. Thelast DATA statement uses an implied-DO list to assign the
value 1 to the odd-numbered elementsin the array B.

5-26

Secification Satements 5

As aFortran 95 feature, a pointer can be initialized as disassociated by using a DATA statement.
For example:

| NTEGER, PO NTER :: P

DATA P/ NULL()/

END

See Also

* “|nitialization and Specification Expressions’
* “Type Declaration Statements”

e “]/OLists’ for details on implied-DO lists

DIMENSION Attribute and Statement

The DIMENSION attribute specifies that an object is an array, and defines the shape of the array.

The DIMENSION attribute can be specified in atype declaration statement or a DIMENSION
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-1s,] DIMENSION (a-spec) [, att-1s] :: a[(a-spec)] [, a[(a-spec)]]...
Statement:
DIMENSION [::] a(a-spec) [, a(a-spec)]...
type
Is a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
a-spec
Isan array specification.

In atype declaration statement, any array specification following an array overrides any array
specification following DIMENSION.

a
Isthe name of the array being declared.

Rules and Behavior

The DIMENSION attribute allocates a number of storage elements to each array named, one
storage element to each array element in each dimension. The size of each storage element is
determined by the data type of the array.

5-27

5 Intel Fortran Language Reference

The total number of storage elements assigned to an array is equa to the number produced by
multiplying together the number of elementsin each dimension in the array specification. For
example, the following statement defines ARRAY as having 16 rea elements of 4 bytes each and
defines MATRIX as having 125 integer elements of 4 bytes each:

DI MENSI ON ARRAY(4, 4), MATRI X(5, 5, 5)

An array can aso be declared in the following statements: ALLOCATABLE, POINTER,
TARGET, and COMMON.

Examples

The following examples show type declaration statements specifying the DIMENSION attribute:
REAL, DI MENSI ON(10, 10) :: A, B, C(10, 15) ! Specification following C
! overrides the one follow ng
! DI MENSI ON
REAL, ALLOCATABLE, DIMENSION(:) :: E

The following are examples of the DIMENSION statement:
DI MENSI ON BOTTOM 12, 24, 10)

DI MENSI ON X(5,5,5), Y(4,85), Z(100)

DI MENSI ON MARK(4, 4, 4, 4)

SUBROUTI NE APROC(A1, A2, N1, N2, N3)

DI MENSI ON A1(N1: N2), A2(N3:*)

CHARACTER(LEN = 20) D
DI MENSI ON A(15), B(15, 40), C(-5:8, 7), D(15)

See Also
* “Type Declaration Statements’
* “Arrays’

e “ALLOCATABLE Attribute and Statement”

* “COMMON Statement”

* “POINTER Attribute and Statement”

* “TARGET Attribute and Statement”

* “Declaration Statements for Arrays’ for details on array specifications
® Table 5-1 for details on compatible attributes

5-28

Secification Satements 5

EQUIVALENCE Statement

The EQUIVALENCE statement specifies that a storage areais shared by two or more objectsin a
program unit. This causes total or partial storage association of the objects that share the storage
area.

The EQUIVALENCE statement takes the following form:
EQUIVALENCE (equiv-list) [, (equiv-list)]...
equiv-list
Isalist of two or more variables, array elements, or substrings, separated by commas (also called

an equivalence set). If an object of derived typeis specified, it must be a sequence type. Objects
cannot have the TARGET attribute.

Each expression in a subscript or asubstring reference must be an integer initialization expression.
A substring must not have alength of zero.

Rules and Behavior

The following objects cannot be specified in EQUIVALENCE statements:
e A dummy argument

* Anadlocatable array

* A pointer

* Anobject of nonsegquence derived type

®* Anobject of sequence derived type containing a pointer in the structure
® A function, entry, or result name

®* A named constant

® A structure component

* A subobject of any of the above objects

The EQUIVALENCE statement causes all of the entities in one parenthesized list to be alocated
storage beginning at the same storage location.

Association of objects depends on their types, as follows:

Type of Object Type of Associated Object

Intrinsic numeric® or numeric sequence Can be of any of these types

Default character or character sequence Can be of either of these types2

Any other intrinsic type Must have the same type and kind parameters

5-29

5 Intel Fortran Language Reference

5-30

Type of Object Type of Associated Object

Any other sequence type Must have the same type

1. Default integer, default real, double precision real, default complex, double complex, or default logical.
2. The lengths do not have to be equal.

So, objects can be associated if they are of different numeric type. For example, the following is
valid:

| NTEGER A(20)

REAL Y(20)

EQUI VALENCE(A, YY)

Objects of default character do not need to have the same length. The following example
associates character variable D with the last 4 (of the 6) characters of character array F:
CHARACTER(LEN=4) D

CHARACTER(LEN=3) F(2)

EQUI VALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple components of one data
type can share storage with a single component of a higher-ranked data type. For example, if you

make an integer variable equivalent to a complex variable, the integer variable shares storage with
the real part of the complex variable.

The same storage unit cannot occur more than once in a storage sequence, and consecutive storage
units cannot be specified in away that would make them nonconsecutive.

Examples

The following EQUIVALENCE statement isinvalid because it specifies the same storage unit for
X(2) and X(2):

REAL, DI MENSION(2), :: X

REAL :: Y

EQUI VALENCE(X(1), Y), (X(2), Y)

The following EQUIVALENCE statement isinvalid because A(1) and A(2) will not be
consecutive:

REAL A(2)

DOUBLE PRECI SI ON D(2)

EQUI VALENCE(A(1), (1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four elements of the integer
array 1ARR to share the same storage as that of the double-precision variable DVAR.

DOUBLE PRECI SI ON DVAR

Secification Satements 5

| NTEGER(KI ND=2) | ARR(4)
EQUI VALENCE(DVAR, | ARR(1))
In the following example, the EQUIVALENCE statement causes the first character of the

character variables KEY and STAR to share the same storage location. The character variable
STAR is equivalent to the substring KEY (1:10).

CHARACTER KEY*16, STAR*10
EQUI VALENCE(KEY, STAR)

See Also

® “Initialization Expressions’

* “Derived Data Types’

® “Storage Association” for details on storage units, sequence, and association

Making Arrays Equivalent

When you make an element of one array equivalent to an element of another array, the
EQUIVALENCE statement also sets equival ences between the other elements of the two arrays.
Thus, if the first elements of two equal-sized arrays are made equivalent, both arrays share the
same storage. |f the third element of a 7-element array is made equivalent to the first element of
another array, the last five elements of the first array overlap the first five elements of the second
array.

Two or more elements of the same array should not be associated with each other in one or more
EQUIVALENCE statements. For example, you cannot use an EQUIVALENCE statement to
associate the first element of one array with the first element of another array, and then attempt to
associate the fourth element of the first array with the seventh element of the other array.

Consider the following valid example:
DI MENSI ON TABLE (2,2), TRIPLE (2,2, 2)
EQUI VALENCE(TABLE(2, 2), TRIPLE(1, 2, 2))

These statements cause the entire array TABLE to share part of the storage allocated to TRIPLE.
Table 5-3 shows how these statements align the arrays:

Table 5-3 Equivalence of Array Storage
Array TRIPLE Array TABLE
Array Elements Element Number Array Element Element Number
TRIPLE(1,1,1) 1
TRIPLE(2,1,1) 2
TRIPLE(1,2,1) 3

5-31

5 Intel Fortran Language Reference

Table 5-3 Equivalence of Array Storage
Array TRIPLE Array TABLE
Array Elements Element Number Array Element Element Number
TRIPLE(2,2,1) 4 TABLE(1,1) 1
TRIPLE(1,1,2) 5 TABLE(2,1) 2
TRIPLE(2,1,2) 6 TABLE(1,2) 3
TRIPLE(1,2,2) 7 TABLE(2,2) 4
TRIPLE(2,2,2) 8

Each of the following statements also aligns the two arrays as shown in Table 5-3:

EQUI VALENCE(TABLE, TRIPLE(2,2,1))

EQUI VALENCE(TRI PLE(1, 1, 2), TABLE(2,1))

You can also make arrays equivalent with nonunity lower bounds. For example, an array defined
as A(2:3,4) isasequence of eight values. A referenceto A(2,2) refersto the third element in the
sequence. To make array A(2:3,4) share storage with array B(2:4,4), you can use the following
statement:

EQUI VALENCE(A(3, 4), B(2,4))

The entire array A shares part of the storage allocated to array B. Table 5-4 shows how these
statements align the arrays. The arrays can also be aligned by the following statements:

EQUI VALENCE(A, B(4, 1)) EQUI VALENCE(B(3,2), A(2,2))

Table 5-4 Equivalence of Arrays with Nonunity Lower Bounds
Array B Array A
Array Element Element Number Array Element Element Number
B(2,1) 1
B(3,1) 2
B(4.1) 3 A(2,1) 1
B(2,2) 4 A(B,1) 2
B(3,2) 5 A(2,2) 3
B(4,2) 6 A(3,2) 4
B(2,3) 7 A2,3) 5
B(3.,3) 8 A(3,3) 6
B(4,3) 9 A(2,4) 7
B(2,4) 10 A(3,4) 8
B(3,4) 11

5-32

Secification Satements 5

Table 5-4 Equivalence of Arrays with Nonunity Lower Bounds
Array B Array A
Array Element Element Number Array Element Element Number
B(4,4) 12

Only in the EQUIVALENCE statement can you identify an array element with a single subscript
(thelinear element number), even though the array was defined as multidimensional. For example,
the following statements align the two arrays as shown in Table 5-4:

DI MENSI ON B(2:4,1:4), A(2:3,1:4)

EQUI VALENCE(B(6), A(4))

Making Substrings Equivalent

When you make one character substring equivalent to another character substring, the
EQUIVALENCE statement al so sets associations between the other corresponding charactersin
the character entities; for example:

CHARACTER NAME*16, | D*9

EQUI VALENCE(NAMVE(10: 13), 1D(2:5))

These statements cause character variables NAME and ID to share space (see Figure 5-1). The
arrays can also be aligned by the following statement:

EQUI VALENCE(NAVE(9: 9), 1D(1:1))

5-33

5 Intel Fortran Language Reference

Figure 5-1 Equivalence of Substrings
NAME
Character
Position
1
2
3
4
5
6
7 ID
Character
8 Position
9 1
10 2
11 3
12 4
13 5
14 6
15 7
16 8
9
ZK-0618-GE

If the character substring references are array elements, the EQUIVALENCE statement sets
associations between the other corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character position. For example, the following
statements cause character arrays FIELDS and STAR to share storage (see Figure 5-2).

5-34

Secification Satements 5

CHARACTER FI ELDS(100) *4, STAR(5)*5

EQUI VALENCE(FI ELDS(1) (2: 4), STAR(2)(3:5))

The EQUIVALENCE statement cannot assign the same storage location to two or more substrings
that start at different character positions in the same character variable or character array. The

EQUIVALENCE statement also cannot assign memory locationsin away that isinconsistent with
the normal linear storage of character variables and arrays.

EQUIVALENCE and CO MMON Interaction

A common block can extend beyond its original boundariesif variables or arrays are associated
with entities stored in the common block. However, a common block can only extend beyond its
last element; the extended portion cannot precede the first element in the block.

Examples

Figure 5-3 and Figure 5-4 show valid and invalid extensions of the common block, respectively.

5-35

5 Intel Fortran Language Reference

Figure 5-2 Equivalence of Character Arrays
STAR
Character Subscript
Position
1 1
2
3
FIELDS 2
Subscript Character 5
Position 1 2
1 1 2
2 3
3 4
4 5
2 1 1 3
2 2
3 3
4 4
3 1 5
2 1 4
3 2
4 3
4 1 4
2 5
3 1 5
4 2
5 1 3
2 4
3 5
4
6 1
2
3
4
7 1
2
AN
AN\
100 1
2
3
4
ZK-0619-GE

5-36

Secification Satements 5

Figure 5-3 A Valid Extension of a Common Block
Valid
DIMENSION A (4), B (6) A@)|[A@)]|AEB)|A @)
COMMON A
EQUIVALENCE (A (2), B (1)) B(1)(B(2)|B(3)|B(4)|B(5)|B(6)
\ /\ /
Y Y
Existing Extended
Common Portion
ZK-1944-GE
Figure 5-4 An Invalid Extension of a Common Block
Invalid
DIMENSION A (4), B (6) AM|A@|A@)|A@®
COMMON A

EQUIVALENCE (A (2), B(3)) |B(1)|B (2)|B (3)|B (4)|B (5)|B (6)

A A

Extended Existing Extended
Portion Common Portion
ZK-1945-GE

The second example isinvalid because the extended portion, B(1), precedes the first element of
the common block.

Thefollowing example shows avalid EQUIVALENCE statement and an invalid EQUIVALENCE
statement in the context of a common block.

COVWON A, B, C

DI MENSI ON D(3)

EQUI VALENCE(B, D(1)) I Valid, because conmon bl ock is extended
! fromthe end.

5-37

5 Intel Fortran Language Reference

COWDN A, B, C

DI MENSI ON DX 3)

EQUI VALENCE(B, D(3)) I Invalid, because D(1) would extend comon
! bl ock to precede A s | ocation.

EXTERNAL Attribute and Statement

5-38

The EXTERNAL attribute allows an external or dummy procedure to be used as an actua
argument. (To specify intrinsic procedures as actual arguments, use the INTRINSIC attribute.)

The EXTERNAL attribute can be specified in atype declaration statement or an EXTERNAL
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is] EXTERNAL [, att-1g] :: ex-pro [, ex-prQ]...
Statement:
EXTERNAL ex-pro[, ex-pro]...
type
I's a data type specifier.
att-Is
Isan optional list of attribute specifiers.
ex-pro
I's the name of an external (user-supplied) procedure or dummy procedure.

Rules and Behavior

In atype declaration statement, only functions can be declared EXTERNAL . However, you can
use the EXTERNAL statement to declare subroutines and block data program units, aswell as
functions, to be external .

The name declared EXTERNAL is assumed to be the name of an external procedure, even if the
name is the same as that of an intrinsic procedure. For example, if SIN is declared with the
EXTERNAL attribute, all subsequent referencesto SIN are to a user-supplied function named
SIN, not to the intrinsic function of the same name.

You can include the name of ablock data program unit in the EXTERNAL statement to force a
search of the object module libraries for the block data program unit at link time. However, the
name of the block data program unit must not be used in atype declaration statement.

Secification Satements 5

Examples
The following example shows type declaration statements specifying the EXTERNAL attribute;
PROGRAM TEST

| NTEGER, EXTERNAL :: BETA
LOG CAL, EXTERNAL :: COS

CALL SUB(BETA) I External function BETA is an actual argunent

You can use aname specified in an EXTERNAL statement as an actual argument to a subprogram,
and the subprogram can then use the corresponding dummy argument in a function reference or a
CALL statement; for example:

EXTERNAL FACET

CALL BAR(FACET)

SUBROUTI NE BAR(F)

EXTERNAL F

CALL F(2)

Used as an argument, a complete function reference represents a value, not a subprogram; for
example, FUNC(B) represents avauein the following statement:

CALL SUBR(A, FUNC(B), ©

See Also

* “Type Declaration Statements”

® Chapter 9, “Intrinsic Procedures’

* “INTRINSIC Attribute and Statement”

Table 5-1 for details on compatible attributes

IMPLICIT Statement

The IMPLICIT statement overrides the default implicit typing rules for names. (The default data
typeis INTEGER for names beginning with the letters | through N, and REAL for names
beginning with any other letter.)

The IMPLICIT statement takes one of the following forms:
IMPLICIT type (al, a]...)[, type ([,]...)]...
IMPLICIT NONE

5-39

5 Intel Fortran Language Reference

5-40

type
Is a data type specifier (CHARACTER* (*) is not allowed).
a

Isasingle letter, adollar sign ($), or arange of lettersin aphabetical order. The form for arange
of lettersisa;- a,, where the second letter follows the first aphabetically (for example, A-C).

The dollar sign can be used at the end of arange of letters, since IMPLICIT interprets the dollar
sign to alphabetically follow the letter Z. For example, arange of X—$ would apply to identifiers
beginning with the letters X, Y, Z, or $.

Rules and Behavior

The IMPLICIT statement assigns the specified data type (and kind parameter) to all names that
have no explicit data type and begin with the specified letter or range of letters. It has no effect on
the default types of intrinsic procedures.

When the datatype is CHARACTER*len, len isthe length for character type. Thelenisan
unsigned integer constant or an integer initialization expression enclosed in parentheses. The
range for lenis 1 to 2**31-1 on | A-32 processors; 1 to 2**63-1 on Intel Itanium processors.

Names beginning with adollar sign ($) are implicitly INTEGER.

The IMPLICIT NONE statement disables al implicit typing defaults. When IMPLICIT NONE is
used, all namesin a program unit must be explicitly declared. An IMPLICIT NONE statement
must precede any PARAMETER statements, and there must be no other IMPLICIT statementsin
the scoping unit.

% NOTE. To receive diagnostic messages when variables are used but not
= declared, you can specify a compiler option instead of using IMPLICIT NONE.

Thefollowing IMPLICIT statement represents the default typing for names when they are not
explicitly typed:
I MPLICI T INTEGER (1-N), REAL (A-H O 2)

Examples

The following are examples of the IMPLICIT statement:
| MPLI CI T DOUBLE PRECI SI ON (D)

| MPLI CI T COWPLEX (S,Y), LOG CAL(1) (L,A-Q
| MPLI I T CHARACTER*32 (T-V)

| MPLI CI T CHARACTER*2 (W

Secification Satements 5

| MPLI CI' T TYPE(COLORS) (E-F), INTEGER (G H)

See Also
Your user’s guide for details on compiler options

INTENT Attribute and Statement

The INTENT attribute specifies the intended use of one or more dummy arguments.

The INTENT attribute can be specified in atype declaration statement or an INTENT statement,
and takes one of the following forms:

Type Declaration Statement:

type, [att-Is] INTENT (intent-spec) [, att-1g] :: d-arg [, d-arg]...
Statement:

INTENT (intent-spec) [::] d-arg [, d-arg]...
type
|s a data type specifier.
att-Is
Isan optional list of attribute specifiers.
intent-spec
Is one of the following specifiers:
* IN

Specifies that the dummy argument will be used only to provide data to the procedure. The
dummy argument must not be redefined (or become undefined) during execution of the

procedure.
Any associated actual argument must be an expression.
e OUT

Specifies that the dummy argument will be used to pass data from the procedure back to the
calling program. The dummy argument is undefined on entry and must be defined beforeitis
referenced in the procedure.

Any associated actual argument must be definable.
e INOUT

Specifies that the dummy argument can both provide data to the procedure and return data to
the calling program.

Any associated actual argument must be definable.

5-41

5 Intel Fortran Language Reference

d-arg
I's the name of a dummy argument. It cannot be a dummy procedure or dummy pointer.

Rules and Behavior

The INTENT statement can only appear in the specification part of a subprogram or interface
body.

If no INTENT attribute is specified for adummy argument, its use is subject to the limitations of
the associated actual argument.

If afunction specifies a defined operator, the dummy arguments must have intent IN.

If a subroutine specifies defined assignment, the first argument must have intent OUT or INOUT,
and the second argument must have intent IN.

A dummy argument with intent IN (or a subobject of such adummy argument) must not appear as
any of the following:

* A DOvariableor implied-DO variable

®* Thevariable of an assignment statement

* The pointer-object of a pointer assignment statement

®* Anobject or STAT variablein an ALLOCATE or DEALLOCATE statement

®* AninputiteminaREAD statement

* Avaiablenamein aNAMELIST statement if the namelist group name appearsin aNML
specifier in aREAD statement

® Aninterna file unitinaWRITE statement

* A definablevariablein an INQUIRE statement

®* AnIOSTAT or SIZE specifier in an 1/0O statement

* Anactua argument in areference to a procedure with an explicit interface if the associated
dummy argument hasintent OUT or INOUT

If an actual argument is an array section with a vector subscript, it cannot be associated with a
dummy array that is defined or redefined (has intent OUT or INOUT).

Examples

The following example shows type declaration statements specifying the INTENT attribute:
SUBROUTI NE TEST(I, J)
I NTEGER, | NTENT(IN) :: |
I NTEGER, | NTENT(OUT), DIMENSION(I) :: J
The following are examples of the INTENT statement:
SUBROUTI NE TEST(A, B, X)

5-42

Secification Satements 5

I NTENT(INOUT) :: A B

SUBROUTI NE CHANGE(FROM TO)
USE EMPLOYEE_MODULE
TYPE(EMPLOYEE) FROM TO
I NTENT(1N) FROM
| NTENT(OUT) TO

See Also

* “Type Declaration Statements”

* “Argument Association”

® Table 5-1 for details on compatible attributes

INTRINSIC Attribute and Statement

The INTRINSIC attribute allows the specific name of an intrinsic procedure to be used as an
actual argument. (Not all specific names can be used as actual arguments. For more information,
see Table 9-1)

The INTRINSIC attribute can be specified in atype declaration statement or an INTRINSIC
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is,] INTRINSIC [, att-Ig] :: in-pro [, in-pro]...
Satement:
INTRINSIC in-pro [, in-pro]...
type
Is a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
in-pro
Is the name of an intrinsic procedure.

Rules and Behavior

In atype declaration statement, only functions can be declared INTRINSIC. However, you can use
the INTRINSIC statement to declare subroutines, aswell as functions, to beintrinsic.

5-43

5 Intel Fortran Language Reference

544

The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If ageneric
intrinsic function name is given the INTRINSIC attribute, the name retains its generic properties.

Examples
The following example shows a type declaration statement specifying the INTRINSIC attribute:
PROGRAM EXAMPLE

REAL(8), INTRINSIC :: DACCS

CALL TEST(X, DACOCS) I Intrinsic function DACOS is an actual argunent
The following example shows an INTRINSIC statement:

Main Program Subprogram
EXTERNAL CTN SUBROUTINE TRIG(X,FY)
INTRINSIC SIN, COS Y = F(X)

RETURN

END

CALL TRIG(ANGLE,SIN,SINE)
FUNCTION CTN(X)
CTN = COS(X)/SIN(X)
CALL TRIG(ANGLE,COS, COSINE) RETURN
. END
CALL TRIG(ANGLE,CTN,COTANGENT)

Note that when TRIG is called with a second argument of SIN or COS, the function reference
F(X) references the Fortran 95/90 library functions SIN and COS; but when TRIG iscalled with a
second argument of CTN, F(X) references the user function CTN.

See Also

* “Type Declaration Statements’

* “Referencesto Generic Intrinsic Functions’

e “Referencesto Elemental Intrinsic Procedures’

® Chapter 9, “Intrinsic Procedures’, for details on specific intrinsic procedures
® Table 5-1 for details on compatible attributes

Secification Satements 5

NAMELIST Statement

The NAMELIST statement associates a name with alist of variables. This group name can be
referenced in some input/output operations.

A NAMELIST statement takes the following form:
NAMELIST /group/var-list [[,] /group/var-list]...

group

I's the name of the group.

var-list

Isalist of variables (separated by commas) that are to be associated with the preceding group
name. The variables can be of any datatype.

Rules and Behavior

The namelist group name is used by namelist 1/0 statements instead of an 1/0 list. The unique
group name identifies alist whose entities can be modified or transferred.

A variable can appear in more than one namelist group.

Each variable in var-list must be accessed by use or host association, or it must haveits type, type
parameters, and shape explicitly or implicitly specified in the same scoping unit. If the variableis
implicitly typed, it can appear in a subsequent type declaration only if that declaration confirms
theimplicit typing.

The following variables cannot be specified in a namelist group:

* Anarray dummy argument with nonconstant bounds

* A variablewith assumed character length

* Anadlocatable array

®* Anautomatic object

* A pointer

* A variableof atypethat has a pointer as an ultimate component

* A subobject of any of the above objects

Only the variables specified in the namelist can be read or written in namelist I/O. It is not

necessary for the input records in a namelist input statement to define every variable in the
associated namelist.

The order of variablesin the namelist controls the order in which the values appear on namelist
output. Input of namelist values can be in any order.

If the group name has the PUBLIC attribute, no item in the variable list can have the PRIVATE
attribute.

5-45

5 Intel Fortran Language Reference

The group name can be specified in more than one NAMELIST statement in a scoping unit. The
variable list following each successive appearance of the group name is treated as a continuation
of thelist for that group name.

Examples

In the following example, D and E are added to the variables A, B, and C for group name LIST:
NAMELI ST /LIST/ A B, C

NAMELI ST /LI ST/ D, E

In the following example, two group names are defined:

CHARACTER* 30 NAME(25)

NAMELI ST /1 NPUT/ NAME, GRADE, DATE /OQUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group name OUTPUT
contains variables TOTAL and NAME.

See Also

* “Rulesfor Namelist Sequential READ Statements” for details on namelist input
®* “Rulesfor Namelist Sequential WRITE Statements’ for details on namelist output

OPTIONAL Attribute and Statement

5-46

The OPTIONAL attribute permits dummy arguments to be omitted in a procedure reference.

The OPTIONAL attribute can be specified in atype declaration statement or an OPTIONAL
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is,] OPTIONAL [, att-14] :: d-arg [, d-arg]...
Statement:
OPTIONAL [::] d-arg[, d-arq]...
type
Is a data type specifier.
att-Is
Isan optional list of attribute specifiers.
d-arg
I's the name of a dummy argument.

Secification Satements 5

Rules and Behavior

The OPTIONAL attribute can only appear in the scoping unit of a subprogram or an interface
body, and can only be specified for dummy arguments.

A dummy argument is"present " if it associated with an actual argument. A dummy argument that
is not optional must be present. You can use the PRESENT intrinsic function to determine whether
an optional dummy argument is associated with an actual argument.

To call aprocedure that has an optional argument, you must use an explicit interface.

Examples
The following example shows a type declaration statement specifying the OPTIONAL attribute:
SUBROUTI NE TEST(A)
REAL, OPTI ONAL, DI MENSION(-10:2) :: A
END SUBROUTI NE
The following is an example of the OPTIONAL statement:
SUBROUTI NE TEST(A, B, L, X)
OPTIONAL :: B
INTEGER A, B, L, X

| F (PRESENT(B)) THEN ! Printing of B is conditional
PRINT *, A B, L, X ! on its presence
ELSE
PRINT *, A L, X
ENDI F
END SUBROUTI NE
| NTERFACE

SUBROUTI NE TEST(ONE, TWDO, THREE, FOUR)
I NTEGER ONE, TWDO, THREE, FOUR
OPTIONAL :: TWO
END SUBRCUTI NE
END | NTERFACE

INTEGER I, J, K L

| =1

J=2

K=3

L =4

CALL TEST(I, J, K L) | Prints: 1 2 3 4
CALL TEST(I, THREE=K, FOUR=L) | Prints: 1 3 4 END

5-47

5 Intel Fortran Language Reference

Note that in the second call to subroutine TEST, the second positional (optional) argument is
omitted. In this case, al following arguments must be keyword arguments.

See Also
* “Type Declaration Statements’
* “PRESENT”

®* “Optiona Arguments’
® Table 5-1 for details on compatible attributes

PARAMETER Attribute and Statement

5-48

The PARAMETER attribute defines a named constant.

The PARAMETER attribute can be specified in atype declaration statement or a PARAMETER
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is] PARAMETER [, att-Is] :: c = expr [, ¢ = expr]...
Satement:
PARAMETER [(] c=expr [, c = expr]...[)]
type
|'s a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
c
Is the name of the constant.
expr
Isan initialization expression. It can be of any data type.

Rules and Behavior

Thetype, type parameters, and shape of the named constant are determined in one of the following

ways:

* By anexplicit type declaration statement in the same scoping unit.

* By theimplicit typing rulesin effect for the scoping unit. If the named constant isimplicitly
typed, it can appear in a subsequent type declaration only if that declaration confirms the
implicit typing.

Secification Satements 5

For example, consider the following statement:
PARAMVETER (MU=1. 23)

According to implicit typing, MU is of integer type, so MU=1. For MU to equal 1.23, it should
previously be declared REAL in atype declaration or be declared in an IMPLICIT statement.

A named constant must not appear in aformat specification or as the character count for Hollerith
constants. For compilation purposes, writing the name is the same as writing the value.

If the named constant is used as the length specifier in a CHARACTER declaration, it must be
enclosed in parentheses.

The name of a constant cannot appear as part of another constant, although it can appear as either
the real or imaginary part of acomplex constant.

You can only use the named constant within the scoping unit containing the defining
PARAMETER statement.

Any named constant that appearsin the initialization expression must have been defined
previously in the same type declaration statement (or in a previous type declaration statement or
PARAMETER statement), or made accessible by use or host association.

Examples

Thefollowing example shows atype declaration statement specifying the PARAMETER aéttribute:
REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

The following is an example of the PARAMETER statement:

REAL(4) PI, PlOV2

REAL(8) DPlI, DPI OV2

LOG CAL FLAG

CHARACTER* (*) LONGNAME

PARAMVETER (Pl =3. 1415927, DPl =3. 141592653589793238D0)
PARAMETER (Pl Ov2=PI /2, DPlI OV2=DPI/ 2)
PARAMETER (FLAG=. TRUE., LONGNAME=" A STRI NG OF 25 CHARACTERS')

See Also
* “Type Declaration Statements’
* “|nitidlization Expressions’

* “IMPLICIT Statement”
e “Alternative Syntax for the PARAMETER Statement”
® Table 5-1 for details on compatible attributes

5-49

5 Intel Fortran Language Reference

POINTER Attribute and Statement

5-50

The POINTER attribute specifies that an object is a pointer (a dynamic variable). A pointer does
not contain data, but pointsto a scalar or array variable where datais stored. A pointer has no
initial storage set aside for it; memory storage is created for the pointer as a program runs.

The POINTER attribute can be specified in atype declaration statement or a POINTER statement,
and takes one of the following forms:

Type Declaration Statement:
type, [att-Is,] POINTER [, att-I5] :: ptr [(d-spec)] [, ptr [(d-spec)]]...
Satement:
POINTER [::] ptr [(d-spec)] [, ptr [(d-spec)]]...
type
|s a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
ptr

Is the name of the pointer. The pointer cannot be declared with the INTENT or PARAMETER
attributes.

d-spec
I's a deferred-shape specification (: [,:]...). Each colon represents a dimension of the array.

Rules and Behavior

No storage spaceis created for apointer until it isallocated with an ALLOCATE statement or until
it isassigned to a allocated target. A pointer must not be referenced or defined until memory is
associated with it.

Each pointer has an association status, which tells whether the pointer is currently associated with
atarget object. When a pointer isinitially declared, its status is undefined. You can use the
ASSOCIATED intrinsic function to find the association status of a pointer.

If the pointer is an array, and it is given the DIMENSION attribute el sewhere in the program, it
must be declared as a deferred-shape array.

A pointer cannot be specified in a DATA, EQUIVALENCE, or NAMELIST statement.

Fortran 95/90 pointers are not the same as integer pointers. For more information, see the
“Integer POINTER Statement”.

Secification Satements 5

Examples

The following example shows type declaration statements specifying the POINTER attribute;
TYPE(SYSTEM, PO NTER :: CURRENT, LAST

REAL, DI MENSION(:,:), PONTER :: I, J, REVERSE

Thefollowing is an example of the POINTER statement:

TYPE(SYSTEM :: TODAYS

PO NTER :: TODAYS, A(:,:)

See Also

* “Type Declaration Statements”

* “Pointer Assignments’

“ALLOCATE Statement”

* “Pointer Association”

* “Pointer Arguments’

* “ASSOCIATED”

* “Deferred-Shape Specifications’ for details on deferred-shape arrays
* “NULL", which can be used to disassociate a pointer

® Table 5-1 for details on compatible attributes

PRIVATE and PUBLIC Attributes and Statements

The PRIVATE and PUBLIC attributes specify the accessibility of entitiesin amodule. (These
attributes are also called accessibility attributes.)

The PRIVATE and PUBLIC attributes can be specified in a type declaration statement or a
PRIVATE or PUBLIC statement, and take one of the following forms:

Type Declaration Statement:
type, [att-Is] PRIVATE [, att-Ig] :: entity [, entity]...
type, [att-Is]] PUBLIC [, att-l5] :: entity [, entity]...
Satement:
PRIVATE [[::] entity [, entity]...]
PUBLIC [[::] entity [, entity]...]
type
|s adata type specifier.
att-Is
Isan optiond list of attribute specifiers.

5-51

5 Intel Fortran Language Reference

5-52

entity

Is one of the following:

* Avaiablename

® A procedure name

® A derived type name

®* A named constant

®* A namelist group name

In statement form, an entity can also be a generic identifier (a generic name, defined operator, or
defined assignment).

Rules and Behavior
The PRIVATE and PUBLIC attributes can only appear in the scoping unit of a module.

Only one PRIVATE or PUBLIC statement without an entity list is permitted in the scoping unit of
amodule; it sets the default accessibility of al entitiesin the module.

If no PUBLIC or PRIVATE statements are specified in amodule, the defaultis PUBLIC
accessihility. Entities with PUBLIC accessibility can be accessed from outside the module by
means of a USE statement.

If aderived typeis declared PRIVATE in amodule, its components are also PRIVATE. The
derived type and its components are accessible to any subprograms within the defining module
through host association, but they are not accessible from outside the module.

If the derived type is declared PUBLIC in amodule, but its components are declared PRIVATE,
any scoping unit accessing the modul e though use association (or host association) can access the
derived-type definition, but not its components.

If amodule procedure has a dummy argument or afunction result of atype that has PRIVATE
accessibility, the modul e procedure must have PRIVATE accessihility. If the module has a generic
identifier, it must also be declared PRIVATE.

If aprocedure has a generic identifier, the accessibility of the procedure’s specific nameis
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the
other PUBLIC.

Examples

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:

REAL, PRIVATE :: A B, C

| NTEGER, PUBLIC :: LOCAL_SUVS

The following is an example of the PUBLIC and PRIVATE statements:

Secification Satements 5

MODULE SOVE_DATA
REAL ALL_B
PUBLI C ALL_B
TYPE RESTRI CTED_DATA
REAL LOCAL_C
DI MENSI ON LOCAL_C(50)
END TYPE RESTRI CTED_DATA
PRI VATE RESTRI CTED_DATA
END MODULE
The following derived-type declaration statement indicates that the typeis restricted to the
module:
TYPE, PRI VATE :: DATA

END TYPE DATA

The following example shows a PUBLIC type with PRIVATE components:
MODULE MATTER
TYPE ELEMENTS
PRI VATE
INTEGER C, D
END TYPE

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

See Also

* “Type Declaration Statements’

* “Derived Data Types’

* “USE Statement”

* “Useand Host Association”

* “Defining Generic Names for Procedures’ for details on generic identifiers
®* “Modules and Module Procedures’ for details on modules

® Table5-1 for details on compatible attributes

5-53

5 Intel Fortran Language Reference

SAVE Attribute and Statement

5-54

The SAVE attribute causes the values and definition of objects to be retained after execution of a
RETURN or END statement in a subprogram.

The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and
takes one of the following forms:

Type Declaration Statement:
type, [att-Is] SAVE [, att-ls] :: [object [, object]...]
Satement:
SAVE [object [, object]...]
type
|'s a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
object
Is the name of an object, or the name of acommon block enclosed in slashes
(/common-block-name/).

Rules and Behavior
In Intel® Fortran, certain variables are given the SAVE attribute, or not, by default:
* Thefollowing variables are saved by default:
— COMMON variables
— Local variables of non-recursive subprograms
— Datainitialized by DATA statements
* Thefollowing variables are not saved by default:
— Variablesthat are declared AUTOMATIC
— Local variablesthat are allocatable arrays
— Derived-type variables that are datainitialized by default initialization of any of their
components
— RECORD variables that are datainitialized by default initialization specified in its
STRUCTURE declaration

® Loca variablesthat are not described in the preceding two lists are saved by default.
To enhance portability and avoid possible compiler warning messages, Intel® recommends that

you use the SAVE statement to name variables whose values you want to preserve between
subprogram invocations.

Secification Satements 5

When a SAVE statement does not explicitly contain alist, all allowable items in the scoping unit
are saved.

A SAVE statement cannot specify the following (their values cannot be saved):

® A blank common

®* Anobject in acommon block

* A procedure

* A dummy argument

® A function result

®* Anautomatic object

* A PARAMETER (named) constant

Even though a common block can be included in a SAVE statement, individual variables within
the common block can become undefined (or redefined) in another scoping unit.

If acommon block is saved in any scoping unit of a program (other than the main program), it
must be saved in every scoping unit in which the common block appears.

A SAVE statement has no effect in a main program.

Examples

The following example shows atype declaration statement specifying the SAVE attribute:
SUBROUTI NE TEST()
REAL, SAVE :: X, Y
The following is an example of the SAVE statement:
SAVE A, /BLOCK B/, C, /BLOCK D/, E

See Also

* “Type Declaration Statements”

* “DATA Statement”

* “COMMON Statement” for details on common blocks

®* “Recursive Procedures’ for details on recursive program units
®* “Modules and Module Procedures’ for details on modules.
Table 5-1 for details on compatible attributes

TARGET Attribute and Statement

The TARGET attribute specifies that an object can become the target of a pointer (it can be
pointed to).

5-55

5 Intel Fortran Language Reference

5-56

The TARGET attribute can be specified in atype declaration statement or a TARGET statement,
and takes one of the following forms:

Type Declaration Statement:
type, [att-Is] TARGET [, att-1g] :: object [(a-spec)] [, object [(a-spec)]]...
Statement:
TARGET [::] object [(a-spec)] [, object [(a-spec)]]...
type
Is a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
object
I's the name of the object. The object must not be declared with the PARAMETER attribute.
a-spec
Isan array specification.

Rules and Behavior
A pointer is associated with atarget by pointer assignment or by an ALLOCATE statement.

If an object does not have the TARGET attribute or has not been alocated (using an ALLOCATE
statement), no part of it can be accessed by a pointer.

Examples

The following example shows type declaration statements specifying the TARGET attribute:
TYPE(SYSTEM, TARGET :: FIRST

REAL, DI MENSI ON(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:

TARGET :: C(50, 50), D

See Also

* “Type Declaration Statements”

* “ALLOCATE Statement”

* “Pointer Assignments’

* “Pointer Association”

® Table 5-1 for details on compatible attributes

Secification Satements 5

VOLATILE Attribute and Statement

The VOLATILE attribute specifies that the value of an object is entirely unpredictable, based on
information local to the current program unit. It prevents objects from being optimized during
compilation.

The VOLATILE attribute can be specified in a type declaration statement or aVOLATILE
statement, and takes one of the following forms:

Type Declaration Statement:
type, [att-Is] VOLATILE [, att-ls] :: object [, object]...
Satement:
VOLATILE object [, object]...
type
|'s a data type specifier.
att-Is
Isan optiona list of attribute specifiers.
object
I's the name of an object, or the name of acommon block enclosed in slashes.

Rules and Behavior

A variable or COMMON block must be declared VOLATILE if it can be read or written in away
that is not visible to the compiler. For example:

* |f an operating system feature is used to place a variable in shared memory (so that it can be
accessed by other programs), the variable must be declared VOLATILE.

* |f avariableisaccessed or modified by aroutine called by the operating system when an
asynchronous event occurs, the variable must be declared VOLATILE.

If an array isdeclared VOLATILE, each element in the array becomes volatile. If acommon block
is declared VOLATILE, each variable in the common block becomes volatile.

If an object of derived typeis declared VOLATILE, its components become volatile.
If apointer isdeclared VOLATILE, the pointer itself becomes volatile.

A VOLATILE statement cannot specify the following:

® A procedure

® A function result

® A namelist group

5-57

5 Intel Fortran Language Reference

5-58

Examples

The following example shows a type declaration statement specifying the VOLATILE attribute:
| NTEGER, VOLATILE :: D, E

The following example shows a VOLATILE statement:

PROCRAM TEST

LOG CAL(1) IPI(4)

I NTEGER(4) A, B, C, D, E |ILOX

| NTEGER(4) P1, P2, P3, P4

COVMON / BLK1/ A, B, C

VOLATI LE /BLK1/, D, E
EQUI VALENCE(| LOCK, | PI)
EQUI VALENCE(A, P1)
EQUI VALENCE(P1, P4)

The named common block, BLK 1, and the variables D and E are volatile. Variables P1 and P4
become volatile because of the direct equivalence of P1 and the indirect equivalence of P4.

See Also

® “Type Declaration Statements’

® Table 5-1 for details on compatible attributes

® Your user'sguide for details on optimizations performed by the compiler

Dynamic Allocation

Data objects can be static or dynamic. If a data object is static, afixed amount of memory storage
iscreated for it at compile time and is not freed until the program exits. If adata object is dynamic,
memory storage for the object can be created (allocated), altered, or freed (deallocated) asa
program executes.

In Fortran 95/90, pointers, allocatable arrays, and automatic arrays are dynamic data objects.

No storage spaceis created for apointer until it isallocated with an ALLOCATE statement or until
it isassigned to a allocated target. A pointer can be dynamically disassociated from atarget by
using aNULLIFY statement.

An ALLOCATE statement can also be used to create storage for an alocatable array. A
DEALLOCATE statement is used to free the storage space reserved in a previous ALLOCATE
statement.

Automatic arrays differ from allocatable arrays in that they are automatically allocated and
deallocated whenever you enter or leave a procedure, respectively.

This chapter contains information on the following topics:

* The"ALLOCATE Statement”

* The“DEALLOCATE Statement”

®* The“NULLIFY Statement”

See Also

* “Pointer Assignments’

* “Explicit-Shape Specifications’ for details on automatic arrays
® “NULL", which can aso be used to disassociate a pointer

6 Intel Fortran Language Reference

ALLOCATE Statement

6-2

The ALLOCATE statement dynamically creates storage for allocatable arrays and pointer targets.
The storage space allocated is uninitialized.

The ALLOCATE statement takes the following form:

ALLOCATE (object [(s-spec], s-spec...])] [, object[(s-spec|, s-spec...])]]...[, STAT=9v])
object
Isthe object to be alocated. It isavariable name or structure component, and must be a pointer or
allocatable array. The object can be of type character with zero length.
S-spec
I's a shape specification in the form [lower-bound:]upper-bound. Each bound must be a scalar
integer expression. The number of shape specifications must be the same as the rank of the object.
v
Isascalar integer variable in which the status of the allocation is stored.

Rules and Behavior

A bound in s-spec must not be an expression containing an array inquiry function whose argument
is any allocatable object in the same ALLOCATE statement; for example, the following is not
permitted:

| NTEGER ERR

| NTEGER, ALLOCATABLE :: A(:), B(:)

ALLOCATE(A(10: 25), B(SIZE(A)), STAT=ERR) ! Ais invalid as an argumnent

! to function SIZE
If a STAT variableis specified, it must not be alocated in the ALLOCATE statement in which it
appears. If the allocation is successful, the variableis set to zero. If the allocation is not successful,
an error condition occurs, and the variable is set to a positive integer value (representing the

run-time error). If no STAT variable is specified and an error condition occurs, program execution
terminates.

Examples

Thefollowing is an example of the ALLOCATE statement:

I NTEGER J, N, ALLOCC ERR
REAL, ALLOCATABLE :: A(:), B(:,:)

ALLOCATE(A(0: 80), B(-3:J+1, N), STAT = ALLOC_ERR)

Dynamic Allocation 6

See Also

e “ALLOCATABLE Attribute and Statement” for details on allocatable arrays

* “POINTER Attribute and Statement” for details on pointers

® Your user’s guide or online documentation for details on run-time error messages

Allocation of Allocatable Arrays

The bounds (and shape) of an allocatable array are determined when it is allocated. Subsequent
redefinition or undefinition of any entities in the bound expressions does not affect the array
specification.

If the lower bound is greater than the upper bound, that dimension has an extent of zero, and the
array has asize of zero. If the lower bound is omitted, it is assumed to be 1.

When an array is allocated, it is definable. If you try to allocate a currently allocated allocatable
array, an error occurs.

Theintrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
REAL, ALLOCATABLE :: E(:,:)

' (. NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status

During program execution, the allocation status of an allocatable array is one of the following:
® Not currently allocated
The array was never alocated or the last operation on it was a deallocation. Such an array
must not be referenced or defined.
®* Currently alocated
The array was allocated by an ALLOCATE statement. Such an array can be referenced,
defined, or deallocated.

If an allocatable array has the SAVE attribute, it hasan initial status of "not currently allocated". If
the array is then allocated, its status changes to "currently allocated”. It keeps that status until the
array is deallocated.

If an allocatable array does not have the SAVE attribute, it has the status of "not currently
allocated" at the beginning of each invocation of the procedure. If the array’s status changes to
"currently allocated", it is deallocated if the procedureisterminated by execution of aRETURN or
END statement.

6 Intel Fortran Language Reference

Examples

Example 6-1 shows a program that performs virtual memory allocation. This program uses
Fortran 95/90 standard-conforming statements instead of calling an operating system memory
allocation routine.

Example 6-1 Allocating Virtual Memory

I Program accepts an integer and displays square root val ues

I NTEGER(4) :: N

READ (5,*) N I Reads an integer val ue
CALL MAT(N)

END

I Subroutine MAT uses the typed integer value to display the square
I root values of nunbers from1l to N (the number read)

SUBROUTI NE MAT(N)

REAL(4), ALLOCATABLE :: SQR(:) I Declares SQR as a one-di nmensi onal
I allocatable array

ALLOCATE (SQR(N)) I Allocates array SQR
DO J=1, N

SQR(J) = SQRT(FLQATJ(J)) I FLOATJ converts integer to REAL
ENDDO
WRI TE (6,*) SQR I Displays cal cul ated val ues
DEALLCOCATE (SQR) | Deal | ocates array SQR

END SUBROUTI NE MAT

See Also
“ALLOCATED”

Allocation of Pointer Targets

When a pointer is allocated, the pointer is associated with a target and can be used to reference or
define the target. (The target can be an array or a scalar, depending on how the pointer was
declared.)

Other pointers can become associated with the pointer target (or part of the pointer target) by
pointer assignment.

6-4

Dynamic Allocation 6

In contrast to allocatable arrays, a pointer can be allocated a new target even if it is currently
associated with atarget. The previous association is broken and the pointer isthen associated with
the new target.

If the previous target was created by allocation, it becomes inaccessible unlessit can still be
referred to by other pointersthat are currently associated with it.

Theintrinsic function ASSOCIATED can be used to determine whether a pointer is currently
associated with atarget. (The association status of the pointer must be defined.) For example:

REAL, TARGET :: TAR(O0:50)
REAL, PO NTER :: PTR(:)
PTR => TAR

| F (ASSOCI ATED(PTR TAR)) . . .

See Also

* “Pointer Assignments’

* “ASSOCIATED”

* “POINTER Attribute and Statement” for details on pointers

DEALLOCATE Statement
The DEALLOCATE statement frees the storage allocated for allocatable arrays and pointer targets
(and causes the pointers to become disassociated). It takes the following form:
DEALLOCATE (object [, object]...[, STAT=5V])
object
I's a structure component or the name of avariable, and must be a pointer or allocatable array.
Y,
Isascalar integer variable in which the status of the deallocation is stored.

Rules and Behavior

If a STAT variableis specified, it must not be deallocated in the DEALLOCATE statement in
which it appears. If the deallocation is successful, the variable is set to zero. If the deallocation is
not successful, an error condition occurs, and the variable is set to a positive integer value
(representing the run-time error). If no STAT variable is specified and an error condition occurs,
program execution terminates.

It is recommended that all explicitly allocated storage be explicitly deallocated when it isno
longer needed.

6 Intel Fortran Language Reference

Examples
The following example shows deallocation of an allocatable array:

| NTEGER ALLOC ERR
REAL, ALLOCATABLE :: A(:), B(:,:)

ALLOCATE (A(10), B(-2:8,1:5))
DEALLOCATE(A, B, STAT = ALLOC ERR)

See Also
Your user’s guide or online documentation for details on run-time error messages

Deallocation of Allocatable Arrays

6-6

If the DEALLOCATE statement specifies an array that is not currently allocated, an error occurs.

If an alocatable array with the TARGET attribute is deall ocated, the association status of any
pointer associated with it becomes undefined.

If aRETURN or END statement terminates a procedure, an allocatable array has one of the
following alocation statuses:
* |t keepsits previous alocation and association status if the following is true:

— It hasthe SAVE éttribute.

— Itisinthe scoping unit of amodule that is accessed by another scoping unit whichis
currently executing.

— Itisaccessible by host association.

* Itremainsalocated if it isaccessed by use association.
® Otherwise, its allocation status is deallocated.
Theintrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
SUBRQOUTI NE TEST

REAL, ALLOCATABLE, SAVE :: F(:,:)

REAL, ALLOCATABLE :: E(:,:,:)

IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))
END SUBROUTI NE TEST

Dynamic Allocation 6

Note that when subroutine TEST is exited, the alocation status of F is maintained because F has
the SAVE attribute. Since E does not have the SAVE attribute, it is deallocated. On the next
invocation of TEST, E will have the status of "not currently allocated".

See Also

* “Useand Host Association”

* “TARGET Attribute and Statement”
* “RETURN Statement”

e “END Statement”

* “SAVE Attribute and Statement”

Deallocation of Pointer Targets

A pointer must not be deallocated unlessit has a defined association status. If the DEALLOCATE
statement specifies a pointer that has undefined association status, or a pointer whose target was
not created by allocation, an error occurs.

A pointer must not be deallocated if it is associated with an allocatable array, or it is associated
with a portion of an object (such as an array element or an array section).

If apointer is deallocated, the association status of any other pointer associated with the target (or
portion of the target) becomes undefined.

Execution of aRETURN or END statement in a subprogram causes the pointer association status
of any pointer declared (or accessed) in the procedure to become undefined, unless any of the
following appliesto the pointer:

® |t hasthe SAVE attribute.

® |tisinthe scoping unit of amodulethat is accessed by another scoping unit which is currently
executing.

®* |tisaccessible by host association.

® Itisinblank common.

® Itisinanamed common block that appears in another scoping unit that is currently
executing.
* |tisthereturn value of afunction declared with the POINTER attribute.

If the association status of a pointer becomes undefined, it cannot subsequently be referenced or
defined.

Examples

The following example shows deallocation of a pointer:
| NTEGER ERR

6-7

6 Intel Fortran Language Reference

REAL, PO NTER :: PTR A(:)
ALLOCATE (PTR A(10), STAT=ERR)
DEALLOCATE(PTR_A)

See Also

* “Useand Host Association”

* “RETURN Statement”

* “END Statement”

* “SAVE Attribute and Statement”

¢ “POINTER Attribute and Statement” for details on pointers
* “COMMON Statement” for details on common blocks

® “NULL", which can be used to disassociate a pointer

NULLIFY Statement

6-8

The NULLIFY statement disassociates a pointer from itstarget. It takes the following form:
NULLIFY (pointer-object [, pointer-object]...)
pointer-object

Is astructure component or the name of avariable; it must be a pointer (have the POINTER
attribute).

Rules and Behavior

Theinitial association status of a pointer isundefined. You can use NULLIFY toinitialize an
undefined pointer, giving it disassociated status. Then the pointer can be tested using the intrinsic
function ASSOCIATED.

Examples

The following is an example of the NULLIFY statement:
REAL, TARGET :: TAR(O:50)

REAL, PO NTER :: PTR A(:), PTRB(:)

PTR A => TAR

PTR B => TAR

NULLI FY(PTR_A)

Dynamic Allocation 6

After these statements are executed, PTR_A will have disassociated status, while PTR_B will
continue to be associated with variable TAR.

See Also

* “POINTER Attribute and Statement”

* “Pointer Assignments’

* “ASSOCIATED”

* “NULL", which can be used to disassociate a pointer

6-9

6 Intel Fortran Language Reference

6-10

Execution Control 7

A program normally executes statementsin the order in which they are written. Executable control
constructs and statements modify this normal execution by transferring control to another
statement in the program, or by selecting blocks (groups) of constructs and statements for
execution or repetition.

In Fortran 95/90, control constructs (CASE, DO, and IF) can be named. The name must be a
unique identifier in the scoping unit, and must appear on theinitial line and terminal line of the
construct. On theinitial line, the name is separated from the statement keyword by acolon ().

A block can contain any executable Fortran statement except an END statement. You can transfer
control out of ablock, but you cannot transfer control into ancother block.

DO loops cannot partially overlap blocks. The DO statement and its terminal statement must
appear together in a statement block.

This chapter contains information on the following topics:
® The"Branch Statements’

®* The“CALL Statement”

®* The"CASE Constructs’

®* The“CONTINUE Statement”

®* The"“DO Constructs’

®* The“END Statement”

®* The'lE Construct and Statement”

®* The"PAUSE Statement”

®* The“RETURN Statement”

®* The“STOP Statement”

7-1

7 Intel Fortran Language Reference

Branch Statements

Branching affects the normal execution sequence by transferring control to a labeled statement in
the same scoping unit. The transfer statement is called the branch statement, while the statement
to which the transfer is made is called the branch target statement.

Any executable statement can be a branch target statement, except for the following:

* CASE statement

* ELSE statement

* ELSE IF statement

Certain restrictions apply to the following statements:

Statement Restriction

DO terminal statement The branch must be taken from within its nonblock DO construct.
END DO The branch must be taken from within its block DO construct.
END IF The branch should be taken from within its IF construct.?

END SELECT The branch must be taken from within its CASE construct.

1. If the terminal statement is shared by more than one nonblock DO construct, the branch can only be taken from within the
innermost DO construct.

2. You can branch to an END IF statement from outside the IF construct; this is a deleted feature in Fortran 95. Intel® Fortran fully
supports features deleted in Fortran 95.

The following branch statements are described in this section:
* ‘“Unconditional GO TO Statement”

* “Computed GO TO Statement”

® “The ASSIGN and Assigned GO TO Statements”

* “Arithmetic IF Statement”

See Also

* “|F Construct and Statement”
* “CASE Constructs”

* “DO Constructs’

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same branch target statement every
time it executes. It takes the following form:

GO TO label

7-2

Execution Control 7

label
Isthe label of avalid branch target statement in the same scoping unit as the GO TO statement.

The unconditional GO TO statement transfers control to the branch target statement identified by
the specified label.

The following are examples of GO TO statements:
GO TO 7734
GO TO 99999

Computed GO TO Statement

The computed GO TO statement transfers control to one of a set of labeled branch target
statements based on the value of an expression. It is an obsolescent feature in Fortran 95.
The computed GO TO statement takes the following form:

GO TO (label-list)[,] expr
label-list

Isalist of labels (separated by commas) of valid branch target statements in the same scoping unit
as the computed GO TO statement. (Also called the transfer list.) The same label can appear more
than oncein thislist.

expr

Isascalar numeric expression in the range 1 to n, where n is the number of statement labelsin
label-list. If necessary, it is converted to integer datatype.

Rules and Behavior

When the computed GO TO statement is executed, the expression is evauated first. The value of
the expression represents the ordinal position of alabel in the associated list of labels. Control is
transferred to the statement identified by the label. For example, if the list contains (30,20,30,40)
and the value of the expressionis 2, control istransferred to the statement identified with label 20.

If the value of the expression isless than 1 or greater than the number of labelsin thelist, control
istransferred to the next executable statement or construct following the computed GO TO
statement.

Examples

The following example shows valid computed GO TO statements:
GO TO (12, 24, 36), | NDEX
GO TO (320, 330, 340, 350, 360), SITYJ,K) + 1

7 Intel Fortran Language Reference

See Also

Appendix A, “Deleted and Obsolescent L anguage Features’, for details on obsolescent featuresin
Fortran 95

The ASSIGN and Assigned GO TO Statements

7-4

The ASSIGN statement assigns alabel to an integer variable. Subsequently, this variable can be
used as a branch target statement by an assigned GO TO statement or as aformat specifier ina
formatted input/output statement.

The ASSIGN and assigned GO TO statements are deleted features in Fortran 95; they were
obsolescent features in Fortran 90. Intel Fortran fully supports features deleted in Fortran 95.

See Also

Appendix A, “Deleted and Obsolescent L anguage Features’, for details on obsolescent featuresin
Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

ASSIGN Statement

The ASSIGN statement assigns a statement label value to an integer variable. It takes the
following form:

ASSIGN label TO var
|abel

Isthe label of abranch target or FORMAT statement in the same scoping unit as the ASSIGN
statement.

var
Isascalar integer variable.

Rules and Behavior

When an ASSIGN statement is executed, the statement label is assigned to the integer variable.
The variable is then undefined as an integer variable and can only be used as alabel (unlessitis
later redefined with an integer value).

The ASSIGN statement must be executed before the statements in which the assigned variable is
used.

Examples

The following example shows ASSIGN statements:
| NTEGER ERROR

Execution Control 7

ASSI GN 10 TO NSTART
ASSI GN 99999 TO KSTOP
ASSI GN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR must be previously
declared as an integer variable.

The following statement associates the variable NUMBER with the statement label 100:
ASSI GN 100 TO NUVBER

If an arithmetic operation is subsequently performed on variable NUMBER (such as follows), the
run-time behavior is unpredictable:

NUVBER = NUMBER + 1

To return NUMBER to the status of an integer variable, you can use the following statement:
NUMBER = 10

This statement dissociates NUMBER from statement 100 and assigns it an integer value of 10.
Once NUMBER isreturned to its integer variable status, it can no longer be used in an assigned
GO TO statement.

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement whose label was most recently
assigned to avariable. The assigned GO TO statement takes the following form:

GO TOvar [[,] (label-list)]
var
Isascalar integer variable.
label-list

Isalist of labels (separated by commas) of valid branch target statements in the same scoping unit
as the assigned GO TO statement. The same label can appear more than once in thislist.

Rules and Behavior

The variable must have a statement label value assigned to it by an ASSIGN statement (not an
arithmetic assignment statement) before the GO TO statement is executed.

If alist of labels appears, the statement label assigned to the variable must be one of the labelsin
thelist.

Both the assigned GO TO statement and its associated ASSIGN statement must be in the same
scoping unit.

7 Intel Fortran Language Reference

Examples

The following exampleis equivalent to GO TO 200:
ASSI GN 200 TO 1 GO
GO TO 1 GO

The following exampleis equivalent to GO TO 450:

ASSI GN 450 TO | BEG

GO TO I BEG (300, 450, 1000, 25)

The following example shows an invalid use of an assigned variable:
ASSI GN 10 TO |

J =1

GO TO J

In this case, variable Jis not the variable assigned to, so it cannot be used in the assigned GO TO
statement.

Arithmetic IF Statement

7-6

The arithmetic |F statement conditionally transfers control to one of three statements, based on the
value of an arithmetic expression. It is an obsolescent feature in Fortran 95 and Fortran 90.

The arithmetic IF statement takes the following form:
IF (expr) labell, label2, abel3
expr
Is ascalar numeric expression of type integer or real (enclosed in parentheses).
label1, label2, label3

Arethe labels of valid branch target statements that are in the same scoping unit as the arithmetic
|F statement.

Rules and Behavior

All three labels are required, but they do not need to refer to three different statements. The same
label can appear more than once in the same arithmetic | F statement.

During execution, the expression is evaluated first. Depending on the value of the expression,
control isthen transferred as follows:

If the Value of expr is: Control Transfers To:
Less than O Statement labell
Equal to O Statement label2

Execution Control 7

If the Value of expr is: Control Transfers To:
Greater than 0 Statement label3
Examples

The following example transfers control to statement 50 if the real variable THETA islessthan or
equal to the real variable CHI. Control passesto statement 100 only if THETA is greater than CHI.

| F (THETA-CH) 50, 50, 100

The following example transfers control to statement 40 if the value of the integer variable
NUMBER iseven. It transfers control to statement 20 if the value is odd.

IF (NUMBER / 2*2 - NUMBER) 20, 40, 20

See Also

Appendix A, “Deleted and Obsolescent Lanquage Features’, for details on obsolescent featuresin
Fortran 95 and Fortran 90

CALL Statement

The CALL statement transfers control to a subroutine subprogram. It takes the following form:
CALL sub[([a-arg[, a-arg]...])]
sub

I's the name of the subroutine subprogram or other external procedure, or adummy argument
associated with a subroutine subprogram or other external procedure.

a-arg

Isan actual argument optionally preceded by [keyword=], where keyword is the name of adummy
argument in the explicit interface for the subroutine. The keyword is assigned a value when the
procedure is invoked.

Each actual argument must be a variable, an expression, the name of a procedure, or an aternate
return specifier. (It must not be the name of an internal procedure, statement function, or the
generic name of a procedure.)

An adternate return specifier is an asterisk (*), or ampersand (&), followed by the label of an
executable branch target statement in the same scoping unit asthe CALL statement. (An aternate
return is an obsolescent feature in Fortran 95 and Fortran 90.)

77

7 Intel Fortran Language Reference

Rules and Behavior

When the CALL statement is executed, any expressions in the actual argument list are evaluated,
then control is passed to the first executable statement or construct in the subroutine. When the
subroutine finishes executing, control returns to the next executable statement following the
CALL statement, or to astatement identified by an alternate return label (if any).

If an argument list appears, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.

If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.
If adummy argument is optional, the actual argument can be omitted.

An actual argument associated with adummy procedure must be the specific name of aprocedure,
or be another dummy procedure. Certain specific intrinsic function names must not be used as
actual arguments (see Table 9-1).

You can use a CALL statement to invoke a function as long as the function is not one of the
following types:

°* REAL(8)

* REAL(16)

® COMPLEX(8)

* COMPLEX(16)

e CHARACTER

Examples

The following example shows valid CALL statements:
CALL CURVE(BASE, 3. 14159+X, Y, LIM T, R(LT+2))

CALL PNTOUT(A, N,’ ABCD)

CALL EXIT
CALL MULT(A, B, *10,*20,C) I The asterisks and anpersands denote
CALL SUBA(X, &30, &50, Y) I alternate returns

The following example shows a subroutine with argument keywords:
PROGRAM KEYWORD _EXAMPLE
I NTERFACE
SUBROUTI NE TEST_C(I, L, J, KYWD2, D, F, KYWD1)
INTEGER |, L(20), J, KYWl

7-8

Execution Control 7

REAL, OPTIONAL :: D, F
COVPLEX KYWD2

END SUBROUTI NE TEST_C
END | NTERFACE
INTEGER |, J, K
| NTEGER L(20)
COVPLEX Z1
CALL TEST C(I, L, J, KYWDL = K, KYWD2 = Z1)

Thefirst three actual arguments are associated with their corresponding dummy arguments by
position. The argument keywords are associated by keyword name, so they can appear in any
order.

Note that the interface to subroutine TEST has two optional arguments that have been omitted in
the CALL statement.

The following is another example of a subroutine call with argument keywords:

CALL TEST(X, Y, N, EQUALITIES = Q XSTART = X0)

The first three arguments are associated by position.

See Also

® “Subroutines’

* “Argument Association” for details on procedure arguments

* “OPTIONAL Attribute and Statement” for details on optional arguments
* “Dummy Procedure Arguments’ for details on dummy arguments

* Appendix A, “Deleted and Obsolescent Language Features’, for details on obsolescent
featuresin Fortran 95 and Fortran 90

CASE Constructs

The CASE construct conditionally executes one block of constructs or statements depending on
the value of ascalar expression in a SELECT CASE statement.

The CASE construct takes the following form:

7-9

7 Intel Fortran Language Reference

7-10

[name:] SELECT CASE (expr)
[CASE (case-value[, case-value]...) [name]
block]...
[CASE DEFAULT [name]
block]
END SELECT [name]
name
I's the name of the CASE construct.
expr
Isascalar expression of type integer, logical, or character (enclosed in parentheses). Evaluation of
this expression resultsin avalue called the case index.
case-value
Is one or more scalar integer, logical, or character initialization expressions enclosed in
parentheses. Each expr must be of the same type and kind parameter as expr. If thetypeis

character, case-value and expr can be of different lengths, but their kind parameter must be the
same.

Integer and character expressions can be expressed as arange of case values, taking one of the
following forms:

| ow: hi gh

| ow:

: high
Case values must not overlap.
block

Is asequence of zero or more statements or constructs.

Rules and Behavior

If aconstruct nameis specified in a SELECT CASE statement, the same name must appear in the
corresponding END SELECT statement. The same construct name can optionally appear in any
CASE statement in the construct. The same construct name must not be used for different named
constructs in the same scoping unit.

The case expression (expr) is evaluated first. The resulting case index is compared to the case
valuesto find amatching value (there can only be one). When amatch occurs, the block following
the matching case value is executed and the construct terminates.

The following rules determine whether a match occurs:

Execution Control 7

®* When the case value isa single value (no colon appears), a match occurs as follows:

Data Type A Match Occurs If:
Logical case-index .EQV. case- value
Integer or character case-index = = case-value

®* When the case value is arange of values (a colon appears), a match depends on the range
specified, asfollows:

Range A Match Occurs If:

low: case-index >= low

:high case-index <= high
low:high low <= case-index <= high

Thefollowing are al valid case values:

CASE (1, 4, 7, 11:14, 22) I I'ndividual values as specified:
! 1, 4, 7, 11, 12, 13, 14, 22

CASE (:-1) I Al values |less than zero

CASE (0) I Only zero

CASE (1:) ! Al'l val ues above zero

If no match occursbut a CASE DEFAULT statement is present, the block following that statement
is executed and the construct terminates.

If no match occurs and no CASE DEFAULT statement is present, no block is executed, the
construct terminates, and control passes to the next executable statement or construct following
the END SELECT statement.

Figure 7-1 shows the flow of control in a CASE construct.

7-11

7 Intel Fortran Language Reference

Figure 7-1

Flow of Control in CASE Constructs

Construct Flow of Control
Evaluate Test 1
SELECT CASE (TEST 1)
CASE (1)
block 1 Matches Execute
CASE (2) CASE (1) block 1
block 2
END SELECT
\
Matches Execute
CASE (2) block 2
SELECT CASE (TEST 2)
CASE (1)
block 1 Matches Execute
CASE (2) CASE (1) block 1
block 2
CASE (3) 0
block 3
CASE DEFAULT Matches Execute
block 4 CASE (2) block 2
END SELECT
Matches Execute
CASE (3) block 3

Execute
block 4

"

ZK-6515A-GE

7-12

Execution Control 7

You cannot use branching statements to transfer control to a CA SE statement. However, branching
to a SELECT CASE statement is allowed. Branching to the END SELECT statement is allowed
only from within the CASE construct.

Examples

The following are examples of CASE constructs:
| NTEGER FUNCTI ON STATUS_CODE (1)
| NTEGER |
CHECK_STATUS: SELECT CASE (1)
CASE (:-1)
STATUS_CODE
CASE (0)
STATUS CODE
CASE (1:)
STATUS_CODE = 1
END SELECT CHECK_ STATUS
END FUNCTI ON STATUS_ CODE

-1

1
o

SELECT CASE (J)

CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9
CALL SUB_A

CASE DEFAULT
CALL SUB B

END SELECT

The following three examples are equivalent:
1. SELECT CASE (I TEST .EQ 1)
CASE (. TRUE.)
CALL SuB1 ()
CASE (. FALSE.)
CALL SUB2 ()
END SELECT
2. SELECT CASE (I TEST)
CASE DEFAULT
CALL SuB2 ()
CASE (1)
CALL SUB1 ()
END SELECT

7-13

7 Intel Fortran Language Reference

3. IF (ITEST .EQ 1) THEN
CALL SUBL ()
ELSE
CALL SUB2 ()
END | F

CONTINUE Statement

The CONTINUE statement is primarily used to terminate alabeled DO construct when the
construct would otherwise end improperly with either aGO TO, arithmetic IF, or other prohibited
control statement.

The CONTINUE statement takes the following form:
CONTINUE
The statement by itself does nothing and has no effect on program results or execution sequence.

The following example shows a CONTINUE statement:
DO 150 | = 1,40
40 Y=Y + 1
Z = COs(Y)
PRINT *, Z
IF (Y .LT. 30) GO TO 150
GO TO 40
150 CONTI NUE

DO Constructs

The DO construct controls the repeated execution of ablock of statements or constructs. (This
repeated execution is called aloop.)

The number of iterations of aloop can be specified in the initial DO statement in the construct, or
the number of iterations can be left indefinite by asimple DO ("DO forever") construct or DO
WHILE statement.

The EXIT and CY CLE statements modify the execution of aloop. An EXIT statement terminates
execution of aloop, while a CY CLE statement terminates execution of the current iteration of a
loop. For example:
DO

READ (EUNIT, |IOSTAT=I0S) Y

IF (10S/=0) EXIT

I F (Y <0) CYCLE

7-14

Execution Control 7

CALL SUB A(Y)
END DO

If an error or end-of-file occurs, the DO construct terminates. If anegative value for Y isread, the
program skips to the next READ statement.

See Also

* “CYCLE Statement”

e “EXIT Statement”

* “FORALL Statement and Construct” for details on DO loopsin FORALL constructs

Forms for DO Constructs

A DO construct takes one of the following forms:
Block Form:

[name:] DO [labdl][,] [loop-control]
block
[label] term-stmt

Nonblock Form:
DO label[,] [loop-control]

block
[label] ex-term-stmt

name

I's the name of the DO construct.

label

Is a statement label identifying the terminal statement.
loop-control

IsaDO iteration (see “Iteration Loop Control”) or a (DO) WHILE statement (see“DO WHILE
Statement”).

block

Is asequence of zero or more statements or constructs.
term-stmt

Istheterminal statement for the block form of the construct.
ex-term-stmt

Isthetermina statement for the nonblock form of the construct.

7-15

7 Intel Fortran Language Reference

7-16

Rules and Behavior

Thetermina statement (term-stmt) for a block DO construct is an END DO or CONTINUE
statement. If the block DO statement contains a label, the terminal statement must be identified
with the same label. If no label appears, the terminal statement must be an END DO statement.

If aconstruct name is specified in ablock DO statement, the same name must appear in the

terminal END DO statement. If no construct name is specified in the block DO statement, no name
can appear in the terminal END DO statement.

Thetermina statement (ex-term-stmt) for anonblock DO construct is an executabl e statement (or
construct) that is identified by the label specified in the nonblock DO statement. A nonblock DO
construct can share aterminal statement with another nonblock DO construct. A block DO
construct cannot share aterminal statement.

The following cannot be terminal statements for nonblock DO constructs:
® CONTINUE (alowed if it isa shared terminal statement)

* CYCLE
®* END (for aprogram or subprogram)
e EXIT

® GO TO (unconditional or assigned)
* Arithmetic IF

* RETURN

* STOP

The nonblock DO construct is an obsolescent feature in Fortran 95 and Fortran 90.

Examples
The following example shows equivalent block DO and nonblock DO constructs:
DOl =1, N ! Bl ock DO
TOTAL = TOTAL + B(1)
END DO
DO20 1 =1, N I Nonbl ock DO

20 TOTAL = TOTAL + B(1)

The following example shows a simple block DO construct (contains no iteration count or DO
WHILE statement):

DO
READ *, N
IE (N == 0) STOP
CALL SUBN

Execution Control 7

END DO

The DO block executes repeatedly until the value of zero is read. Then the DO construct
terminates.
The following example shows a named block DO construct:
LOOP_1: DOl =1, N
A(l) = C* B(I)
END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal statement:

DO20 1 =1, N

DO20J =1+1, N

20 RESULT(!,J) = 1.0 / REAL(l + J)

See Also

Appendix A, “Deleted and Obsolescent L anguage Features’, for details on obsolescent featuresin
Fortran 95 and Fortran 90

Execution of DO Constructs

The range of aDO construct includes all the statements and constructs that follow the DO
statement, up to and including the terminal statement. If the DO construct contains another
construct, the inner (nested) construct must be entirely contained within the DO construct.

Execution of a DO construct differs depending on how the loop is controlled, as follows:

®* For simple DO constructs, there is no loop control. Statements in the DO range are repeated
until the DO statement is terminated explicitly by a statement within the range.

* Foriterative DO statements, loop control is specified asdo- var = exprl, expr2
[, expr3].Aniteration count specifiesthe number of timesthe DO range is executed. (For
more information on iteration loop control, see “lteration Loop Control”.)

®* For DO WHILE statements, loop control is specified asaDO range. TheDO rangeis
repeated as long as a specified condition remains true. Once the condition is evaluated as
false, the DO construct terminates. (For more information on the DO WHILE statement, see
“DO WHILE Statement”.)

Iteration Loop Control
DO iteration loop control takes the following form:
do-var = exprl, expr2 [, expr3]

7-17

7 Intel Fortran Language Reference

7-18

do-var

Isthe name of ascalar variable of typeinteger or real. It cannot be the name of an array element or
structure component.
expr

Isascalar numeric expression of type integer or real. If it is not the same type as do-var, it is
converted to that type.

Rules and Behavior

A DO variable or expression of type real is a deleted feature in Fortran 95; it was obsolescent in
Fortran 90. Intel Fortran fully supports features deleted in Fortran 95.

The following steps are performed in iteration loop control:
1. Theexpressions exprl, expr2, and expr3 are eval uated to respectively determine the
initial, terminal, and increment parameters.
The increment parameter (expr3) is optional and must not be zero. If an increment
parameter is not specified, it is assumed to be of type default integer with avalue of 1.
2. The DO variable (do-var) becomes defined with the value of the initial parameter
(exprl).
3. Theiteration count is determined as follows:
MAX(I NT((expr2 - exprl + expr3)/expr3), 0)
The iteration count is zero if either of the following istrue:
exprl > expr2 and expr3 > 0
exprl < expr2 and expr3 < 0

4. Theiteration count istested. If theiteration count is zero, the loop terminates and the DO
construct becomes inactive. (A compiler option can affect this, see your user’s guide for
more information.) If the iteration count is nonzero, the range of the loop is executed.

5. Theiteration count is decremented by one, and the DO variable isincremented by the
value of the increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when the iteration count
was tested and found to be zero).

The DO variable must not be redefined or become undefined during execution of the DO range.

If you change variablesin the initial, terminal, or increment expressions during execution of the
DO construct, it does not affect the iteration count. The iteration count is fixed each time the DO
construct is entered.

Examples
The following example specifies 25 iterations:

Execution Control 7

DO 100 K=1, 50, 2

K =49 during the final iteration, K = 51 after the loop.
The following example specifies 27 iterations:

DO 350 J=50,-2,-2

J=-2during the final iteration, J= —4 after the loop.
The following example specifies 9 iterations:

DO NUMBER=S, 40, 4

NUMBER = 37 during the final iteration, NUMBER = 41 after the loop. The terminating
statement of this DO loop must be END DO.

See Also

Appendix A, “Deleted and Obsolescent L anguage Features’, for details on obsolescent featuresin
Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

Nested DO Constructs

A DO construct can contain one or more complete DO constructs (loops). The range of an inner
nested DO construct must lie completely within the range of the next outer DO construct. Nested
nonblock DO constructs can share alabeled terminal statement.

Figure 7-2 shows correctly and incorrectly nested DO constructs.

7-19

7 Intel Fortran Language Reference

Figure 7-2 Nested DO Constructs

Correctly Nested Incorrectly Nested
DO Loops DO loops
B DO 45 K=1,10 B DO 15 K=1,10
DO 35 L=2,50,2 — DO 25 L=1,20
35 CONTINUE L 15 CONTINUE
DO 45 M=1,20 B DO 30 M=1,15
| L 45 CONTINUE —| 25 CONTINUE
B DO 10 1=1,20 L 30 CONTINUE
B DO J=15 — DO10I=1,5
DO K=1,10 B DO J=1,10
END DO L 10 CONTINUE
L END DO L END DO
10 CONTINUE
ZK-7969-GE

7-20

Execution Control 7

In anested DO construct, you can transfer control from an inner construct to an outer construct.
However, you cannot transfer control from an outer construct to an inner construct.

If two or more nested DO constructs share the same terminal statement, you can transfer control to
that statement only from within the range of the innermost construct. Any other transfer to that
statement constitutes a transfer from an outer construct to an inner construct, because the shared
statement is part of the range of the innermost construct.

Extended Range
A DO construct has an extended range if both of the following are true:

®* The DO construct contains a control statement that transfers control out of the construct.

®* Another control statement returns control back into the construct after execution of one or
more statements.

Therange of the construct is extended to include all executabl e statements between the destination
statement of the first transfer and the statement that returns control to the construct.

The following rules apply to a DO construct with extended range:

® A transfer into the range of a DO statement is permitted only if the transfer is made from the
extended range of that DO statement.

® The extended range of a DO statement must not change the control variable of the DO
statement.

Figure 7-3 illustrates valid and invalid extended range control transfers.

7-21

7 Intel Fortran Language Reference

Figure 7-3 Control Transfers and Extended Range
Valid Invalid
Control Transfers Control Transfers
— DO 35K=1,10 GOTO?20
— DO 15 L=2,20 DO 50 K=1,10
GO TO 20 200 A=B+C
15 CONTINUE — DO 35 1L=2,20
— DO 35 M=1,15 L35 CONTINUE
GO TO50 GO TO 40
30 X=A*D — DO 45 M=1,15
DO
Loop
L L35 CONTINUE 40 X=A*D
50 D=EF < L_45 CONTINUE
Extended
Range
GOTO 30 50 CONTINUE
GOTO30

ZK-4761-GE

7-22

Execution Control 7

DO WHILE Statement

The DO WHILE statement executes the range of a DO construct while a specified condition
remains true. The statement takes the following form:

DO [label][,] WHILE (expr)
label
Isalabel specifying an executable statement in the same program unit.
expr
Isascalar logical expression enclosed in parentheses.

Rules and Behavior

Before each execution of the DO range, the logical expression is evaluated. If it istrue, the
statements in the body of the loop are executed. If it isfalse, the DO construct terminates and
control transfers to the statement following the loop.

If no label appearsin aDO WHILE statement, the DO WHILE loop must be terminated with an
END DO statement.

You can transfer control out of a DO WHILE loop but not into aloop from elsewhere in the
program.

Examples

The following example shows a DO WHILE statement:
CHARACTER* 132 LI NE

I =1

DO WHI LE (LINE(I:1) .EQ ' ")
I =1 +1
END DO
The following examples show required and optional END DO statements:
Requi red Opt i onal
DO VH LE (I .GT. J) DO 10 WHILE (I .GT. J)
ARRAY(1,J) = 1.0 ARRAY(1,J) = 1.0
I =1 -1 I =1 -1
END DO 10 END DO

7-23

7 Intel Fortran Language Reference

CYCLE Statement

The CY CLE statement interrupts the current execution cycle of the innermost (or named) DO
construct.
The CY CLE statement takes the following form:
CYCLE [name]
name
Isthe name of the DO construct.

Rules and Behavior

When a CY CLE statement is executed, the following occurs:
1. The current execution cycle of the named (or innermost) DO construct is terminated.

If aDO construct name is specified, the CY CLE statement must be within the range of
that construct.

2. Theiteration count (if any) is decremented by 1.
3. TheDO variable (if any) isincremented by the value of the increment parameter (if any).
4. A new iteration cycle of the DO construct begins.
Any executable statements following the CY CLE statement (including alabeled terminal
statement) are not executed.

A CYCLE statement can be labeled, but it cannot be used to terminate a DO construct.

Examples
The following example shows a CY CLE statement:
DO 1 =1, 10
A(l) = C+ D(I)
IF (D(l) < 0) CYCLE I If true, the next statenent is onmtted
A(l) =0 I fromthe loop and the loop is tested again.
END DO

EXIT Statement
The EXIT statement terminates execution of a DO construct. It takes the following form:
EXIT [name]
name
I's the name of the DO construct.

7-24

Execution Control 7

Rules and Behavior

The EXIT statement causes execution of the named (or innermost) DO construct to be terminated.
If aDO construct nameis specified, the EXIT statement must be within the range of that construct.
Any DO variable present retainsits last defined value.

An EXIT statement can be labeled, but it cannot be used to terminate a DO construct.

Examples
The following example shows an EXIT statement:
LOOP_A: DOI =1, 15

N=N+1

IF (N>1) EXIT LOOP_A
END DO LOOP_A

END Statement

The END statement marks the end of a program unit. It takes one of the following forms:
END [PROGRAM [program-name]]
END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]|
END [MODULE [module-name]]
END [BLOCK DATA [block-data-name]]

For internal procedures and module procedures, you must specify the FUNCTION and
SUBROUTINE keywords in the END statement; otherwise, the keywords are optional.

In main programs, function subprograms, and subroutine subprograms, END statements are
executable and can be branch target statements. If control reaches the END statement in these
program units, the following occurs:

®* Inamain program, execution of the program terminates.
* Inafunction or subroutine subprogram, a RETURN statement isimplicitly executed.

The END statement cannot be continued in a program unit, and no other statement in the program
unit can have an initia line that appears to be the program unit END statement.

The END statementsin amodule or block data program unit are nonexecutable.

See Also
® Chapter 8, “Program Units and Procedures’
* “Branch Statements” for details on branch target statements

7-25

7 Intel Fortran Language Reference

IF Construct and Statement

The IF construct conditionally executes one block of statements or constructs.
The IF statement conditionally executes one statement.

The decision to transfer control or to execute the statement or block is based on the evaluation of a
logical expression within the IF statement or construct.

See Also
“ Arithmetic |F Statement”

IF Construct

7-26

The IF construct conditionally executes one block of constructs or statements depending on the
evaluation of alogical expression. (This construct was called ablock IF statement in FORTRAN
77.)

The IF construct takes the following form:
[name:] IF (expr) THEN
block
[ELSE IF (expr) THEN [name]
block]...
[EL SE [name]
block]
END IF [name]
name
Isthe name of the IF construct.
expr
Isascalar logical expression enclosed in parentheses.
block

Is asequence of zero or more statements or constructs.

Rules and Behavior

If aconstruct name is specified at the beginning of an IF THEN statement, the same name must
appear in the corresponding END |F statement. The same construct name must not be used for
different named constructsin the same scoping unit.

Execution Control 7

Depending on the evaluation of the logical expression, one block or no block is executed. The
logical expressions are evaluated in the order in which they appear, until atrue valueisfound or an
ELSE or END IF statement is encountered.

Once atrue valueisfound or an EL SE statement is encountered, the block immediately following
it is executed and the construct execution terminates.

If none of thelogica expressions evaluate to true and no EL SE statement appears in the construct,
no block in the construct is executed and the construct execution terminates.

=

NOTE. No additional statement can be placed after the IF THEN statement in
a block IF construct. For example, the following statement isinvalid in the
block IF construct:

IF (e) THENI = J

This statement is translated as the following logical IF statement:

IF (e) THENI = J

You cannot use branching statements to transfer control to an EL SE |F statement or ELSE
statement. However, you can branch to an END |F statement from within the IF construct.

Figure 7-4 shows the flow of control in IF constructs.

7-27

7 Intel Fortran Language Reference

Figure 7-4

Flow of Control in IF Constructs

Construct Flow of Control
False
IF (e) THEN —
block True
END IF
Execute
block
v
IF (e) THEN False
blockq
ELSE True
blocko
Execute Execute
END IF blocky block o
——
IF (e;) THEN False False
blockq
ELSE IF (e5) THEN True True
blocky Execute Execute
END IF blockq block
Te Te
v
IF (e) THEN
blockq False False False
ELSE IF (e,) THEN
block »
ELSE IF (eg) THEN True True True
bIOCkS Execute Execute Execute Execute
ELSE block 1 block o block block 4
block 4
[e <]
END IF o < <
ZK-0617-GE

7-28

Execution Control 7

You can include an | F construct in the statement block of another IF construct, if the nested | F
construct is completely contained within a statement block. It cannot overlap statement blocks.

Examples
The following example shows the simplest form of an IF construct:

Form Example
IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN
block TOTERR = TOTERR + ABS(ADJU)
QUEST = ADJU/FNDVAL
END IF END IF

This construct conditionally executes the block of statements between the IF THEN and the END
IF statements.

The following example shows an |F construct containing an EL SE statement:

Form Example
IF (expr) THEN IF (NAME .LT. 'N') THEN
block 1 IFRONT = IFRONT + 1
FRLET(IFRONT) = NAME(1:2)
ELSE ELSE
block 2 IBACK = IBACK + 1
END IF END IF

Block1 consists of all the statements between the IF THEN and EL SE statements. Block2 consists
of al the statements between the EL SE and the END |F statements.

If the value of the character variable NAME isless than 'N', block1 is executed. |f the value of
NAME is greater than or equal to 'N', block2 is executed.

The following example shows an |F construct containing an ELSE IF THEN statement:

Form Example
IF (expr) THEN IF (A .GT. B) THEN
block 1 D=B
F=A-B
ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN
block 2 D = B/2.

7-29

7 Intel Fortran Language Reference

Form Example
F=A-B/2.
END IF END IF

If A isgreater than B, blockl is executed. If A isnot greater than B, but A is greater than B/2,
block2 is executed. If A isnot greater than B and A is not greater than B/2, neither blockl1 nor
block2 is executed. Control transfers directly to the next executable statement after the END |F
statement.

The following example shows an |F construct containing several ELSE IF THEN statements and
an EL SE statement:

Form Example
IF (expr) THEN IF (A .GT. B) THEN
blockl D=B
F=A-B
ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN
block2 D=C
F=A-C
ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN
block3 D=2z
F=A-Z
ELSE ELSE
block4 D=0.0
F=A
END IF END IF

If A isgreater than B, blockl is executed. If A isnot greater than B but is greater than C, block2 is
executed. If A isnot greater than B or C but is greater than Z, block3 is executed. If A is not
greater than B, C, or Z, block4 is executed.

The following example shows a nested | F construct:

Form Example
IF (expr) THEN IF (A .LT. 100) THEN
block1 INRAN = INRAN + 1
IF (expr2) THEN IF (ABS(A — AVG) .LE. 5.) THEN

7-30

Execution Control 7

Form Example
blockla INAVG = INAVG + 1
ELSE ELSE
block1lb OUTAVG = OUTAVG + 1
END IF END IF
ELSE ELSE
block2 OUTRAN = OUTRAN + 1
END IF END IF

If A islessthan 100, the code immediately following the IF is executed. This code contains a
nested IF construct. If the absolute value of A minus AVG islessthan or equa to 5, blocklais
executed. If the absolute value of A minus AV G is greater than 5, block1b is executed.

If A isgreater than or equal to 100, block2 is executed, and the nested | F construct (in blockl) is

not executed.

The following example shows anamed | F construct:

BLOCK A: IF (D > 0.0) THEN I Initial statenent for naned construct
RADI ANS = ACOS(D) I These two statenents
DEGREES = ACOSD(D) ! forma bl ock

END | F BLOCK_A I Termi nal statement for naned construct

IF Statement

The IF statement conditionally executes one statement based on the value of alogical expression.
(This statement was called alogica |F statement in FORTRAN 77.)

The |IF statement takes the following form:
IF (expr) stmt
expr
Isascalar logical expression enclosed in parentheses.
stmt
Is any complete, unlabeled, executable Fortran statement, except for the following:
* A CASE, DO, IF, FORALL, or WHERE construct

® Another IF statement
®* The END statement for a program, function, or subroutine

7-31

7 Intel Fortran Language Reference

When an |F statement is executed, the logical expression is evaluated first. If the valueistrue, the
statement is executed. If the value is false, the statement is not executed and control transfersto
the next statement in the program.

Examples

The following examples show valid |F statements:

IF (J.GT.4 .OR J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)
I F (ENDRUN) CALL EXIT

PAUSE Statement

7-32

The PAUSE statement temporarily suspends program execution until the user or system resumes
execution. The PAUSE statement is a deleted feature in Fortran 95; it was obsolescent in Fortran
90. Intel Fortran fully supports features deleted in Fortran 95.

The PAUSE statement takes the following form:
PAUSE [pause-code]

pause-code

Is an optional message. It can be either of the following:

® A scaar character constant of type default character.

® A string of up to six digits; leading zeros are ignored. (Fortran 90 and FORTRAN 77 limit
digitstofive)

Rules and Behavior

If you specify pause-code, the PAUSE statement displays the specified message and then displays
the default prompt.
If you do not specify pause-code, the system displays the following default message:
FORTRAN PAUSE
The following prompt is then displayed:
® On Linux* systems:
PAUSE pr onpt >
® OnWindows* systems:
Fortran Pause - Enter conmmand<CR> or <CR> to conti nue.

Execution Control 7

Effect on Linux* Systems
The effect of PAUSE differs depending on whether the program is a foreground or background
process, as follows:
® |f aprogram isaforeground process, the program is suspended until you enter the
CONTINUE command. Execution then resumes at the next executabl e statement.
Any other command terminates execution.
® |f aprogram is abackground process, the behavior dependson st di n, asfollows:
— If st di nisredirected from afile, the system displays the following (after the pause
code and prompt):
To continue from background, execute 'kill -15 n'
In this message, n isthe processid of the program.
— If st di nisnot redirected from afile, the program becomes a suspended background
job, and you must specify f g to bring the job into the foreground. You can then enter a
command to resume or terminate processing.

Effect on Windows* Systems
The program waits for input on st di n. If you enter a blank line, execution resumes at the next
executable statement.

Anything elseistreated as a DOS command and is executed by asyst enq() call. The program
loops, letting you execute multiple DOS commands, until ablank line is entered. Execution then
resumes at the next executable statement.

Examples

The following examples show valid PAUSE statements:

PAUSE 701
PAUSE ' ERRONEOQUS RESULT DETECTED

See Also
® Your user'sguidefor detailson st di n

* Appendix A, “Deleted and Obsolescent L anguage Features”, for details on obsolescent
features in Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

RETURN Statement

The RETURN statement transfers control from a subprogram to the calling program unit.
The RETURN statement takes the following form:
RETURN [expr]

7-33

7 Intel Fortran Language Reference

7-34

expr
Isascalar expression that is converted to an integer value if necessary.

The expr is only allowed in subroutines; it indicates an aternate return. (An alternate returnis an
obsolescent feature in Fortran 95 and Fortran 90.)

Rules and Behavior

When aRETURN statement is executed in a function subprogram, control is transferred to the
referencing statement in the calling program unit.

When aRETURN statement is executed in a subroutine subprogram, control istransferred to the
first executable statement following the CALL statement that invoked the subroutine, or to the
aternate return (if oneis specified).

Examples
The foll owing shows how alternate returns can be used in a subroutine:

CALL CHECK(A, B, *10, *20, C
10 ...
20 ...

SUBROUTI NE CHECK(X, Y, *, *, O

50 |IF (X) 60, 70, 80
60 RETURN
70 RETURN 1
80 RETURN 2
END

The value of X determines the return, as follows:

* |f X <0, anormal return occurs and control is transferred to the first executable statement
following CALL CHECK in the calling program.

e |f X ==0, thefirst aternate return (RETURN 1) occurs and control is transferred to the
statement identified with label 10.

* |f X >0, the second alternate return (RETURN 2) occurs and contral is transferred to the
statement identified with label 20.

Note that an asterisk (*) specifiesthe alternate return. An ampersand (&) can also specify an
aternate return in a CALL statement, but not in a subroutine’s dummy argument list.

See Also
* “CALL Statement”

Execution Control 7

* Appendix A, “Deleted and Obsolescent L anguage Features”, for details on obsolescent
featuresin Fortran 95 and Fortran 90

STOP Statement

The STOP statement terminates program execution before the end of the program unit. It takes the
following form:
STOP [stop-code]
stop-code
Is an optional message. It can be either of the following:
® A scaar character constant of type default character.

® A gtring of up to six digits; leading zeros areignored. (Fortran 95/90 and FORTRAN 77 limit
digitstofive)

Effect on Linux* Systems

If you specify stop-code, the STOP statement writes the specified message to the standard error
device and terminates program execution. The program returns a status of zero to the operating
system.

If you do not specify stop-code, no message is output.

Effect on Windows* Systems
If you specify stop-code, the effect differs depending onits form, as follows:

* |f stop-codeis specified as a character constant, the STOP statement writes the specified
message to the standard error device and terminates program execution. The program returns
astatus of zero to the operating system.

® If stop-code is specified as a string of digits, the STOP statement writes the following to the
standard error device and terminates program execution:
Return code stop-code
In QuickWin programs, the following is displayed in a message box:
Programtermnated with Exit Code stop-code
In both cases, the program returns a status of stop-code to the operating system as an integer.
If you do not specify stop-code, the STOP statement writes the following default message to the
standard error device and terminates program execution:
Stop - Programterm nated.

The program returns a status of zero to the operating system.

7-35

7 Intel Fortran Language Reference

7-36

Examples
The following examples show valid STOP statements:

STOP 98
STOP ' END OF RUN
DO
READ *, X, Y
IF (X >Y) STOP 5555
END DO

Program Units and
Procedures

A Fortran 95/90 program consists of one or more program units. There are four types of program
units:

® Main program
The program unit that denotes the beginning of execution. It may or may not have a
PROGRAM statement asits first statement.

* External procedures
Program units that are either user-written functions or subroutines.

® Modules

Program units that contain declarations, type definitions, procedures, or interfaces that can
be shared by other program units.

* Block data program units
Program units that provide initial values for variables in named common blocks.

A program unit does not have to contain executable statements; for example, it can be amodule
containing interface blocks for subroutines.

A procedure can be invoked during program execution to perform a specific task.
There are several kinds of procedures, as follows:

Kind of Procedure Description

External procedure A procedure that is not part of any other program unit

Module procedure A procedure defined within a module

Internal procedure! A procedure (other than a statement function) contained within a
main program, function, or subroutine

Intrinsic procedure A procedure defined by the Fortran language

Dummy procedure An actual argument specified as a procedure or appearing in a

procedure reference

81

8 Intel Fortran Language Reference

Main

8-2

Kind of Procedure Description
Statement function A computing procedure defined by a single statement

1. The program unit that contains an internal procedure is called its host.

A function isinvoked in an expression using the name of the function or adefined operator. It
returns a single value (function result) that is used to evaluate the expression.

A subroutineisinvoked in a CALL statement or by a defined assignment statement. It does not
directly return avalue, but values can be passed back to the calling program unit through
arguments (or variables) known to the calling program.

Recursion (direct or indirect) is permitted for functions and subroutines.

A procedure interface refers to the properties of a procedure that interact with or are of concern to
the calling program. A procedure interface can be explicitly defined in interface blocks. All
program units, except block data program units, can contain interface blocks.

This chapter contains information on the following topics:

* “Main Program”

* “Modules and Module Procedures’

* “Block Data Program Units’

* “Functions, Subroutines, and Statement Functions’
e ‘“External Procedures’

* “Internal Procedures’

* “Argument Association”

®* “Procedure Interfaces’

®* The“CONTAINS Statement”

* The“ENTRY Statement”

See Also

® Chapter 9, “Intrinsic Procedures’

* “Program Structure” for an overview of program structure
® “Scope” for details on the scope of program entities

* “Recursive Procedures’ for details on recursion

Program

A Fortran program must include one main program. It takes the following form:

Program Units and Procedures 8

[PROGRAM name]
[specification-part]
[execution-part]
[CONTAINS
internal-subprogram-part]
END [PROGRAM [namée]]
name
I's the name of the program.
specification-part
Is one or more specification statements, except for the following:
®* INTENT (or its equivalent attribute)
®* OPTIONAL (or its equivalent attribute)
®* PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement. If a SAVE statement is
specified, it has no effect.

execution-part
Is one or more executable constructs or statements, except for ENTRY or RETURN statements.
internal-subprogram-part

Isone or moreinternal subprograms (defining internal procedures). Theinternal-subprogram-part
is preceded by a CONTAINS statement.

Rules and Behavior

The PROGRAM statement is optional. Within a program unit, a PROGRAM statement can be
preceded only by comment lines or an OPTIONS statement.

The END statement isthe only required part of aprogram. If anamefollowsthe END statement, it
must be the same as the name specified in the PROGRAM statement.

The program name is considered global and must be unigue. It cannot be the same as any local
name in the main program or the name of any other program unit, external procedure, or common
block in the executable program.

A main program must not reference itself (either directly or indirectly).

Examples
The following is an example of amain program:

8 Intel Fortran Language Reference

PROGRAM TEST

I NTEGER C, D, E(20, 20) I Specification part

CALL SUB 1 ! Executabl e part
CONTAI NS

SUBROUTI NE SUB_1 I Internal subprogram

END SUBROUTI NE SUB_1
END PROGRAM TEST

See Also
Your user’s guide for details on the default name for a main program

Modules and Module Procedures

A module contains specifications and definitions that can be used by one or more program units.
For the module to be accessible, the other program units must reference its namein a USE
statement, and the modul e entities must be public.
A modul e takes the following form:
MODULE name
[specification-part]
[CONTAINS
modul e-subprogram
[module-subprogram...]
END [MODULE [namé€]]
name
Isthe name of the module.
specification-part
Is one or more specification statements, except for the following:
* ENTRY
* FORMAT
* AUTOMATIC (or its equivalent attribute)
®* INTENT (or its equivalent attribute)
®* OPTIONAL (or its equivalent attribute)
* Statement functions

84

Program Units and Procedures 8

An automatic object must not appear in a specification statement.
module-subprogram

Is afunction or subroutine subprogram that defines the module procedure. A function must end
with END FUNCTION and a subroutine must end with END SUBROUTINE.

A module subprogram can contain internal procedures.

Rules and Behavior

If aname follows the END statement, it must be the same as the name specified in the MODULE
Statement.

The module name is considered global and must be unique. It cannot be the same as any local
name in the main program or the name of any other program unit, external procedure, or common
block in the executable program.

A moduleis host to any module procedures it contains, and entities in the module are accessible to
the modul e procedures through host association.

A module must not reference itself (either directly or indirectly).
You can use the PRIVATE attribute to restrict access to procedures or variables within a module.

Although ENTRY statements, FORMAT statements, and statement functions are not allowed in
the specification part of amodule, they are allowed in the specification part of a module
subprogram.

Any executable statements in a module can only be specified in a module subprogram.

A module can contain one or more procedure interface blocks, which let you specify an explicit
interface for an external subprogram or dummy subprogram.

Examples

The following example shows a simple modul e that can be used to provide global data:
MODULE MOD_A

INTEGER :: B, C

REAL E(25, 5)
END MODULE MOD_A

SUBROUTI NE SUB_Z
USE MOD_A I Makes scal ar variables B and C, and array
! E available to this subroutine

END SUBROUTI NE SUB Z

The following example shows a module procedure:

8-5

8 Intel Fortran Language Reference

MODULE RESULTS

CONTAI NS
FUNCTI ON MOD_RESULTS(X, Y) ! A nodul e procedure

END FUNCTI ON MOD_RESULTS
END MODULE RESULTS
The following example shows a module containing a derived type:
MODULE EMPLOYEE_DATA
TYPE EMPLOYEE
I NTEGER I D
CHARACTER(LEN=40) NAME
END TYPE EMPLOYEE
END MODULE

The following example shows a module containing an interface block:
MODULE ARRAY_CALCULATOR
I NTERFACE
FUNCTI ON CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)
END FUNCTI ON
END | NTERFACE
END MODULE ARRAY_CALCULATOR
The following example shows a derived-type definition that is public with components that are
private:
MODULE MATTER
TYPE ELEMENTS
PRI VATE
INTEGER C, D
END TYPE

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other program units that
use the module.

8-6

Program Units and Procedures 8

If aderived type is needed in more than one program unit, the definition should be placed in a
module and accessed by a USE statement whenever it is needed, as follows:
MODULE STUDENTS

TYPE STUDENT_RECORD

END TYPE

CONTAI NS
SUBROUTI NE COURSE_GRADE(. . .)
TYPE(STUDENT _RECORD) NAME

END SUBROUTI NE
END MODULE STUDENTS

PROGRAM SENI OR_CLASS
USE STUDENTS
TYPE(STUDENT_RECORD) | D

END PROGRAM
Program SENIOR_CLASS has access to type STUDENT _RECORD, because it uses module

STUDENTS. Module procedure COURSE_GRADE also has access to type
STUDENT_RECORD, because the derived-type definition appearsin its host.

See Also
* “Procedure Interfaces’
e “PRIVATE and PUBLIC Attributes and Statements’

Module References

A program unit references amodule in a USE statement. This module reference lets the program
unit access the public definitions, specifications, and procedures in the module.

Entitiesin amodule are public by default, unless the USE statement specifies otherwise or the
PRIVATE attribute is specified for the module entities.

A modul e reference causes use association between the using program unit and the entities in the
module.

See Also
* “USE Statement”

8-7

8 Intel Fortran Language Reference

* “PRIVATE and PUBLIC Attributes and Statements’
® “Useand Host Association” for details on use association

USE Statement

8-8

The USE statement gives a program unit accessibility to public entitiesin amodule. It takes one of
the following forms:

USE name [, rename-list]
USE name, ONLY : [only-list]
name
I's the name of the module.
rename-list
Is one or more items having the following form:
local-name => mod-name
local-name
Is the name of the entity in the program unit using the module.
mod-name
I's the name of a public entity in the module.
only-list

Is the name of a public entity in the module or a generic identifier (a generic name, defined
operator, or defined assignment).

An entity in the only-list can aso take the form:
[local-name =>] mod-name

Rules and Behavior

If the USE statement is specified without the ONLY option, the program unit has accessto all
public entities in the named module.

If the USE statement is specified with the ONLY option, the program unit has accessto only those
entities following the option.

If more than one USE statement for a given module appears in a scoping unit, the following rules
apply:

* |f one USE statement does not have the ONLY option, all public entitiesin the module are

accessible, and any rename-lists and only-lists are interpreted as a single, concatenated
rename-list.

Program Units and Procedures 8

* |f al the USE statements have ONLY options, al the only-lists are interpreted as asingle,
concatenated only-list. Only those entities named in one or more of the only-lists are
accessible.

If two or more generic interfaces that are accessible in a scoping unit have the same name, the

same operator, or are both assignments, they are interpreted as a single generic interface.

Otherwise, multiple accessible entities can have the same name only if no reference to the nameis

made in the scoping unit.

The local names of entities made accessible by a USE statement must not be respecified with any

attribute other than PUBLIC or PRIVATE. The local names can appear in namelist group lists, but

not inaCOMMON or EQUIVALENCE statement.

Examples
The following shows examples of the USE statement:
MODULE MOD_A
INTEGER :: B, C
REAL E(25,5), D(100)
END MODULE MOD_A

SUBROUTI NE SUB_Y

USE MOD A, DX == D, EX=>E | Array D has been renamed DX and array E
I has been renaned EX. Scal ar variables B
END SUBROUTI NE SUB_Y I and C are also available to this subrou-

I tine (using their nodul e nanes).
SUBROUTI NE SUB_Z
USE MOD_A, ONLY: B, C I Only scalar variables B and C are
I available to this subroutine
END SUBROUTI NE SUB Z

The following example shows a module containing common blocks:
MODULE COLORS

COVVON / BLOCKA/ C, DY 15)
COWDN / BLOCKB/ E, F
END MODULE COLORS
FUNCTI ON HUE(A, B)
USE COLORS

8-9

8 Intel Fortran Language Reference

END FUNCTI ON HUE

The USE statement makes all of the variablesin the common blocks in module COLORS
available to the function HUE.

To provide data abstraction, a user-defined data type and operations to be performed on val ues of
this type can be packaged together in a module. The following example shows such a module:
MODULE CALCULATI ON
TYPE | TEM
REAL :: X, Y
END TYPE | TEM
| NTERFACE OPERATOR (+)
MODULE PROCEDURE | TEM CALC
END | NTERFACE
CONTAI NS
FUNCTI ON | TEM CALC (Al, A2)
TYPE(I TEM Al, A2, |TEM CALC

END FUNCTI ON | TEM CALC
END MODULE CALCULATI ON
PROCGRAM TOTALS
USE CALCULATI ON
TYPE(ITEM X, Y, Z
X=Y+Z
END
The USE statement allows program TOTALS access to both the type ITEM and the extended
intrinsic operator + to perform calculations.

Block Data Program Units

A block data program unit providesinitial values for nonpointer variables in named common
blocks. It takes the following form:

8-10

Program Units and Procedures 8

BLOCK DATA [name]
[specification-part]
END [BLOCK DATA [name]]
name
I's the name of the block data program unit.
specification-part
Is one or more of the following statements:

COMMON INTRINSIC STATIC

DATA PARAMETER TARGET
Derived-type definition POINTER Type declaration’
DIMENSION RECORD? USE®
EQUIVALENCE Record structure declaration?

IMPLICIT SAVE

1. Can only contain attributes: DIMENSION, INTRINSIC, PARAMETER, POINTER, SAVE, STATIC, or TARGET.
2. For more information on the RECORD statement and record structure declarations, see “Record Structures”.
3. Allows access to only named constants.

Rules and Behavior

A block data program unit need not be named, but there can only be one unnamed block data
program unit in an executable program.

If aname follows the END statement, it must be the same as the name specified in the BLOCK
DATA statement.

An interface block must not appear in a block data program unit and a block data program unit
must not contain any executable statements.

If a DATA statement initializes any variable in anamed common block, the block data program
unit must have a complete set of specification statements establishing the common block.
However, all of the variablesin the block do not have to beinitialized.

A block data program unit can establish and defineinitial values for more than one common
block, but a given common block can appear in only one block data program unit in an executable
program.

The name of a block data program unit can appear in the EXTERNAL statement of a different
program unit to force a search of object libraries for the block data program unit at link time.

811

8 Intel Fortran Language Reference

Examples

The following is an example of ablock data program unit:
BLOCK DATA BLKDAT

I NTEGER S, X

LOG CAL T, W

DOUBLE PRECI SION U

DI MENSI ON R(3)

COVMON / AREAL/ R, S, U, T / AREA2/ W X, Y

DATA R/1.0,2*2.0/, T/.FALSE./, U 0.214537D-7/, W.TRUE./, Y/3.5/
END

See Also

* “DATA Statement”

e “EXTERNAL Attribute and Statement”

* “COMMON Statement” for details on common blocks

Functions, Subroutines, and Statement Functions

8-12

Functions, subroutines, and statement functions are user-written subprograms that perform
computing procedures. The computing procedure can be either a series of arithmetic operations or
aseries of Fortran statements. A single subprogram can perform a computing procedure in several
places in a program, to avoid duplicating a series of operations or statementsin each place.

The following table shows the statements that define these subprograms, and how control is
transferred to the subprogram:

Subprogram Defining Statements Control Transfer Method
Function FUNCTION or ENTRY Function reference!
Subroutine SUBROUTINE or ENTRY CALL statement?
Statement function Statement function definition Function reference

1. A function can also be invoked by a defined operation (see “Defining Generic Operators”).
2. A subroutine can also be invoked by a defined assignment (see “Defining Generic Assignment”).

A function reference isused in an expression to invoke afunction; it consists of the function name
and its actual arguments. The function reference returns a value to the calling expression that is
used to evaluate the expression.

The following topics are described in this section:
®* “Genera Rulesfor Function and Subroutine Subprograms’

Program Units and Procedures 8

* “Functions’
® “Subroutines’
* “Statement Functions’

See Also
* “ENTRY Statement”
* “CALL Statement”

General Rules for Function an d Subroutine Subprograms

A subprogram can be an external, module, or interna subprogram. The END statement for an
internal or module subprogram must be END SUBROUTINE [name] for a subroutine, or END
FUNCTION [name] for afunction. In an external subprogram, the SUBROUTINE and
FUNCTION keywords are optional.

If asubprogram name appears after the END statement, it must be the same as the name specified
in the SUBROUTINE or FUNCTION statement.

Function and subroutine subprograms can change the values of their arguments, and the calling
program can use the changed values.

A SUBROUTINE or FUNCTION statement can be optionally preceded by an OPTIONS
statement.

Dummy arguments (except for dummy pointers or dummy procedures) can be specified with an
intent and can be made optional.

The following sections describe recursion, pure procedures, and user-defined elemental
procedures.

See Also

* “Modules and Module Procedures’

* ‘“Internal Procedures’

e “External Procedures’

* “Optional Arguments’

* “INTENT Attribute and Statement” for details on argument intent

Recursive Procedures

A recursive procedure can reference itself directly or indirectly. Recursion is permitted if the
keyword RECURSIVE is specified in aFUNCTION or SUBROUTINE statement, or if
RECURSIVE is specified as a compiler option or in an OPTIONS statement.

8-13

8 Intel Fortran Language Reference

If afunction isdirectly recursive and array valued, the keywords RECURSIVE and RESULT must
both be specified in the FUNCTION statement.
The procedure interface is explicit within the subprogram in the following cases:
* When RECURSIVE is specified for a subroutine
* When RECURSIVE and RESULT are specified for afunction
The keyword RECURSIVE must be specified if any of the following applies (directly or
indirectly):
¢ The subprogram invokesitself.
® The subprogram invokes a subprogram defined by an ENTRY statement in the same
subprogram.
® AnENTRY procedurein the same subprogram invokes one of the following:
— Itself
— Another ENTRY procedure in the same subprogram
— The subprogram defined by the FUNCTION or SUBROUTINE statement

See Also

®* “OPTIONS Statement”

®* “Functions’ for details on the FUNCTION statement

® “Subroutines’ for details on the SUBROUTINE statement
® Your user’'sguide for details on compiler options

Pure Procedures

A pure procedure is a user-defined procedure that is specified by using the prefix PURE (or
ELEMENTAL) inaFUNCTION or SUBROUTINE statement. Pure procedures are afeature of
Fortran 95.

A pure procedure has no side effects. It has no effect on the state of the program, except for the
following:

® For functions: It returns avalue.

® For subroutines. It modifies INTENT(OUT) and INTENT(INOUT) parameters.
The following intrinsic and library procedures are implicitly pure:

® Allintrinsic functions

® Theeementa intrinsic subroutine MVBITS

A statement function is pure only if al functions that it references are pure.

8-14

Program Units and Procedures 8

Rules and Behavior

Except for procedure arguments and pointer arguments, the following intent must be specified for
all dummy arguments in the specification part of the procedure:

® For functions: INTENT(IN)

® For subroutines: any INTENT (IN, OUT, or INOUT)

A local variable declared in a pure procedure (including variables declared in any internal
procedure) must not:

® Specify the SAVE attribute

* Beinitialized in atype declaration statement or a DATA statement

The following variables have restricted use in pure procedures (and any internal procedures):
® (Global variables
¢ Dummy arguments with INTENT(IN) (or no declared intent)
®* Objectsthat are storage associated with any part of a global variable
They must not be used in any context that does either of the following:
® Causestheir value to change. For example, they must not be used as:
— Theleft side of an assignment statement or pointer assignment statement

— An actual argument associated with a dummy argument with INTENT(OUT),
INTENT(INOUT), or the POINTER attribute

— Anindex variablein aDO or FORALL statement, or an implied-DO clause
— Thevariablein an ASSIGN statement

— Aninput itemin aREAD statement

— Aninternd file unit in a WRITE statement

— Anobjectinan ALLOCATE, DEALLOCATE, or NULLIFY statement

— AnIOSTAT or SIZE specifier in an /O statement, or the STAT specifierina
ALLOCATE or DEALLOCATE statement

® Createsapointer to that variable. For example, they must not be used as:
— Thetarget in a pointer assignment statement
— Theright side of an assignment to a derived-type variable (including a pointer to a
derived type) if the derived type has a pointer component at any level
A pure procedure must not contain the following:

* Any externa 1/0O statement (including a READ or WRITE statement whose 1/0O unit isan
external file unit number or *)

* A PAUSE statement
® A STOP statement

A pure procedure can be used in contexts where other procedures are restricted; for example:

8-15

8 Intel Fortran Language Reference

8-16

® Itcanbecdleddirectly ina FORALL statement or be used in the mask expression of a
FORALL statement.

® |t canbecalled from apure procedure. Pure procedures can only call other pure procedures.

® |t can be passed as an actual argument to a pure procedure.

If aprocedureisused in any of these contexts, itsinterface must be explicit and it must be declared
purein that interface.

Examples

The following shows a pure function:
PURE | NTEGER FUNCTI ON MANDELBROT(X)
COWPLEX, INTENT(IN) :: X
COWLEX :: XTMP
INTEGER :: K
I Assune SHARED DEFS i ncl udes the declaration
I INTEGER | TQL
USE SHARED DEFS

K=0

XTMP = - X

DO WHI LE (ABS(XTMP)<2.0 . AND. K<I TOL)
XTMP = XTMP**2 - X

K=K+1
END DO
ITER = K

END FUNCTI ON

The following shows the preceding function used in an interface block:
| NTERFACE

PURE | NTEGER FUNCTI ON MANDELBROT(X)

COWPLEX, INTENT(IN) :: X

END FUNCTI ON MANDELBROT
END | NTERFACE
The following shows a FORALL construct calling the MANDELBROT function to update all the
elements of an array:
FORALL (I = 1:N, J = 1: M

A(1,J) = MANDELBROT(COVPLX((1-1)*1.0/(N-1), (J-1)*1.0/(M1))
END FORALL

Program Units and Procedures 8

See Also

® “Elemental Procedures’

® “Functions’ for details on the FUNCTION statement

® “Subroutines’ for details on the SUBROUTINE statement

* “FORALL Statement and Construct” for details on pure proceduresin FORALLS
¢ “Defining Explicit Interfaces’ for details on pure procedures in interface blocks

® Your user's guide for details on how to use pure procedures

Elemental Procedures

An elemental procedureis a user-defined procedure that is arestricted form of pure procedure. An
elemental procedure can be passed an array, which is acted upon one element at atime. Elemental
procedures are a feature of Fortran 95.

To specify an elemental procedure, use the prefix ELEMENTAL ina FUNCTION or
SUBROUTINE statement.

An explicit interface must be visible to the caller of an ELEMENTAL procedure.

For functions, the result must be scalar; it cannot have the POINTER or ALLOCATABLE

attribute.

Dummy arguments have the following restrictions:

®* They must be scaar.

® They cannot have the POINTER or ALLOCATABLE attribute.

* They (or their subobjects) cannot appear in a specification expression, except as an argument
to one of theintrinsic functions BIT_SIZE, LEN, KIND, or the numeric inquiry functions.

® They cannot be*.

® They cannot be dummy procedures.

If the actual arguments are all scalar, the result is scalar. If the actual arguments are array-valued,

the values of the elements (if any) of the result are the same asiif the function or subroutine had
been applied separately, in any order, to corresponding elements of each array actual argument.

Elemental procedures are pure procedures and all rules that apply to pure procedures also apply to
elemental procedures.

Examples
Consider the following:
MN (A 0, B) I A and B are arrays of shape (S, T)

In this case, the elemental reference to the MIN intrinsic function is an array expression whose
elements have the following values:

8-17

8 Intel Fortran Language Reference

MN (A(1,J3), 0, B(1,3)), I =1, 2, ..., S, J=1, 2, ..., T

See Also

e “Determining When Procedures Require Explicit | nterfaces”
* “Pure Procedures’

* “Optional Arguments’

®* “Functions’ for details on the FUNCTION statement

® “Subroutines’ for details on the SUBROUTINE statement

Functions

A function subprogram isinvoked in an expression and returns a single value (afunction result)
that is used to evaluate the expression.

The FUNCTION statement istheinitial statement of afunction subprogram. It takes the following
form:

[prefix] FUNCTION name [([d-arg-list])] [RESULT (r-name)]
prefix
Is one of the following:
type [keyword]
keyword [type]
type
|s a data type specifier.
keyword
Is one of the following:

Keyword Meaning

RECURSIVE Permits direct recursion to occur. If a function is directly recursive and
array valued, RESULT must also be specified (see “Recursive
Procedures”).

PURE Asserts that the procedure has no side effects (see “Pure Procedures”).

ELEMENTAL A restricted form of pure procedure that acts on one array element at a
time (see “Elemental Procedures”).

name

Is the name of the function. If RESULT is specified, the function name must not appear in any
specification statement in the scoping unit of the function subprogram.

8-18

Program Units and Procedures 8

The function name can be followed by the length of the data type. The length is specified by an
asterisk (*) followed by any unsigned, nonzero integer that is avalid length for the function’s
type. For example, REAL FUNCTION LGFUNC*8 (Y, Z) specifies the function result as
REAL(8) (or REAL*8).

This optional length specification is not permitted if the length has already been specified
following the keyword CHARACTER.

d-arg-list

Isalist of one or more dummy arguments. |f there are no dummy arguments and no RESULT
variable, the parentheses can be omitted. For example, the following isvalid:

FUNCTI ON F
r-name

Isthe name of the function result. This name must not be the same as the function name. A
function result can be declared with the POINTER or ALLOCATABLE attribute.

Rules and Behavior

The type and kind parameters (if any) of the function’s result can be defined in the FUNCTION
statement or in atype declaration statement within the function subprogram, but not both. If no
typeis specified, the type is determined by implicit typing rulesin effect for the function
subprogram.

Execution begins with the first executable construct or statement following the FUNCTION
statement. Control returns to the calling program unit once the END statement (or aRETURN
statement) is executed.

If you specify CHARACTER* (*), the function assumes the length declared for it in the program
unit that invokesiit. This type of character function can have different lengths when it isinvoked
by different program units; it is an obsolescent feature in Fortran 95.

If the length is specified as an integer constant, the value must agree with the length of the
function specified in the program unit that invokes the function. If no length is specified, alength
of 1 isassumed.

If the functionis an array, allocatable, or a pointer, the declarations within the function must state
these attributes for the function result name. The specification of the function result attributes,
dummy argument attributes, and the information in the procedure heading collectively define the
interface of the function.

The value of the result variableis returned by the function when it completes execution. Certain
rules apply depending on whether the result is a pointer, as follows:

8-19

8 Intel Fortran Language Reference

* If theresultisapointer, itsallocation status must be determined before the function compl etes
execution. (The function must associate a target with the pointer, or cause the pointer to be
explicitly disassociated from atarget.)

The shape of the value returned by the function is determined by the shape of the result
variable when the function completes execution.

® |f theresultis not a pointer, its value must be defined before the function completes
execution. If theresult isan array, all the elements must be defined; if theresult isa
derived-type structure, al the components must be defined.

A function subprogram cannot contain a SUBROUTINE statement, aBLOCK DATA statement, a

PROGRAM statement, or another FUNCTION statement. ENTRY statements can be included to

provide multiple entry points to the subprogram.

You can use a CALL statement to invoke a function as long as the function is not one of the

following types:

* REAL(8)

* REAL(16)

e COMPLEX(8)

* COMPLEX(16)

¢ CHARACTER

Examples

The following example uses the Newton-Raphson iteration method (F(X) = cosh(X) +
cos(X) - A = 0) togettheroot of the function:
FUNCTI ON ROOT(A)
X =10
DO
EX = EXP(X)
EM NX = 1./EX
ROOT = X - ((EX+EM NX)*.5+COS(X) - A) / ((EX- EM NX) *. 5- SI N(X))
| F (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN
X = ROOT
END DO
END
In the preceding example, the following formulais cal culated repeatedly until the difference
between X; and X, islessthan 1.0E-6:
cos(X;) + cos(X;) —A
sinh(X;) —sin(X;)

X'+1:Xi_

8-20

Program Units and Procedures 8

The following example shows an assumed-length character function:
CHARACTER* (*) FUNCTI ON REDO(CARG)

CHARACTER*1 CARG

DO | =1, LEN(REDO)

REDO(1:1) = CARG

END DO

RETURN
END FUNCTI ON
This function returns the value of its argument, repeated to fill the length of the function.
Within any given program unit, all references to an assumed-length character function must have
the same length. In the following example, the REDO function has alength of 1000:
CHARACTER* 1000 REDO, MANYAS, MANYZS
MANYAS = REDQ(' A')
MANYZS = REDQ(' Z')
Another program unit within the executable program can specify a different length. For example,
the following REDO function has alength of 2:
CHARACTER HOLD*6, REDO*2
HOLD = REDO(' A')//REDQ(' B')//REDQ(' C)
The following example shows a dynamic array-valued function:

FUNCTI ON SUB (N)
REAL, DI MENSION(N) :: SUB

END FUNCTI ON
The following example shows an alocatable function with allocatable arguments:

MODULE AP
CONTAI NS

FUNCTI ON ADD VEC(P1, P2)
I Function to add two al |l ocatable arrays of possibly differing | engths.
I The arrays may be thought of as polynonials (coefficients)
REAL, ALLOCATABLE :: ADD VEC(:), P1(:), P2(:)

I This function returns an allocatable array whose length is set to
I the length of the larger input array.
ALLOCATE(ADD_VEC(MAX(SI ZE(P1), SIZE(P2))))
M= M N(SI ZE(P1), SIZE(P2))
! Add up to the shorter input array size

8-21

8 Intel Fortran Language Reference

8-22

ADD VEC(: M = P1(: M + P2(: M
I Use the larger input array elements afterwards (from Pl or P2)
| F(SI ZE(P1) > M THEN
ADD VEC(M+1:) = P1(Ml:)
ELSE | F(SI ZE(P2) > M THEN
ADD VEC(M+1:) = P2(M+l:)
ENDI F
END FUNCTI ON

END MODULE

PROGRAM TEST

USE AP

REAL, ALLOCATABLE :: P(:), Q:), R(:), S(:)
ALLOCATE(P(3))

ALLOCATE(Q) 2))

ALLOCATE(R(3))

ALLOCATE(S(3))

! Notice that P and Qdiffer in length
P=(/4,2,1/) ! P=X*2 + 2X + 4

Q= (/-1,1/) I Q= X-1

PRINT *,' Result shoul d be: 3. 000000 3. 000000 1. 000000'
PRINT *,' Coefficients are: ', ADD VEC(P, Q ! X**2 + 3X + 3
P=(/1,1,1/) ! P= X*2 + X+ 1

R=1(/2,2,2]) ! R=2X**2 + 2X + 2

S=(/3,3,3) ! S=3X*2 + 3X + 3

PRINT *,' Result should be: 6. 000000 6. 000000 6. 000000’
PRINT *,' Coefficients are: ', ADD VEC(ADD VEC(P,R), S)

END

See Also

“RESULT Keyword”

“General Rulesfor Function and Subroutine Subprograms’

“ENTRY Statement”

“RETURN Statement”

“Function References’ for details on argument keywords in function references

Program Units and Procedures 8

RESULT Keyword

Normally, afunction result is returned in the function’s name, and all references to the function
name are references to the function result.

However, if you use the RESULT keyword in aFUNCTION statement, you can specify alocal
variable name for the function result. In this case, all references to the function name are recursive
calls, and the function name must not appear in specification statements.

The RESULT name must be different from the name of the function.

The following shows an example of arecursive function specifying a RESULT variable:

RECURSI VE FUNCTI ON FACTORI AL(P) RESULT(L)
INTEGER, INTENT(IN) :: P
| NTEGER L
IF (P == 1) THEN
L=1
ELSE
L = P * FACTORIAL(P - 1)
END | F
END FUNCTI ON

Function References
Functions are invoked by afunction reference in an expression or by a defined operation.
A function reference takes the following form:
fun ([a-arg [, a-arg]...])
fun
I's the name of the function subprogram.
a-arg

Isan actual argument optionally preceded by [keyword=], where keyword is the name of adummy
argument in the explicit interface for the function. The keyword is assigned a value when the
procedure is invoked.

Each actual argument must be a variable, an expression, or the name of a procedure. (It must not
be the name of an internal procedure, statement function, or the generic name of a procedure.)

Rules and Behavior

When afunction is referenced, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.

8-23

8 Intel Fortran Language Reference

Execution of the function produces aresult that is assigned to the function name or to the result
name, depending on whether the RESULT keyword was specified.

The program unit uses the result value to complete the evaluation of the expression containing the
function reference.

If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.

If adummy argument is optional, the actual argument can be omitted.

If adummy argument is specified with the INTENT attribute, its use may be limited. A dummy
argument whose intent is not specified is subject to the limitations of its associated actua
argument.

An actual argument associated with adummy procedure must be the specific name of aprocedure,
or be another dummy procedure. Certain specific intrinsic function names must not be used as
actual arguments (see Table 9-1).

Examples

Consider the following example:
X =20
NEW COS = COS(X) I A function reference

Intrinsic function COS cal culates the cosine of 2.0. The value —0.4161468 is returned (in place of
COS(X)) and assigned to NEW_COS.

See Also

* “INTENT Attribute and Statement”

* “Optional Arguments’

* “Defining Generic Operators’ for details on defined operations

* “Argument Association” for details on procedure arguments

* “Dummy Procedure Arguments’ for details on dummy arguments

® Chapter 9, “Intrinsic Procedures’, for details on intrinsic functions

* “RESULT Keyword” for details on using the keyword in FUNCTION statements
* “Functions’ for details on the FUNCTION statement

Subroutines

A subroutine subprogram isinvoked in a CALL statement or by a defined assignment statement,
and does not return a particular value.

8-24

Program Units and Procedures 8

The SUBROUTINE statement istheinitial statement of a subroutine subprogram. It takes the
following form:

[prefix] SUBROUTINE name [([d-arg-list])]
prefix
Is one of the following:

Keyword Meaning

RECURSIVE Permits direct recursion to occur. If a function is directly recursive and
array valued, RESULT must also be specified (see “Recursive
Procedures”).

PURE Asserts that the procedure has no side effects (see “Pure Procedures”).

ELEMENTAL A restricted form of pure procedure that acts on one array element at a
time (see “Elemental Procedures”).

name
Is the name of the subroutine.

d-arg-list

Isalist of one or more dummy arguments or alternate return specifiers (*).

Rules and Behavior

A subroutineisinvoked by a CALL statement or defined assignment. When a subroutine is
invoked, dummy arguments (if present) become associated with the corresponding actual
arguments specified in the call.

Execution begins with the first executable construct or statement following the SUBROUTINE
statement. Control returns to the calling program unit once the END statement (or aRETURN
statement) is executed.

A subroutine subprogram cannot contain a FUNCTION statement, aBLOCK DATA statement, a
PROGRAM statement, or another SUBROUTINE statement. ENTRY statements can be included
to provide multiple entry points to the subprogram.

Examples
The following example shows a subroutine:

Main Program Subroutine
CALL HELLO_WORLD SUBROUTINE HELLO_WORLD
PRINT *, "Hello World"

8-25

8 Intel Fortran Language Reference

8-26

Main Program Subroutine
END END SUBROUTINE

The following example uses alternate return specifiers to determine where control transfers on
completion of the subroutine:

Main Program Subroutine
CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*.*.Q)
TYPE *, 'VALUE LESS THAN ZERO' ..
GO TO 30 50 IF(2) 60,70,80
10 TYPE*, 'VALUE EQUALS ZERO' 60 RETURN
GO TO 30 70 RETURN
20 TYPE*, 'VALUE MORE THAN ZERO' 80 RETURN
30 CONTINUE END

The SUBROUTINE statement argument list contains two dummy alternate return arguments

corresponding to the actual arguments *10 and *20 in the CALL statement argument list.

The value of Z determines the return, as follows.

* |If Z <zero, anormal return occurs and control istransferred to the first executable statement
following CALL CHECK in the main program.

* |If Z==zero, thereturn isto statement label 10 in the main program.

* If Z > zero, thereturn isto statement label 20 in the main program.

An dternate return is an obsolescent feature in Fortran 90 and Fortran 95.

See Also

®* ‘“General Rulesfor Function and Subroutine Subprograms’

* “RETURN Statement”

* “ENTRY Statement”

* “CALL Statement” for details on argument keywords in subroutine references
* “Defining Generic Assignment” for details on defined assignment

* “Argument Association” for details on procedure arguments

® Chapter 9, “Intrinsic Procedures’, for details on intrinsic subroutines

* Appendix A, “Deleted and Obsolescent L anguage Features”, for details on obsol escent
featuresin Fortran 90 and Fortran 95

Program Units and Procedures 8

Statement Functions

A statement function is a procedure defined by a single statement in the same program unit in
which the procedure is referenced. It takes the following form:

fun ([d-arg [, d-arg]...]) = expr
fun
I's the name of the statement function.
d-arg

Isadummy argument. A dummy argument can appear only once in any list of dummy arguments,
and its scope islocal to the statement function.

expr
Is ascalar expression defining the computation to be performed.

Named constants and variables used in the expression must have been declared previoudly in the
specification part of the scoping unit or made accessible by use or host association.

If the expression contains a function reference, the function must have been defined previoudly in
the same program unit.

A statement function reference takes the following form:
fun ([a-arg [, a-arg]...])

fun

Isthe name of the statement function.

a-arg

Is an actual argument.

Rules and Behavior

When a statement function reference appearsin an expression, the values of the actual arguments
are associated with the dummy arguments in the statement function definition. The expression in
the definition is then evaluated. The resulting value is used to complete the evaluation of the
expression containing the function reference.

The data type of a statement function can be explicitly defined in atype declaration statement. If
no type is specified, the type is determined by implicit typing rulesin effect for the program unit.
Actual arguments must agree in number, order, and data type with their corresponding dummy
arguments.

Except for the data type, declarative information associated with an entity is not associated with
dummy arguments in the statement function; for example, declaring an entity to be an array or to
be in acommon block does not affect a dummy argument with the same name.

8-27

8 Intel Fortran Language Reference

The name of the statement function cannot be the same as the name of any other entity within the
same program unit.

Any reference to a statement function must appear in the same program unit as the definition of
that function.

A statement function reference must appear as (or be part of) an expression. The reference cannot
appear on the left side of an assignment statement.

A statement function must not be provided as a procedure argument.

Examples

The following are examples of statement functions:
REAL VOLUME, RADI US
VOLUME(RADI US) = 4. 189* RADI US**3

CHARACTER*10 CSF, A B

CSF(A, B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:
AVG(A B, C) = (A+B+C)/ 3.

GRADE = AV(@ TEST1, TEST2, XLAB) |
F (AVGP,D,Q .LT. AVE X Y,Z)) STOP
FI NAL = AVE TEST3, TEST4, LAB2) I Invalid reference; inplicit
I type of third argunment does not
I match inplicit type of dunmy argunent
Implicit typing problems can be avoided if al arguments are explicitly typed.
Thefollowing statement function definition isinvalid because it contains a constant, which cannot
be used as a dummy argument:
REAL COW, C, D, E
COVP(C,D,E 3.) = (C+ D- E)/3.

See Also
¢ “Useand Host Association”
* “Argument Association” for details on procedure arguments

External Procedures

External procedures are user-written functions or subroutines. They are located outside of the
main program and can’t be part of any other program unit.

8-28

Program Units and Procedures 8

External procedures can be invoked by the main program or any procedure of an executable
program.

In Fortran 95/90, external procedures can include internal subprograms (defining internal
procedures). Aninternal subprogram begins with a CONTAINS statement.
An external procedure can reference itself (directly or indirectly).

The interface of an external procedure isimplicit unless an interface block is supplied for the
procedure.

See Also

* “Procedure Interfaces’

* “Functions, Subroutines, and Statement Functions’ for details on function and subroutine
subprograms

®* Your user's guide for details on passing arguments

Internal Procedures
Internal procedures are functions or subroutines that follow a CONTAINS statement in a program
unit. The program unit in which the internal procedure appearsis called its host.
Internal procedures can appear in the main program, in an external subprogram, or in amodule
subprogram.
Aninterna procedure takes the following form:
CONTAINS
internal-subprogram
[internal-subprogram...
inter nal-subprogram

Is afunction or subroutine subprogram that defines the procedure. An interna subprogram must
not contain any other internal subprograms.

Rules and Behavior
Internal procedures are the same as external procedures, except for the following:

® Only the host program unit can use an interna procedure.

®* Aninterna procedure has accessto host entities by host association; that is, names declared
in the host program unit are useable within the internal procedure.

* |nFortran 95/90, the name of aninternal procedure must not be passed as an argument to
another procedure. However, Intel® Fortran allows an internal procedure name to be passed
as an actual argument to another procedure.

8-29

8 Intel Fortran Language Reference

® Aninterna procedure must not contain an ENTRY statement.

Aninterna procedure can reference itself (directly or indirectly); it can be referenced in the
execution part of its host and in the execution part of any internal procedure contained in the same
host (including itself).

The interface of an interna procedure is always explicit.

Examples

The following example shows an internal procedure:
PROGRAM COLOR_GUI DE

CONTAI NS
FUNCTI ON HUE(BLUE) I An internal procedure

END FUNCTI ON HUE
END PROGRAM

See Also
® “Useand Host Association”
®* “Procedure Interfaces’

* “Functions, Subroutines, and Statement Functions’ for details on function and subroutine
subprograms

Argument Association

8-30

Procedure arguments provide away for different program units to access the same data.

When a procedure is referenced in an executabl e program, the program unit invoking the
procedure can use one or more actual arguments to pass val ues to the procedure’s dummy
arguments. The dummy arguments are associated with their corresponding actual arguments when
control passes to the subprogram.

In general, when control is returned to the calling program unit, the last value assigned to a
dummy argument is assigned to the corresponding actual argument.

An actual argument can be avariable, expression, or procedure name. The type and kind
parameters, and rank of the actual argument must match those of its associated dummy argument.

A dummy argument is either a dummy data object, a dummy procedure, or an alternate return
specifier (*). Except for alternate return specifiers, dummy arguments can be optional.

Program Units and Procedures 8

If argument keywords are not used, argument association is positional. The first dummy argument
becomes associated with the first actual argument, and so on. If argument keywords are used,
arguments are associated by the keyword name, so actual arguments can bein a different order
than dummy arguments.

A keyword isrequired for an argument only if a preceding optional argument is omitted or if the
argument sequence is changed.

A scalar dummy argument can be associated with only a scalar actual argument.

If adummy argument is an array, it must be no larger than the array that is the actual argument.
You can use adjustable arrays to process arrays of different sizesin a single subprogram.

An actual argument associated with a dummy argument that is allocatable or a pointer must have
the same type parameters as the dummy argument.

A dummy argument referenced as a subprogram must be associated with an actual argument that
has been declared EXTERNAL or INTRINSIC in the calling routine.

If ascalar dummy argument is of type character, its length must not be greater than the length of
its associated actual argument.
If the character dummy argument’s length is specified as * (*) (assumed length), it uses the length
of the associated actual argument.
Once an actual argument has been associated with a dummy argument, no action can be taken that
affects the value or availability of the actual argument, except indirectly through the dummy
argument. For example, if the following statement is specified:
CALL SUB A (B(2:6), B(4:10))
B(4:6) must not be defined, redefined, or become undefined through either dummy argument,
sinceit is associated with both arguments. However, B(2:3) is definable through the first
argument, and B(7:10) is definable through the second argument.
Similarly, if any part of the actual argument is defined through a dummy argument, the actual
argument can only be referenced through that dummy argument during execution of the
procedure. For example, if the following statements are specified:
MODULE MOD_A

REAL :: A B, C D
END MODULE MOD_A

PROGRAM TEST
USE MOD_A
CALL SUB 1 (B)

END PROGRAM TEST

8-31

8 Intel Fortran Language Reference

SUBROUTI NE SUB_1 (F)
USE MOD_A

WRITE (*,*) F
END SUBROUTI NE SUB_1
Variable B must not be directly referenced during the execution of SUB_1 becauseit isbeing

defined through dummy argument F. However, B can be indirectly referenced through F (and
directly referenced when SUB_1 compl etes execution).

The following sections provide more details on arguments:
®¢ “QOptiona Arguments’

* Thedifferent kinds of arguments:

“Array Arguments’

“Pointer Arguments’

“ Assumed-L ength Character Arguments’

“Character Constant and Hollerith Arguments”
“Alternate Return Arguments’
“Dummy Procedure Arguments’

* “Referencesto Generic Procedures’

* “Referencesto Non-Fortran Procedures’

See Also
* “CALL Statement” for details on argument keywords in subroutine references

* “Function References’ for details on argument keywords in function references

* “9%REF and %VAL Argument List Functions” for details on built-in functions to pass actual

arguments

Optional Arguments

8-32

Dummy arguments can be made optional if they are declared with the OPTIONAL attribute. In
this case, an actual argument does not have to be supplied for it in a procedure reference.

Positional arguments (if any) must appear first in an actual argument list, followed by keyword
arguments (if any). If an optional argument is the last positional argument, it can simply be
omitted if desired.

However, if the optional argument is to be omitted but it is not the last positional argument,
keyword arguments must be used for any subsequent argumentsin thelist.

Program Units and Procedures 8

Optional arguments must have explicit procedure interfaces so that appropriate argument
associations can be made.

The PRESENT intrinsic function can be used to determineif an actual argument is associated with
an optional dummy argument in a particular reference.
The following example shows optional arguments:

PROGRAM RESULT
TEST_RESULT = LGFUNC(A, B=D)

CONTAI NS
FUNCTI ON LGFUNC(G, H, B)
OPTIONAL H, B
END FUNCTI ON
END
In the function reference, A isapositiona argument associated with required dummy argument G

The second actual argument D is associated with optional dummy argument B by its keyword
name (B). No actual argument is associated with optional argument H.

See Also

* “Argument Association”

* “OPTIONAL Attribute and Statement”

* “PRESENT”

* “CALL Statement” for details on argument keywords in subroutine references
* “Function References’ for details on argument keywords in function references

Array Arguments

Arrays are sequences of elements. Each element of an actual array is associated with the element
of the dummy array that has the same position in array element order.

If the dummy argument is an explicit-shape or assumed-size array, the size of the dummy
argument array must not exceed the size of the actual argument array.

The type and kind parameters of an explicit-shape or assumed-size dummy argument must match
the type and kind parameters of the actual argument, but their ranks need not match.

If the dummy argument is an assumed-shape array, the size of the dummy argument array is equal
to the size of the actual argument array. The associated actual argument must not be an
assumed-size array or ascalar (including a designator for an array element or an array element
substring).

8-33

8 Intel Fortran Language Reference

If the actual argument is an array section with avector subscript, the associated dummy argument
must not be defined.

The declaration of an array used as a dummy argument can specify the lower bound of the array.

If adummy argument is allocatable, the actual argument must be allocatable and the type
parameters and ranks must agree. An example of an allocatable function with alocatable arrays
appearsin “Functions’.

Dummy argument arrays declared as assumed-shape, deferred-shape, or pointer arrays require an
explicit interface visible to the caller.

See Also
* “Argument Association”
* “Arrays’

e “Array Association”

* “Assumed-Shape Specifications’ for details on assumed-shape arrays
* “Array Elements’ for details on array element order

* “Explicit-Shape Specifications’ for details on explicit-shape arrays

* “Assumed-Size Specifications’ for details on assumed-size arrays

Pointer Arguments

8-34

An argument isapointer if it is declared with the POINTER attribute.

When a procedure is invoked, the dummy argument pointer receives the pointer association status
of the actual argument. If the actual argument is currently associated, the dummy argument
becomes associated with the same target.

The pointer association status of the dummy argument can change during the execution of the
procedure, and any such changes are reflected in the actual argument.

If both the dummy and actual arguments are pointers, an explicit interface is required.

A dummy argument that is a pointer can be associated only with an actual argument that isa
pointer. However, an actual argument that is apointer can be associated with a nonpointer dummy
argument. In this case, the actual argument is associated with atarget and the dummy argument,
through argument association, also becomes associated with that target.

If the dummy argument does not have the TARGET or POINTER attribute, any pointers
associated with the actual argument do not become associated with the corresponding dummy
argument when the procedure is invoked.

Program Units and Procedures 8

If the dummy argument has the TARGET attribute, and is either a scalar or assumed-shape array,

and the corresponding actual argument has the TARGET attribute but is not an array section with a

vector subscript, the following occurs:

* Any pointer associated with the actual argument becomes associated with the corresponding
dummy argument when the procedure is invoked.

* Any pointers associated with the dummy argument remain associated with the actual
argument when execution of the procedure completes.

If the dummy argument hasthe TARGET attribute, and isan explicit-shape or assumed-size array,
and the corresponding actual argument hasthe TARGET attribute but is not an array section with a
vector subscript, association of actual and corresponding dummy arguments when the procedureis
invoked or when execution is completed is processor dependent.

If the dummy argument has the TARGET attribute and the corresponding actual argument does
not have that attribute or is an array section with avector subscript, any pointer associated with the
dummy argument becomes undefined when execution of the procedure completes.

See Also

* “Argument Association”

* “Pointer Assignments’

* “TARGET Attribute and Statement”

¢ “POINTER Attribute and Statement” for details on pointers

® Your user’'sguide for details on passing pointers as arguments

Assumed-Length Character Arguments

An assumed-length character argument is a dummy argument that assumes the length attribute of
its corresponding actual argument. An asterisk (*) specifies the length of the dummy character
argument.

A character array dummy argument can also have an assumed length. The length of each element
in the dummy argument is the length of the elements in the actual argument. The assumed length
and the array declarator together determine the size of the assumed-length character array.

The following example shows an assumed-length character argument:
| NTEGER FUNCTI ON | CVAX(CVAR)
CHARACTER* (*) CVAR
ICVAX = 1
DO | =2, LEN(CVAR)
IF (CVAR(I:1) .GT. CVAR(ICMAX: | CMAX)) | CVAX=I
END DO

8-35

8 Intel Fortran Language Reference

RETURN
END
Thefunction ICMAX findsthe position of the character with the highest ASCII code value. It uses
the length of the assumed-length character argument to control the iteration. Intrinsic function
LEN determines the length of the argument.

The length of the dummy argument is determined each time control transfers to the function. The
length of the actual argument can be the length of acharacter variable, array element, substring, or
expression. Each of the following function references specifies a different length for the dummy
argument:

CHARACTER VAR*10, CARRAY(3,5)*20

1

= | CVAX(VAR)
12 = | CMAX(CARRAY(2, 2))
13 = | CMAX(VAR(3: 8))
|4 = | CMAX(CARRAY(1, 3) (5: 15))
5 = | CMAX(VAR(3: 4) / / CARRAY(3, 5))
See Also
e “LEN”

* “Argument Association”

Character Constant and Hollerith Arguments

8-36

If an actual argument is a character constant (for example, ' ABCD'), the corresponding dummy
argument must be of type character. If an actual argument is aHollerith constant (for example,
4HABCD), the corresponding dummy argument must have a numeric data type.

The following example shows character and Hollerith constants being used as actual arguments:

SUBROUTI NE S(CHARSUB, HOLLSUB, A, B)
EXTERNAL CHARSUB, HOLLSUB

CALL CHARSUB(A, 'STRING)
CALL HOLLSUB(B, 6HSTRI NO)

The subroutines CHARSUB and HOL L SUB are themsel ves dummy arguments of the subroutine
S. Therefore, the actual argument ' STRI NG in the call to CHARSUB must correspond to a
character dummy argument, and the actual argument 6HSTRING in the call to HOLLSUB must
correspond to a numeric dummy argument.

Program Units and Procedures 8

See Also
“ Argument Association”

Alternate Return Arguments

Alternate return (dummy) arguments can appear in a subroutine argument list. They cause
execution to transfer to alabeled statement rather than to the statement immediately following the
statement that called theroutine. The alternate return isindicated by an asterisk (*). (An aternate
return is an obsolescent feature in Fortran 90 and Fortran 95.)

There can be any number of alternate returns in a subroutine argument list, and they can bein any
position in thelist.

An actual argument associated with an alternate return dummy argument is called an aternate
return specifier; it isindicated by an asterisk (*) or ampersand (&) followed by the label of an
executable branch target statement in the same scoping unit asthe CALL statement.

Alternate returns cannot be declared optional.

In Fortran 90, you can also use the RETURN statement to specify alternate returns.

The following example shows alternate return actual and dummy arguments:

CALL M NN(X, Y, *300, *250, 2)

SUBROUTINE M NN(A, B, *, *, O

See Also

* “Argument Association”
® “Subroutines’

* “CALL Statement”

* “RETURN Statement”

e Appendix A, “Deleted and Obsolescent L anguage Features”, for details on obsolescent
featuresin Fortran 90 and Fortran 95

Dummy Procedure Arguments

If an actual argument is a procedure, its corresponding dummy argument is a dummy procedure.
Dummy procedures can appear in function or subroutine subprograms.

The actual argument must be the specific name of an external, module, intrinsic, or another
dummy procedure. If the specific nameisal so ageneric name, only the specific nameis associated
with the dummy argument. Not all specific intrinsic procedures can appear as actual arguments.
(For more information, see Table 9-1.)

8-37

8 Intel Fortran Language Reference

The actual argument and corresponding dummy procedure must both be subroutines or both be
functions.

If the interface of the dummy procedure is explicit, the type and kind parameters, and rank of the
associated actual procedure must be the same as that of the dummy procedure.

If theinterface of the dummy procedureisimplicit and the procedureis referenced as a subroutine,
the actual argument must be a subroutine or adummy procedure.

If theinterface of the dummy procedureisimplicit and the procedure is referenced as afunction or
is explicitly typed, the actual argument must be a function or adummy procedure.

Dummy procedures can be declared optional, but they must not be declared with an intent.

The following is an example of a procedure used as an argument:
REAL FUNCTI ON LGFUNC(BAR)
| NTERFACE
REAL FUNCTI ON BAR(Y)
REAL, INTENT(IN) :: Y
END
END | NTERFACE

LGFUNC = BAR(2.0)
END FUNCTI ON LGFUNC

See Also
“ Argument Association”

References to Generic Procedures

8-38

Generic procedures are procedures with different specific names that can be accessed under one
generic (common) name. In FORTRAN 77, generic procedures were limited to intrinsic
procedures. In Fortran 90, you can use generic interface blocks to specify generic properties for
intrinsic and user-defined procedures.

If you refer to a procedure by using its generic name, the selection of the specific routine is based
on the number of arguments and the type and kind parameters, and rank of each argument.

All procedures given the same generic name must be subroutines, or all must be functions. Any
two must differ enough so that any invocation of the procedure is unambiguous.

The following sections describe references to generic intrinsic functions and show an example of
using intrinsic function names.

Program Units and Procedures 8

See Also

® “Unambiguous Generic Procedure References’

¢ Chapter 9, “Intrinsic Procedures”

* “Defining Generic Names for Procedures’ for details on user-defined generic procedures

* “Resolving Procedure References’ for details onthe rulesfor resolving ambiguous references

References to Generic Intrinsic Functions

The generic intrinsic function name COS lists six specific intrinsic functions that calculate
cosines: COS, DCOS, QCOS, CCOS, CDCOS, and CQCOS. These functions return different
values: REAL (4), REAL(8), REAL(16), COMPLEX(4), COMPLEX(8), and COMPLEX(16)
respectively.

If you invoke the cosine function by using the generic name COS, the compiler selects the
appropriate routine based on the arguments that you specify. For example, if the argument is
REAL(4), COSissdected; if it isREAL(8), DCOS is selected; and if it is COMPLEX(4), CCOS
is selected.

You can also explicitly refer to a particular routine. For example, you can invoke the
double-precision cosine function by specifying DCOS.

Procedure selection occurs independently for each generic reference, so you can use a generic
reference repeatedly in the same program unit to access different intrinsic procedures.

You cannot use generic function names to select intrinsic procedures if you use them as follows:
® The name of astatement function

* A dummy argument name, a common block name, or avariable or array name

When anintrinsic function is passed as an actual argument to a procedure, its specific name must

be used, and when called, its arguments must be scalar. Not all specific intrinsic functions can
appear as actual arguments. (For more information, see Table 9-1.)

Generic procedure names are local to the program unit that refers to them, so they can be used for
other purposes in other program units.

Normally, an intrinsic procedure name refers to the Fortran 90 library procedure with that name.
However, the name can refer to a user-defined procedure when the name appearsin an
EXTERNAL statement.

8-39

8 Intel Fortran Language Reference

g NOTE. If you call anintrinsic procedure by using the wrong number of

= arguments or an incorrect argument type, the compiler assumes you are
referring to an external procedure. For example, intrinsic procedure SIN
requires one argument; if you specify two arguments, such as SN(10,4), the
compiler assumes SIN is external and not intrinsic.

Except when used in an EXTERNAL statement, intrinsic procedure names are local to the
program unit that refers to them, so they can be used for other purposes in other program units.
The data type of anintrinsic procedure does not change if you use an IMPLICIT statement to
change the implied data type rules.

Intrinsic and user-defined procedures cannot have the same name if they appear in the same
program unit.

Examples

Example 8-1 showsthe local and global properties of an intrinsic function name. It usesintrinsic
function SIN as follows:

® Thename of astatement function

® The generic name of an intrinsic function

¢ The specific name of anintrinsic function

® The name of auser-defined function

Example 8-1 Using and Redefining an Intrinsic Function Name

! Conpare ways of conputing sine
PROGRAM SI NES
DOUBLE PRECI SION X, PI
PARAMETER (Pl =3. 141592653589793238D0)
COMMON V(' 3)

1 ! Define SIN as a statenent function
SIN(X) = COS(PI/2-X)
DO X = -PlI, PI, 2*PI/100

2 ! Ref erence the statenment function SIN
VRI TE (6,100) X, V, SIN(X)
END DO

CALL COMPUT(X)

8-40

Program Units and Procedures 8

Example 8-1 Using and Redefining an Intrinsic Function Name

100 FORMAT (5F10. 7)
END
SUBROUTI NE COVPUT(Y)
DOUBLE PRECI SI ON Y

3 ! Use intrinsic function SIN as an actual argunent
INTRINSIC SIN
COMMON V(3)
4 Define generic reference to doubl e-precision sine
V(1) = SINY)
5 ! Use intrinsic SIN as an actual argunent
CALL SUB(REAL(Y),SIN
END

SUBROUTI NE SUB(A, S)

6 ! Declare SIN as the nane of a user function
EXTERNAL SI N

7 Declare SIN as type DOUBLE PRECI SI ON
DOUBLE PRECI SI ON SI N
COMMON V(3)
8 ! Eval uate intrinsic function SIN
V(2) = S(A)
9 Eval uate user-defined SIN function
V(3) = SINA)
END
10 ! Define the user SIN function

DOUBLE PRECI SI ON FUNCTI ON SI N(X)
| NTEGER FACTOR
SIN = X - X**3/ FACTOR(3) + X**5/ FACTOR(5) &
- X**7/ FACTOR(7)
END

1 The statement function named SIN is defined in terms of the generic function name COS.
Because the argument of COS is double precision, the double-precision cosine functionis
evaluated. The statement function SIN isitself single precision.

8-41

8 Intel Fortran Language Reference

8-42

2 The statement function SIN is called.

3 Thename SIN is declared intrinsic so that the single-precision intrinsic sine function can be
passed as an actual argument at 5.

4 The generic function name SIN is used to refer to the double-precision sine function.
5 The single-precision intrinsic sine function is used as an actual argument.

6 The name SIN is declared a user-defined function name.

7 Thetype of SIN is declared double precision.

8 The single-precision sine function passed at 5 is evaluated.

9 The user-defined SIN function is evaluated.

10 The user-defined SIN function is defined as a simple Taylor series using a user-defined
function FACTOR to compute the factorial function.

See Also

e “EXTERNAL Attribute and Statement”

* “INTRINSIC Attribute and Statement”

®* “Names’ for details on the scope of names

® Chapter 9, “Intrinsic Procedures’, for details on generic and specific intrinsic functions

References to Elemental Intrinsic Procedures

An elemental intrinsic procedure has scalar dummy arguments that can be called with scalar or
array actual arguments. If actual arguments are array-valued, they must have the same shape.
There are many elemental intrinsic functions, but only one elemental intrinsic subroutine
(MVBITS).

If the actual arguments are scalar, the result is scalar. If the actual arguments are array-valued, the
scalar-valued procedure is applied element-by-element to the actual argument, resulting in an
array that has the same shape as the actual argument.

The values of the elements of the resulting array are the same as if the scalar-valued procedure had
been applied separately to the corresponding elements of each argument.

For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) isan array expression of shape
(5,6) whose elements have the value MAX(A (i,), 0.0, B (i, })), wherei =1, 2,...,5,andj = 1, 2,...,
6.

A reference to an elementd intrinsic procedure is an elemental reference if one or more actual
arguments are arrays and all array arguments have the same shape.

Program Units and Procedures 8

See Also
e “Arrays’

e Chapter 9, “Intrinsic Procedures’, for details on elemental procedures

References to Non-Fortran Procedures

To facilitate references to non-Fortran procedures, Intel Fortran provides built-in functions %REF
and %VAL to pass actual arguments, and %L OC, which computes the internal address of a storage
item.

%REF and %VAL Argument List Functions

When aprocedure is called, Fortran (by default) passes the address of the actual argument, and its
length if it is of type character. To call non-Fortran procedures, you may need to pass the actual
arguments in aform different from that used by Fortran.

The built-in functions %REF and %VAL et you change the form of an actual argument. You must
specify these functionsin the actual argument list of a CALL statement or function reference. You
cannot use them in any other context.

These functions specify how to pass an actual argument (for example, a) to a non-Fortran
procedure, as follows:

Function Effect
%REF (a) Passes argument a by reference.
%VAL (a) Passes argument a as an n-bit! immediate value. If a is integer (or logical)

and shorter than n bits, it is sign-extended to an n-bit value. For complex
data types, %VAL passes two n-bit arguments.

1. nis 64 on Intel® Itanium® processors; 32 on I1A-32 processors.

Table 8-1 liststhe Intel Fortran defaults for argument passing, and the allowed uses of %VAL and

%REF.
Table 8-1 Defaults for Argument List Functions
Allowed Functions
Actual Argument Data Ty pe Default %VAL %REF
Expressions:
Logical REF Yes! Yes
Integer REF Yes! Yes

8-43

8 Intel Fortran Language Reference

Table 8-1 Defaults for Argument List Functions

Allowed Functions

Actual Argument Data Ty pe Default %VAL %REF
REAL(4) REF Yes Yes
REAL(8) REF Yes? Yes
REAL(16) REF No Yes
COMPLEX(4) REF Yes Yes
COMPLEX(8) REF Yes Yes
COMPLEX(16) REF No Yes
Character N/A3 No Yes
Hollerith REF No No
Aggregate? REF No Yes
Derived REF No Yes
Array Name:

Numeric REF No Yes
Character N/A3 No Yes
Aggregate? REF No Yes
Derived REF No Yes
Procedure Name:

Numeric REF No Yes
Character N/A3 No Yes

1. If alogical or integer value occupies less than 64 bits of storage on Intel Itanium processors, or 32 bits of storage on |A-32 processors, it
is converted to the correct size by sign extension. Use the ZEXT function if zero extension is desired.

2. i64 only
3. A character argument is passed by address and hidden length. For more information, see your user’s guide.
4. In Intel Fortran record structures

The %REF and %VAL functions override related cDEC$ ATTRIBUTE settings.

See Also
Your user’s guide for details on how to use the %REF and %VAL functions

%LOC Function

The built-in function %L OC computes the internal address of astorage item. It takes the following
form:

8-44

Program Units and Procedures 8

%LOC (arg)
arg
Isthe name of an actual argument. It must be avariable, an expression, or the name of a procedure.
(It must not be the name of an internal procedure or statement function.)

The %L OC function produces an integer value that represents the location of the given argument.
The valueis INTEGER(8) on Intel Itanium processors; INTEGER(4) on | A-32 processors. You
can use thisinteger value as an item in an arithmetic expression.

The LOC intrinsic function serves the same purpose as the %L OC built-in function.

See Also
e “LOC” for details on the LOC intrinsic function
® Your user's guide for details on how to use the %L OC function

Procedure Interfaces

Every procedure has an interface, which consists of the name and characteristics of a procedure,
the name and characteristics of each dummy argument, and the generic identifier (if any) by which
the procedure can be referenced. The characteristics of a procedure are fixed, but the remainder of
the interface can change in different scoping units.

If these properties are all known within the scope of the calling program, the procedureinterfaceis
explicit; otherwise it isimplicit (deduced from its reference and declaration). The following table
shows which procedures have implicit or explicit interfaces:

Kind of Procedure Interface
External procedure Implicit *
Module procedure Explicit
Internal procedure Explicit
Intrinsic procedure Explicit
Dummy procedure Implicit!
Statement function Implicit

1. Unless an interface block is supplied for the procedure.

Theinterface of arecursive subroutine or function isexplicit within the subprogram that definesit.

An explicit interface can appear in aprocedure’sdefinition, in an interface block, or both. (Internal
procedures must not appear in an interface block.)

8-45

8 Intel Fortran Language Reference

The following sections describe when explicit interfaces are required, how to define explicit
interfaces, and how to define generic names, operators, and assignment.

Determining When Procedures Require Explicit Interfaces

8-46

A procedure must have an explicit interface in the following cases:
* |f the procedure has any of the following:

— A dummy argument that hasthe ALLOCATABLE, OPTIONAL, POINTER, TARGET,
or VOLATILE attribute

— A dummy argument that is an assumed-shape array

— Arresult that isan array, or apointer, or is allocatable (functions only)

— A result whose length is neither assumed nor a constant (character functions only)
* |f areferenceto the procedure appears as follows:

— With an argument keyword

— Asareference by its generic name

— Asadefined assignment (subroutines only)

— Inan expression as a defined operator (functions only)

— Inacontext that requires it to be pure

— If the procedure is elemental

See Also

® “Optiona Arguments’

* “Array Arguments’

* “Pointer Arguments’

® “Pure Procedures’

¢ “Elemental Procedures’

* “CALL Statement” for details on argument keywords in subroutine references
* “Function References’ for details on argument keywords in function references
* “Defining Generic Names for Procedures’ for details on user-defined generic procedures
* “Defining Generic Operators’ for details on defined operators

* “Defining Generic Assignment” for details on defined assignment

® Your user’'s guide for details on explicit interfaces when calling other languages

Program Units and Procedures 8

Defining Explicit Interfaces

Interface blocks define explicit interfaces for external or dummy procedures. They can also be
used to define a generic name for procedures, a new operator for functions, and a new form of
assignment for subroutines.

An interface block takes the following form:
INTERFACE [generic-spec]
[interface-body]...
[MODULE PROCEDURE name-list]...
END INTERFACE [generic-spec]
generic-spec
Is one of the following:
®* A generic name
®* OPERATOR (op)

Defines ageneric operator (op). It can be a defined unary, defined binary, or extended
intrinsic operator.

® ASSIGNMENT (=)
Defines generic assignment.

interface-body

Is one or more function or subroutine subprograms. A function must end with END FUNCTION
and a subroutine must end with END SUBROUTINE.

The subprogram must not contain a statement function or aDATA, ENTRY, or FORMAT
statement; an entry name can be used as a procedure name.

The subprogram can contain a USE statement.
name-list

I's the name of one or more module procedures that are accessible in the host. The MODULE
PROCEDURE statement is only alowed if the interface block specifies ageneric-spec and has a
host that is a module (or accesses a module by use association).

The characteristics of module procedures are not given in interface blocks, but are assumed from
the module subprogram definitions.

Rules and Behavior

Interface blocks can appear in the specification part of the program unit that invokes the external
or dummy procedure.

8-47

8 Intel Fortran Language Reference

8-48

A generic-spec can only appear in the END INTERFACE statement (a Fortran 95 feature) if one
appears in the INTERFACE statement; they must be identical.

The characteristics specified for the external or dummy procedure must be consistent with those
specified in the procedure’s definition.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit anything from its host
through host association.

A procedure must not have more than one explicit interface in a given scoping unit.
A interface block containing generic-spec specifies a generic interface for the following
procedures:
® The procedures within the interface block
Any generic name, defined operator, or equals symbol that appearsis ageneric identifier for
all the procedures in the interface block. For the rules on how any two procedures with the
same generic identifier must differ, see * Unambiguous Generic Procedure References’.
® The module procedures listed in the MODUL E PROCEDURE statement
The module procedures must be accessible by a USE statement.

To make an interface block available to multiple program units (through a USE statement), place
the interface block in a module.

The following rules apply to interface blocks containing pure procedures:
* Theinterface specification of a pure procedure must declare the INTENT of al dummy
arguments except pointer and procedure arguments.

® A procedurethat is declared purein its definition can also be declared pure in an interface
block. However, if it is not declared purein its definition, it must not be declared purein an
interface block.

Examples

The following example shows a simple procedure interface block with no generic specification:
SUBROUTI NE SUB_B (B, FB)

REAL B
| NTERFACE
FUNCTI ON FB (GN)
REAL FB, GN

END FUNCTI ON
END | NTERFACE

Program Units and Procedures 8

See Also

* “Functions’

* “Subroutines’

® “Useand Host Association”

* “Modules and Module Procedures’

* “Pure Procedures’

* “Determining When Procedures Require Explicit Interfaces’

* “Defining Generic Names for Procedures’ for details on user-defined generic procedures
* “Defining Generic Operators’ for details on defined operators

* “Defining Generic Assignment” for details on defined assignment

® Your user’'s guide for details on when you should not use interface blocks

Defining Generic Names for Procedures

An interface block can be used to specify a generic name to reference al of the procedures within
the interface block.

Theinitial line for such an interface block takes the following form:
INTERFACE generic-name
generic-name
Isthe generic name. It can be the same as any of the procedure names in the interface block, or the
same as any accessible generic name (including a generic intrinsic name).
Thiskind of interface block can be used to extend or redefine a generic intrinsic procedure.

The procedures that are given the generic name must be the same kind of subprogram: all must be
functions, or all must be subroutines.

Any procedure reference involving a generic procedure name must be resolvabl e to one specific
procedure; it must be unambiguous. For more information, see “Unambiguous Generic Procedure
References’.

The following is an example of a procedure interface block defining a generic name:
| NTERFACE GROUP_SUBS
SUBROUTI NE | NTEGER SUB (A, B)
I NTEGER, I NTENT(INQUT) :: A B
END SUBROUTI NE | NTEGER _SUB
SUBROUTI NE REAL_SUB (A, B)
REAL, |NTENT(INOUT) :: A B
END SUBROUTI NE REAL_SUB

8-49

8 Intel Fortran Language Reference

SUBRQUTI NE COVPLEX_SUB (A, B)
COVPLEX, I NTENT(INOUT) :: A B
END SUBROUTI NE COVPLEX SUB
END | NTERFACE
The three subroutines can be referenced by their individua specific names or by the group name
GROUP_SUBS.
The following example shows areference to INTEGER_SUB:

| NTEGER V1, V2
CALL GROUP SUBS (V1, V2)

See Also
“Defining Explicit Interfaces’ for details on interface blocks

Defining Generic Operators

8-50

An interface block can be used to define a generic operator. The only procedures allowed in the
interface block are functions that can be referenced as defined operations.

Theinitial line for such an interface block takes the following form:
INTERFACE OPERATOR (0p)

op

Is one of the following:

* A defined unary operator (one argument)

® A defined binary operator (two arguments)

* Anextended intrinsic operator (number of arguments must be consistent with the intrinsic
uses of that operator)

The functions within the interface block must have one or two nonoptional arguments with intent
IN, and the function result must not be of type character with assumed length. A defined operation
istreated as a reference to the function.

The following shows the form (and an example) of adefined unary and defined binary operation:

Operation Form Example
Defined unary .defined-operator. operand?* .MINUS. C
Defined binary operand2 .defined-operator. operand3 B .MINUS. C

1. The operand corresponds to the function’s dummy argument.
2. The left operand corresponds to the first dummy argument of the function.
3. The right operand corresponds to the second argument.

Program Units and Procedures 8

For intrinsic operator symbols, the generic properties include the intrinsic operations they
represent. Both forms of each relational operator have the same interpretation, so extending one
form (such as >=) defines both forms (>= and .GE.).
The following is an example of a procedure interface block defining a new operator:
| NTERFACE OPERATOR(. BAR.)
FUNCTI ON BAR(A 1)
I NTEGER, INTENT(IN) :: A1
I NTEGER :: BAR
END FUNCTI ON BAR
END | NTERFACE

The following example shows away to reference function BAR by using the new operator:
| NTEGER B
I =4 + (.BAR B)
The following is an example of a procedure interface block with a defined operator extending an
existing operator:
| NTERFACE OPERATOR(+)
FUNCTI ON LGFUNC (A, B)
LOG CAL, INTENT(IN) :: A(:), B(SIZE(A))
LOG CAL :: LGFUNC(SI ZE(A))
END FUNCTI ON LGFUNC
END | NTERFACE

The following example shows two equivalent ways to reference function LGFUNC:
LOd CAL, DI MENSION(1:10) :: C D, E

N = 10

E = LGFUNG(C(1:N), D(1:N))
E=C1LN + D1N

See Also

* “Defining Explicit Interfaces’ for details on interface blocks

* “Expressions’ for details on intrinsic operators

* “Defined Operations” for details on defined operators and operations
e “INTENT Attribute and Statement” for details on intent

Defining Generic Assignment

An interface block can be used to define generic assignment. The only procedures allowed in the
interface block are subroutines that can be referenced as defined assignments.

8-51

8 Intel Fortran Language Reference

Theinitial line for such an interface block takes the following form:
INTERFACE ASSIGNMENT (=)

The subroutines within the interface block must have two arguments, the first with intent OUT or
INOUT, and the second with intent IN.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the
equal sign are of the same derived type.

Defined elemental assignment isindicated by specifying ELEMENTAL in the SUBROUTINE
statement.

Any procedure reference involving generic assignment must be resolvabl e to one specific
procedure; it must be unambiguous. For more information, see “ Unambiguous Generic Procedure

References’.

The following is an example of a procedure interface block defining assignment:
| NTERFACE ASSI GNVENT (=)
SUBROUTI NE BI T_TO NUMERI C (NUM BI T)
I NTEGER, | NTENT(QUT) :: NUM
LOG CAL, INTENT(IN) :: BIT(:)
END SUBROUTI NE BI T_TO NUMERI C

SUBROUTI NE CHAR _TO_STRI NG (STR, CHAR)

USE STRI NG_MODULE I Contains definition of type STRING
TYPE(STRING), |NTENT(QUT) :: STR I A variable-length string
CHARACTER(*), INTENT(IN) :: CHAR

END SUBROUTI NE CHAR TO STRI NG
END | NTERFACE
The following exampl e shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:
CALL BI T_TO NUMERI C(X, (NUM:J)))
X = NUM1:J)
Thefollowing example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

CALL CHAR TO STRING(CH, '432C)
CH = ' 432C

See Also
* “Defined Assignments’

8-52

Program Units and Procedures 8

* “Defining Explicit Interfaces’ for details on interface blocks
® “INTENT Attribute and Statement” for details on intent

CONTAINS Statement
A CONTAINS statement separates the body of a main program, module, or external subprogram
from any internal or module proceduresit may contain. It is not executable.
The CONTAINS statement takes the following form:
CONTAINS

Any number of internal procedures can follow a CONTAINS statement, but a CONTAINS
statement cannot appear in the interna procedures themselves.

See Also
®* “Modules and Module Procedures’
®* “Internal Procedures’

ENTRY Statement
The ENTRY statement provides one or more entry points within a subprogram. It is not executable
and must precede any CONTAINS statement (if any) within the subprogram.
The ENTRY statement takes the following form:
ENTRY name[([d-arg [, d-arg]...]) [RESULT (r-name)]]
name

Is the name of an entry point. If RESULT is specified, this entry name must not appear in any
specification statement in the scoping unit of the function subprogram.

d-arg

Isadummy argument. The dummy argument can be an aternate return indicator (*) if the ENTRY
statement is within a subroutine subprogram.

r-name

Isthe name of afunction result. This name must not be the same as the name of the entry point, or
the name of any other function or function result. This parameter can only be specified for
function subprograms.

Rules and Behavior
ENTRY statements can only appear in external procedures or module procedures.

8-53

8 Intel Fortran Language Reference

8-54

An ENTRY statement must not appear in a CASE, DO, IF, FORALL, or WHERE construct, or a
nonblock DO loop.

When the ENTRY statement appears in a subroutine subprogram, it isreferenced by a CALL
statement. When the ENTRY statement appears in afunction subprogram, it is referenced by a
function reference.

An entry name within a function subprogram can appear in atype declaration statement.

Within the subprogram containing the ENTRY statement, the entry name must not appear as a
dummy argument in the FUNCTION or SUBROUTINE statement, and it must not appear in an
EXTERNAL or INTRINSIC statement. For example, neither of the following are valid:

(1) SUBROUTI NE SUB(E)
ENTRY E

(2) SUBROUTI NE SUB
EXTERNAL E
ENTRY E

An ENTRY statement can referenceitself if the function or subroutine subprogram was defined as
RECURSIVE.

Dummy arguments can be used in ENTRY statements even if they differ in order, number, type
and kind parameters, and name from the dummy arguments used in the FUNCTION,
SUBROUTINE, and other ENTRY statements in the same subprogram. However, each reference
to afunction, subroutine, or entry must use an actual argument list that agrees in order, number,
and type with the dummy argument list in the corresponding FUNCTION, SUBROUTINE, or
ENTRY statement.

Dummy arguments can be referred to only in executable statements that follow the first
SUBROUTINE, FUNCTION, or ENTRY statement in which the dummy argument is specified. If
adummy argument is not currently associated with an actual argument, the dummy argument is
undefined and cannot be referenced. Arguments do not retain their association from one reference
of asubprogram to another.

For specific information on ENTRY statements in function subprograms and subroutine
subprograms (including examples), see“ENTRY Statements in Function Subprograms” and
“ENTRY Statementsin Subroutine Subprograms’.

See Also

* “Functions’

® “Subroutines’

* “Function References’

Program Units and Procedures 8

* “CALL Statement”
* “Argument Association” for details on procedure arguments

ENTRY Statements in Function Subprograms

If the ENTRY statement is contained in a function subprogram, it defines an additional function.
The name of the function is the name specified in the ENTRY statement, and its result variableis
the entry name or the name specified by RESULT (if any).

If the entry result variable has the same characteristics as the FUNCTION statement’s result
variable, their result variables identify the same variable, even if they have different names.
Otherwise, the result variables are storage associated and must all be nonpointer scalars of
intrinsic type, in one of the following groups:

Group 1 Type default integer, default real, double precision real, default complex,
double complex, or default logical

Group 2 Type REAL(16) and COMPLEX(16)

Group 3 Type default character (with identical lengths)

All entry names within afunction subprogram are associated with the name of the function
subprogram. Therefore, defining any entry name or the name of the function subprogram defines
all the associated names with the same data type. All associated names with different data types
become undefined.

If RESULT isspecifiedinthe ENTRY statement and RECURSIVE is specified inthe FUNCTION
statement, the interface of the function defined by the ENTRY statement is explicit within the
function subprogram.

Examples
The following example shows a function subprogram that computes the hyperbolic functions
SINH, COSH, and TANH:
REAL FUNCTI ON TANH(X)
TSI NH(Y) EXP(Y) - EXP(-Y)
TCOSH(Y) EXP(Y) + EXP(-Y)

TANH = TSI NH(X) / TCOSH(X)
RETURN

ENTRY SI NH(X)
SINH = TSINH(X)/ 2.0
RETURN
ENTRY COSH(X)

8-55

8 Intel Fortran Language Reference

COSH = TCOSH(X) /2.0
RETURN
END

See Also
“RESULT Keyword”

ENTRY Statements in Subroutine Subprograms

8-56

If the ENTRY statement is contained in a subroutine subprogram, it defines an additional
subroutine. The name of the subroutine is the name specified in the ENTRY statement.

If RECURSIVE is specified on the SUBROUTINE statement, the interface of the subroutine
defined by the ENTRY statement is explicit within the subroutine subprogram.

Examples

The following example shows a main program calling a subroutine containing an ENTRY
Statement:

PROGRAM TEST
CALL SUBA(A, B, O ! A B, and C are actual argunents
! passed to entry point SUBA
END

SUBROUTI NE SUB(X, Y, 2)

ENTRY SUBA(Q R, 9) ' Q R and S are dumy arguments
! Execution starts with this statenent
END SUBROUTI NE
The following example shows an ENTRY statement specifying alternate returns:
CALL SUBC(M N, *100, *200, P)
SUBROUTI NE SUB(K, *, *)

ENTRY SUBC(J, K, *, *, X)
RETURN 1
RETURN 2

END

Program Units and Procedures 8

Note that the CALL statement for entry point SUBC includes actual alternate return arguments.
The RETURN 1 statement transfers control to statement label 100 and the RETURN 2 statement
transfers control to statement label 200 in the calling program.

See Also
Your user’s guide for details on implementation of argument association in ENTRY statements

8-57

8 Intel Fortran Language Reference

8-58

Intrinsic Procedures

Intrinsic procedures are functions and subroutines that are included in the Fortran 95/90 library.
There are four classes of these intrinsic procedures, as follows:
* Elementa procedures

These procedures have scalar dummy arguments that can be called with scalar or array actual
arguments. There are many elemental intrinsic functions and one elemental intrinsic
subroutine (MVBITS).

If the arguments are al scalar, the result is scalar. If an actual argument is array-valued, the
intrinsic procedureis applied to each element of the actual argument, resulting in an array that
has the same shape as the actual argument.

If thereis more than one array-valued argument, they must all have the same shape.

® Inquiry functions
These functions have results that depend on the properties of their principal argument, not the
value of the argument (the argument value can be undefined).

* Transformationa functions
These functions have one or more array-valued dummy or actual arguments, an array result,
or both. Theintrinsic function is not applied elementally to an array-valued actual argument;
instead it changes (transforms) the argument array into another array.

* Nonelementa procedures
These procedures must be called with only scalar arguments; they return scalar results. All
subroutines (except MVBITS) are nonelemental.

Intrinsic procedures are invoked the same way as other procedures, and follow the same rules of
argument association.

Theintrinsic procedures have generic (or common) names, and many of the intrinsic functions
have specific names. (Some intrinsic functions are both generic and specific.)

9 Intel Fortran Language Reference

In general, generic functions accept arguments of more than one data type; the data type of the
result is the same as that of the arguments in the function reference. For elemental functions with
more than one argument, all arguments must be of the same type (except for function MERGE).

When anintrinsic function is passed as an actual argument to a procedure, its specific name must
be used, and when called, its arguments must be scalar. Some specific intrinsic functions are not
allowed as actual argumentsin all circumstances. Table 9-1 lists specific functions that cannot be

passed as actual arguments.

Table 9-1 Functions Not Allowed as Actual Arguments
AIMAXO EOF INT8 LGE
AIMINO FLOAT INT_PTR_KIND LGT
AJMAXO FLOATI IQINT LLE
AJMINO FLOATJ IZEXT LLT
AKMAXO FLOATK JFIX LOC
AKMINO HFIX JIDINT MALLOC
AMAXO0 IADDR JIFIX MAXO0
AMAX1 IARGC JINT MAX1
AMINO ICHAR JIQINT MINO
AMIN1 IDINT JMAXO MIN1
BADDRESS IFIX JMAX1 MULT_HIGH
CACHESIZE [IDINT JMINO NARGS
CHAR IIFIX JMIN1 QCMPLX
CMPLX IINT JZEXT QEXT
DBLE IIQINT KIDINT QEXTD
DBLEQ IJINT KIFIX QMAX1
DCMPLX IMAXO KINT QMIN1
DFLOTI IMAX1 KIQINT QREAL
DFLOTJ IMINO KIQNNT RAN
DFLOTK IMIN1 KMAXO0 REAL
DMAX1 INT KMAX1 SECNDS
DMIN1 INT1 KMINO SNGL
DPROD INT2 KMIN1 SNGLQ
DREAL INT4 KZEXT ZEXT

This chapter contains information on the following topics:

9-2

Intrinsic Procedures 9

* “Argument Keywordsin Intrinsic Procedures’
®* “Overview of Intrinsic Procedures’
® “Descriptions of Intrinsic Procedures’

See Also
* “Argument Association”
* “MERGE"

® “QOptiona Arguments’
* Appendix D, “Data Representation Models”
* “Referencesto Generic Intrinsic Functions’

* “Referencesto Elemental Intrinsic Procedures’ for details on e emental referencesto intrinsic
procedures

®* Your user'sguide for details on Intel® Fortran numeric data format

Argument Keywords in Intrinsic Procedures

For al intrinsic procedures, the arguments shown are the names you must use as keywords when
using the keyword form for actual arguments. For example, areferenceto function CMPLX (X, Y,
KIND) can be written as follows:

Using positional arguments: CMPLX (F, G L)

Using argument keywords: CMPLX (KIND=L, Y=G X=F)!

1. Note that argument keywords can be written in any order.

Some argument keywords are optional (denoted by square brackets). The following describes
some of the most commonly used optional arguments:

BACK Specifies that a string scan isto be in reverse order (right to left).

DIM Specifies a selected dimension of an array argument.

KIND Specifies the kind type parameter of the function result.

MASK Specifies that a mask can be applied to the elements of the argument array to

exclude the elements that are not to be involved in an operation.

Examples

The syntax for the DATE_AND_TIME intrinsic subroutine shows four optional positional
arguments: DATE, TIME, ZONE, and VALUES (see “DATE_AND_TIME").

The following shows some valid ways to specify these arguments:

9 Intel Fortran Language Reference

I Keyword exanpl e

CALL DATE_AND TI ME (ZONE=2)

! The following two positional exanples are equival ent:
CALL DATE_AND TI ME (DATE, TIME, ZONE)

CALL DATE_AND TIME (, , ZONE)

See Also

* “Argument Association”

* “CALL Statement” for details on argument keywords in subroutine references
* “Function References’ for details on argument keywords in function references

Overview of Intrinsic Procedures

This section describes the categories of generic intrinsic functions (including a summarizing
table), lists the intrinsic subroutines, and provides general information on bit functions.

Intrinsic procedures are fully described (in alphabetical order) in “Descriptions of Intrinsic
Procedures’.

Categories of Intrinsic Functions

Generic intrinsic functions can be divided into categories, as shown in Table 9-2.

Table 9-2 Categories of Intrinsic Functions
Category Subcategory Description
Numeric Computation Perform type conversions or simple numeric operations: ABS, AIMAG,

AINT, AMAXO0, AMINO, ANINT, CEILING, CMPLX, CONJG, DBLE,
DCMPLX, DFLOAT, DIM, DNUM, DPROD, DREAL, FLOAT, FLOOR,
IFIX, ILEN, IMAG, INT, INUM, JNUM, MAX, MAX1, MIN, MIN1, MOD,
MODULO, NINT, QCMPLX, QEXT, QFLOAT, QNUM, QREAL, RAN,
REAL, RNUM, SIGN, SNGL, ZEXT

Manipulation® Return values related to the components of the model values
associated with the actual value of the argument: EXPONENT,
FRACTION, NEAREST, RRSPACING, SCALE, SET_EXPONENT,
SPACING

Inquiry® Return scalar values from the models associated with the type and

kind parameters of their arguments?: DIGITS, EPSILON, HUGE,
MAXEXPONENT, MINEXPONENT, PRECISION, RADIX, RANGE,
SIZEOF, TINY

Transformational Perform vector and matrix multiplication. DOT_PRODUCT, MATMUL

Intrinsic Procedures 9

Table 9-2 Categories of Intrinsic Functions
Category Subcategory Description
System Return information about a process or processor: MCLOCK,
SECNDS
Kind type Return kind type parameters: SELECTED_INT_KIND,
SELECTED_REAL_KIND, KIND
Mathematical Perform mathematical operations: ACOS, ACOSD, ACOSH, ASIN,
ASIND, ASINH, ATAN, ATAN2, ATAN2D, ATAND, ATANH, COS,
COSD, COSH, COTAN, COTAND, EXP, LOG, LOG10, SIN, SIND,
SINH, SQRT, TAN, TAND, TANH
Bit Manipulation Perform single-bit processing, logical and shift operations, and allow
bit subfields to be referenced: AND, BTEST, DSHIFTL, DSHIFTR,
IAND, IBCHNG, IBCLR, IBITS, IBSET, IEOR, IOR, ISHA, ISHC,
ISHFT, ISHFTC, ISHL, IXOR, LSHIFT (or LSHFT), NOT, OR, RSHIFT
(or RSHFT), SHIFTL, SHIFTR, XOR
Inquiry Lets you determine parameter s (the bit size) in the bit model®:
BIT_SIZE
Representation Return information on bit representation of integers: LEADZ,
POPCNT, POPPAR, TRAILZ
Character Comparison Lexically compare character-string arguments and return a default
logical result: LGE, LGT, LLE, LLT
Conversion Convert character arguments to integer, ASCII, or character values®:
ACHAR, CHAR, IACHAR, ICHAR
String handling Perform operations on character strings, return lengths of arguments,
and search for certain arguments: ADJUSTL, ADJUSTR, INDEX,
LEN_TRIM, REPEAT, SCAN, TRIM, VERIFY
Inquiry Returns the length of an argument or information about command-line
arguments: IARG, IARGC, LEN, NARGS, NUMARG
Array Construction Construct new arrays from the elements of existing array: MERGE,
PACK, SPREAD, UNPACK
Inquiry Let you determine if an array argument is allocated, and return the
size or shape of an array, and the lower and upper bounds of
subscripts along each dimension: ALLOCATED, LBOUND, SHAPE,
SIZE, UBOUND
Location Returns the geometric locations of the maximum and minimum values
of an array: MAXLOC, MINLOC
Manipulation Let you shift an array, transpose an array, or change the shape of an

array: CSHIFT, EOSHIFT, RESHAPE, TRANSPOSE

9-5

9 Intel Fortran Language Reference

Table 9-2 Categories of Intrinsic Functions
Category Subcategory Description
Reduction Perform operations on arrays. The functions "reduce" elements of a

whole array to produce a scalar result, or they can be applied to a
specific dimension of an array to produce a result array with a rank
reduced by one: ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT

Miscellaneous Do the following:

Check for pointer association (ASSOCIATED)

Return an address (BADDRESS)

Return the size of a level of the memory cache (CACHESIZE)
Check for end-of-file (EOF)

Return error functions (ERF and ERFC)

Return the class of a floating-point argument (FP_CLASS)

Return a pointer to an actual argument list for a routine
(IARGPTR)

Return the INTEGER KIND that will hold an address
(INT_PTR_KIND)

Test for Not-a-Number values (ISNAN)

Return the internal address of a storage item (LOC)
Return a logical value of an argument (LOGICAL)
Allocate memory (MALLOC)

Return the upper 64 bits of a 128-bit unsigned result
(MULT_HIGH)

Return a disassociated pointer (NULL)
Check for argument presence (PRESENT)
Convert a bit pattern (TRANSFER)

1. All of the numeric manipulation and many of the numeric inquiry functions are defined by the model sets for integers (“Model for Integer Data”)

and reals (“Model for Real Data”).

2. The value of the argument does not have to be defined.
3. For more information on bit functions, see “Bit Functions”.

4. The Intel Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR = ICHAR.

Table 9-3 summarizes the generic intrinsic functions and indicates whether they are elemental,
inquiry, or transformational functions. Optional arguments are shown within square brackets.

9-6

Intrinsic Procedures 9

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

ABS (a) E The absolute value of an argument

ACHAR (i) E The character in the specified position of the ASCII
character set

ACOS (x) E The arccosine (in radians) of the argument

ACOSD (x) E The arccosine (in degrees) of the argument

ACOSH (x) E The hyperbolic arccosine of the argument

ADJUSTL (string) E The specified string with leading blanks removed and
placed at the end of the string

ADJUSTR (string) E The specified string with trailing blanks removed and
placed at the beginning of the string

AIMAG (2) E The imaginary part of a complex argument

AINT (a [, kind]) E A real value truncated to a whole humber

ALL (mask [, dim]) T .TRUE. if all elements of the masked array are true

ALLOCATED (array) | The allocation status of the argument array

AMAXO (al, a2 [, a3,...]) E The maximum value in a list of integers (returned as a
real value)

AMINO (al, a2 [, a3,...]) E The minimum value in a list of integers (returned as a
real value)

AND (i, J) E See IAND

ANINT (a [, kind]) E A real value rounded to a whole number

ANY (mask [, dim]) T .TRUE. if any elements of the masked array are true

ASIN (x) E The arcsine (in radians) of the argument

ASIND (x) E The arcsine (in degrees) of the argument

ASINH (x) E The hyperbolic arcsine of the argument

ASSOCIATED (pointer [, target]) | .TRUE. if the pointer argument is associated or the
pointer is associated with the specified target

ATAN (x) E The arctangent (in radians) of the argument

ATAN2 (y, X) E The arctangent (in radians) of the arguments

ATAN2D (y, X) E The arctangent (in degrees) of the arguments

ATAND (x) E The arctangent (in degrees) of the argument

ATANH (x) E The hyperbolic arctangent of the argument

BADDRESS (x)

The address of the argument

9-7

9 Intel Fortran Language Reference

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

BIT_SIZE (i) | The number of bits (s) in the bit model

BTEST (i, pos) E .TRUE. if the specified position of argument | is one

CEILING (a [, kind]) E The smallest integer greater than or equal to the
argument value

CHAR (i [, kind]) E The character in the specified position of the
processor character set

CONJG (2) E The conjugate of a complex number

COS (x) E The cosine of the argument, which is in radians

COSD (x) E The cosine of the argument, which is in degrees

COSH (x) E The hyperbolic cosine of the argument

COTAN (x) E The cotangent of the argument, which is in radians

COTAND (x) E The cotangent of the argument, which is in degrees

COUNT (mask [, dim] [, kind]) T The number of .TRUE. elements in the argument array

CSHIFT (array, shift [, dim]) T An array that has the elements of the argument array
circularly shifted

DBLE (a) E The corresponding double precision value of the
argument

DFLOAT (a) E The corresponding double precision value of the
integer argument

DIGITS (x) | The number of significant digits in the model for the
argument

DIM (%, y) E The positive difference between the two arguments

DOT_PRODUCT (vector_a, vector_b) T The dot product of two rank-one arrays (also called a
vector multiply function)

DSHIFTL (ileft, iright, ishift) E The upper (leftmost) 64 bits of a left-shifted 128-bit
integer

DSHIFTR (ileft, iright, ishift) E The lower (rightmost) 64 bits of a right-shifted 128-bit
integer

EOSHIFT (array, shift [, boundary] [, dim]) T An array that has the elements of the argument array
end-off shifted

EOF (a) | .TRUE. or .FALSE. depending on whether a file is
beyond the end-of-file record

EPSILON (x) | The number that is almost negligible when compared
to one

ERF (X) E The error function of an argument

9-8

Intrinsic Procedures 9

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

ERFC (x) E The complementary error function of an argument

EXP (x) E The exponential X for the argument x

EXPONENT (x) E The value of the exponent part of a real argument

FLOAT (x) E The corresponding real value of the integer argument

FLOOR (a [, kind]) E The largest integer less than or equal to the argument
value

FP_CLASS (x) E The class of the IEEE floating-point argument

FRACTION (x) E The fractional part of a real argument

HUGE (x) | The largest number in the model for the argument

IACHAR (c) E The position of the specified character in the ASCII
character set

IADDR (Xx) E See BADDRESS.

IAND (i, j) E The logical AND of the two arguments

IBCHNG (i, pos) E The reversed value of a specified bit

IBCLR (i, pos) E The specified position of argument | cleared (set to
zero)

IBITS (i, pos, len) E The specified substring of bits of argument |

IBSET (i, pos) E The specified bit in argument | set to one

ICHAR (c [, kind]) E The position of the specified character in the
processor character set

IEOR (i,) E The logical exclusive OR of the corresponding bit
arguments

IFIX (X) E The corresponding integer value of the real argument
rounded as if it were an implied conversion in an
assignment

ILEN (i) | The length (in bits) in the two's complement
representation of an integer

IMAG (2) E See AIMAG

INDEX (string, substring [, back] [, kind]) E The position of the specified substring in a character
expression

INT (a [, kind]) E The corresponding integer value (truncated) of the
argument

IOR (i, j) E The logical inclusive OR of the corresponding bit

arguments

9-9

9 Intel Fortran Language Reference

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

ISHA (i, shift) E Argument | shifted left or right by a specified number
of bits

ISHC (i, shift) E Argument | rotated left or right by a specified number
of bits

ISHFT (i, shift) E The logical end-off shift of the bits in argument |

ISHFTC (i, shift [, size]) E The logical circular shift of the bits in argument |

ISHL (i, shift) E Argument | logically shifted left or right by a specified
number of bits

ISNAN (x) E Tests for Not-a-Number (NaN) values

IXOR (i, j) E See IEOR

KIND (x) | The kind type parameter of the argument

LBOUND (array [, dim] [, kind]) | The lower bounds of an array (or one of its
dimensions)

LEADZ (i) E The number of leading zero bits in an integer.

LEN (string [, kind]) | The length (number of characters) of the argument
character string

LEN_TRIM (string [, kind]) E The length of the specified string without trailing
blanks

LGE (string_a, string_b) E A logical value determined by a > or = comparison of
the arguments

LGT (string_a, string_b E A logical value determined by a > comparison of the
arguments

LLE (string_a, string_b) E A logical value determined by a < or = comparison of
the arguments

LLT (string_a, string_b) E A logical value determined by a < comparison of the
arguments

LOC (a) | The internal address of the argument.

LOG (x) E The natural logarithm of the argument

LOG10 (x) E The common logarithm (base 10) of the argument

LOGICAL (I [, kind]) E The logical value of the argument converted to a
logical of type KIND

LSHIFT (i, positive_shift) 2 E Can also be specified as LSHFT; see ISHFT

MATMUL (matrix_a, matrix_b) T The result of matrix multiplication (also called a matrix
multiply function)

MAX (al, a2 [, a3,...]) E The maximum value in the set of arguments

9-10

Intrinsic Procedures 9

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

MAX1 (al, a2 [, a3,...]) E The maximum value in the set of real arguments
(returned as an integer)

MAXEXPONENT (x) | The maximum exponent in the model for the argument

MAXLOC (array [, dim] [, mask][, kind]) T The rank-one array that has the location of the
maximum element in the argument array

MAXVAL (array [, dim] [, mask]) T The maximum value of the elements in the argument
array

MERGE (tsource, fsource, mask) E An array that is the combination of two conformable
arrays (under a mask)

MIN (a1, a2 [, a3,...]) E The minimum value in the set of arguments

MIN1 (a1, a2 [, a3,...]) E The minimum value in the set of real arguments
(returned as an integer)

MINEXPONENT (x) I The minimum exponent in the model for the argument

MINLOC (array [, dim] [, mask][, kind]) T The rank-one array that has the location of the
minimum element in the argument array

MINVAL (array [, dim] [, mask]) T The minimum value of the elements in the argument
array

MOD (a, p) E The remainder of the arguments (has the sign of the
first argument)

MODULDO (a, p) E The modulo of the arguments (has the sign of the
second argument)

NEAREST (X, S) E The nearest different machine-representable number
in a given direction

NINT (a [, kind]) E A real value rounded to the nearest integer

NOT (i) E The logical complement of the argument

NULL ([mold]) T A disassociated pointer

OR (i, j) E See IOR

PACK (array, mask [, vector]) T A packed array of rank one (under a mask)

POPCNT (i) E The number of 1 bits in the integer argument

POPPAR (i) E The parity of the integer argument

PRECISION (x) | The decimal precision (real or complex) of the
argument

PRESENT (a) | .TRUE. if an actual argument has been provided for an
optional dummy argument

PRODUCT (array [, dim] [, mask]) T The product of the elements of the argument array

9-11

9 Intel Fortran Language Reference

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

QEXT (a) E The corresponding REAL(16) precision value of the
argument.

QFLOAT (a) E The corresponding REAL(16) precision value of the
integer argument.

RADIX (x) | The base of the model for the argument

RANGE (x) | The decimal exponent range of the model for the
argument

REAL (a [, kind]) E The corresponding real value of the argument

REPEAT (string, ncopies) T The concatenation of zero or more copies of the

RESHAPE (source, shape [, pad] [, order]) T

RRSPACING (x) E
RSHIFT (i, negative_shift) E
SCALE (x, I) E
SCAN (string, SET [, back][, kind]) E
SELECTED_INT_KIND (r) T
SELECTED_REAL_KIND ([p] [, 1) T
SET_EXPONENT (X, i) E

SHAPE (SOURCE [, kind]) [

SHIFTL (ivalue, ishift) E
SHIFTR (ivalue, ishift) E
SIGN (a, b) E
SIN (x) E
SIND (x) E
SINH (x) E

9-12

specified string

An array that has a different shape than the argument
array, but the same elements

The reciprocal of the relative spacing near the
argument

Can also be specified as RSHFT; see ISHFT

The value of the exponent part (of the model for the
argument) changed by a specified value

The position of the specified character (or set of
characters) within a string

The integer kind parameter of the argument

The real kind parameter of the argument; one of the
optional arguments must be specified

The value of the exponent part (of the model for the
argument) set to a specified value

The shape (rank and extents) of an array or scalar

Argument "ivalue" shifted left by a specified number of
bits

Argument "“ivalue" shifted right by a specified number
of bits

A value with the sign transferred from its second
argument

The sine of the argument, which is in radians
The sine of the argument, which is in degrees
The hyperbolic sine of the argument

Intrinsic Procedures 9

Table 9-3

Summary of Generic Intrinsic Functions

Generic Function Class ! Value Returned

SIZE (array [, dim] [, kind]) | The size (total number of elements) of the argument
array (or one of its dimensions)

SIZEOF(x) | The bytes of storage used by an argument

SNGL (x) E The corresponding real value of the argument

SPACING (x) E The value of the absolute spacing of model humbers
near the argument

SPREAD (source, dim, ncopies) T A replicated array that has an added dimension

SQRT (x) E The square root of the argument

SUM (array [, dim] [, mask]) T The sum of the elements of the argument array

TAN (x) E The tangent of the argument, which is in radians

TAND (x) E The tangent of the argument, which is in degrees

TANH (x) E The hyperbolic tangent of the argument

TINY (x) | The smallest positive number in the model for the
argument

TRAILZ (i) E The number of trailing zero bits in an integer.

TRANSFER (source, mold [, size]) T The bit pattern of SOURCE converted to the type and
kind parameters of MOLD

TRANSPOSE (matrix) T The matrix transpose for the rank-two argument array

TRIM (string) T The argument with trailing blanks removed

UBOUND (array [, dim] [, kind]) | The upper bounds of an array (or one of its
dimensions)

UNPACK (vector, mask, field) T An array (under a mask) unpacked from a rank-one
array

VERIFY (string, set [, back][, kind]) E The position of the first character in a string that does
not appear in the given set of characters

XOR (i,) E See IEOR

ZEXT (x [, kind]) E A zero-extended value of the argument

1. Key to Classes:

E - Elemental

I - Inquiry

T - Transformational
2. Or LSHFT.
3. Or RSHFT.

9-13

9 Intel Fortran Language Reference

Table 9-4 lists specific functions that have no generic function associated with them and indicates
whether they are elemental, nonelemental, or inquiry functions. Optional arguments are shown
within square brackets.

Table 9-4 Specific Functions with No Generic Association

Specific Function Class ! Value Returned

CACHESIZE (n)? | The size of a level of the memory cache

CMPLX (x [, y] [, kind]) E The corresponding complex value of the argument

DCMPLX (x, y) E The corresponding double complex value of the argument

DNUM (i) E The corresponding double-precision value of a character
string

DPROD (X, y) E The higher precision product of two real arguments

DREAL (a) E The corresponding double-precision value of the real part
of a double-complex argument

IARG () I See IARGC

IARGC () I The index of the last command-line argument

IARGPTR () I The count of actual arguments passed to the current
routine

INUM (i) E The corresponding INTEGER(2) value of a character
string

JNUM (i) E The corresponding INTEGER(4) value of a character
string

MALLOC (i) E The starting address for the block of memory allocated

MCLOCK () I The sum (in units of microseconds) of the current
process’s user time and the user and system time of all its
child processes

MULT_HIGH (i, j)? E The upper (leftmost) 64 bits of the 128-bit unsigned result.

NARGS () I The total number of command-line arguments, including
the command

NUMARG () I See IARGC

QCMPLX (x,y) E The corresponding COMPLEX(16) value of the argument

QNUM (i) E The corresponding REAL(16) value of a character string

QREAL (a) E The corresponding REAL(16) value of the real part of a

COMPLEX(16) argument

RAN (i) N The next number from a sequence of pseudorandom
numbers (uniformly distributed in the range 0 to 1)

RNUM (i) E The corresponding REAL(4) value of a character string

9-14

Intrinsic Procedures 9

Table 9-4

Specific Functions with No Generic Association

Specific Function Class 1

Value Returned

SECNDS (x) E

The system time of day (or elapsed time) as a

floating-point value in seconds

1. Key to Classes:
E - Elemental
I - Inquiry
N - Nonelemental
2. i64 only

Intrinsic Subroutines

Table 9-5 lists the intrinsic subroutines. Optional arguments are shown within square brackets. All
these subroutines are nonelemental except for MVBITS.

Table 9-5 Intrinsic Subroutines
Subroutine Value Returned or Result
CPU_TIME (time) The processor time in seconds
DATE (buf) The ASCII representation of the current date (in

DATE_AND_TIME ([date] [, time] [, zone] [, values])
ERRSNS ([io_err] [, sys_err] [, stat] [, unit] [, cond])

EXIT ([status])

FREE (a)

GETARG (n, buffer [,status])

IDATE (i, j, k)

MM_PREFETCH (address [, hint] [, fault] [, exclusive])

MVBITS (from, frompos, len, to, topos)!

RANDOM_NUMBER (harvest)

dd-mmm-yy form)
Date and time information from the real-time clock

Information about the most recently detected error
condition

Image exit status is optionally returned; the
program is terminated, all files closed, and control
is returned to the operating system

Frees memory that is currently allocated

The specified command-line argument (where the
command itself is argument zero)

Three integer values representing the current
month, day, and year

Data from the specified address on one memory
cache line

A sequence of bits (bit field) is copied from one
location to another

A pseudorandom number taken from a sequence of
pseudorandom numbers uniformly distributed
within the range 0.0 to 1.0

9-15

9 Intel Fortran Language Reference

Table 9-5 Intrinsic Subroutines
Subroutine Value Returned or Result
RANDOM_SEED ([size] [, put] [, get]) Initializes or retrieves the pseudorandom number
generator seed value
RANDU (i1, i2, x) A pseudorandom number as a single-precision

value (within the range 0.0 to 1.0)

SYSTEM_CLOCK ([count] [, count_rate] [, count_max]) Data from the processors real-time clock
TIME (buf) The ASCII representation of the current time (in

hh:mm:ss form)

1. An elemental subroutine

Bit Functions

9-16

Integer datatypes are represented internally in binary two’s complement notation. Bit positionsin
the binary representation are numbered from right (least significant bit) to left (most significant
bit); the rightmost bit position is numbered 0.

Theintrinsic functionsIAND, IOR, IEOR, and NOT operate on all of the bits of their argument (or
arguments). Bit 0 of the result comes from applying the specified logical operation to bit O of the
argument. Bit 1 of the result comes from applying the specified logical operation to bit 1 of the
argument, and so on for al of the bits of the result.

The functions ISHFT and ISHFTC shift binary patterns.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS operate on hit
fields.

A bit field is a contiguous group of bits within a binary pattern. Bit fields are specified by a
starting bit position and alength. A bit field must be entirely contained in its source operand.

For example, theinteger 47 is represented by the following:

Binary pattern: 0..0101111

Bit position: n...6543210
Where n is the number of bit positions in the numeric storage unit.

You can refer to the bit field contained in bits 3 through 6 by specifying a starting position of 3 and
alength of 4.

Negative integers are represented in two's complement notation. For example, the integer —47 is
represented by the following:

Binary pattern: 1...1010001

Intrinsic Procedures 9

Bit position: n...6543210
Where n is the number of bit positions in the numeric storage unit.
The value of bit position nisasfollows:
1 for a negative nunber
0 for a non-negative nunber
All the high-order bits in the pattern from the last significant bit of the value up to bit n are the
same as bit n.

IBITS and MVBITS operate on general bit fields. Both the starting position of abit field and its
length are argumentsto theseintrinsics. IBSET, IBCLR, and BTEST operate on 1-bit fields. They
do not require alength argument.

For IBSET, IBCLR, and BTEST, the bit position range is as follows:

* 0to63for INTEGER(8) and LOGICAL(8)

* 0Oto31for INTEGER(4) and LOGICAL(4)

® 0Oto15for INTEGER(2) and LOGICAL(2)

® 0Oto7for BYTE, INTEGER(1), and LOGICAL(1)

For IBITS, the bit position can be any number. The length rangeis 0 to 63 on Intel® Itanium®
processors, 0 to 31 on | A-32 processors.

The following example shows IBSET, IBCLR, and BTEST:

| =4
J = IBSET (I,5)

PRINT *, 'J ="',J

K = 1 BCLR (J, 2)

PRINT *, 'K ="',K

PRINT *, 'Bit 2 of Kis ',BTEST(K, 2)
END

Theresultsare: J= 36, K =32, and Bit 2 of K isF.

For optimum selection of performance and memory requirements, Intel Fortran provides the
following integer data types:

Data Type Storage Required (in bytes)
INTEGER(1) 1
INTEGER(2) 2
INTEGER(4) 4
INTEGER(8) 8

9-17

9 Intel Fortran Language Reference

The bit manipulation functions each have a generic form that operates on all of these integer types
and a specific form for each type.

When you specify the intrinsic functions that refer to bit positions or that shift binary patterns
within astorage unit, be careful that you do not create a value that is outside the range of integers
representable by the data type. If you shift by an amount greater than or equal to the size of the
object you're shifting, the result is 0.

Consider the following:

| NTEGER(2) |,J

I =1

J = 17

| | SHFT(1, J)

The variables | and Jhave INTEGER(2) type. Therefore, the generic function ISHFT maps to the
specific function [ISHFT, which returns an INTEGER(2) result. INTEGER(2) results must bein

the range —32768 to 32767, but the value 1, shifted left 17 positions, yields the binary pattern 1
followed by 17 zeros, which represents the integer 131072. In this case, theresultin | isO.

The previous example would be valid if | was INTEGER(4), because | SHFT would then map to
the specific function J SHFT, which returns an INTEGER(4) value.

If ISHFT iscalled with a constant first argument, the result will either be the default integer size or
the smallest integer size that can contain the first argument, whichever is larger.

Descriptions of Intrinsic Procedures

ABS

9-18

This section contains detailed information on all generic and specific intrinsic procedures. These
procedures are described in alphabetical order by generic name (if there is one).

Optional arguments are identified by sguare brackets in syntax and the label " (opt)" in descriptive
text.

Description: ~ Computes an absolute value.

Syntax: result = ABS (a)

Class: Elemental function; Generic

Arguments: a must be of type integer, real, or complex.

Results: If aisaninteger or real value, the value of theresult is| a|; if aisacomplex
value (X, Y), theresult isthe real value SQRT (X**2 + Y**2),

Intrinsic Procedures 9

Specific Name Argument Type Result Type
BABS INTEGER(1) INTEGER(1)
lIABS? INTEGER(2) INTEGER(2)
IABS?2 INTEGER(4) INTEGER(4)
KIABS INTEGER(8) INTEGER(8)
ABS REAL(4) REAL(4)
DABS REAL(8) REAL(8)
QABS REAL(16) REAL(16)
CABS3 COMPLEX(4) REAL(4)
CDABS? COMPLEX(8) REAL(8)
CQABS COMPLEX(16) REAL(16)

1. Or HABS.

2. Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a generic function.

3. The settings of compiler options specifying real size can affect CABS.

4. This function can also be specified as ZABS.

Examples

ABS (-7.4) hasthe value 7.4.
ABS ((6.0, 8.0)) has the value 10.0.

ACHAR

Description:

Syntax:
Class:

Arguments:

Results:

Returns the character in a specified position of the ASCII character set, even if
the processor’s default character set is different. It isthe inverse of the
IACHAR function. InIntel Fortran, ACHAR is equivaent to the CHAR
function.

result = ACHAR (i)
Elemental function; Generic
i must be of type integer.

The result typeis character with length 1; it has the kind parameter value of
KIND (A").

If | has avalue within the range 0 to 127, the result is the character in position |
of the ASCII character set. ACHAR (IACHAR(C)) hasthe value C for any
character C capable of representation in the processor.

9-19

9 Intel Fortran Language Reference

Examples
ACHAR (71) hasthe value'G'.
ACHAR (63) hasthe value '?.

ACOS

Description: Produces the arccosine of x.

Syntax: result = ACOS (X)
Class: Elemental function; Generic
Arguments: x must be of typereal. The | x | must be less than or equal to 1.
Results: Theresult typeisthe sameasx and is expressed in radians. Thevalueliesin the
range0to m.
Specific Name Argument Type Result Type
ACOS REAL(4) REAL(4)
DACOS REAL(8) REAL(8)
QACOS REAL(16) REAL(16)
Example

ACOS (0.68032123) has the value .8225955.

ACOSD

Description: Produces the arccosine of x.

Syntax: result = ACOSD (x)

Class: Elemental function; Generic

Arguments: x must be of typereal. The | x | must be less than or equal to 1.

Results: Theresult type is the same as x and is expressed in degrees. Thevalueliesin

the range —90 to 90 degrees.

Specific Name Argument Type Result Type
ACOSD REAL(4) REAL(4)
DACOSD REAL(8) REAL(8)
QACOSD REAL(16) REAL(16)

9-20

Intrinsic Procedures 9

Example
ACOSD (0.886579) has the value 27.55354.

ACOSH

Description: Produces the hyperbolic arccosine of x.

Syntax: result = ACOSH (x)

Class: Elemental function; Generic

Arguments: x must be of type real and must be greater than or equal to 1.

Results: The result type is the same as x.
Specific Name Argument Type Result Type
ACOSH REAL(4) REAL(4)
DACOSH REAL(8) REAL(8)
QACOSH REAL(16) REAL(16)
Example

ACOSH (180.0) has the value 5.8861.

ADJUSTL

Description: Adjusts a character string to the left, removing leading blanks and inserting
trailing blanks.

Syntax: result = ADJUSTL (string)

Class: Elemental function; Generic

Arguments: string must be of type character.

Results: The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any leading blanks
have been removed and inserted as trailing blanks.

Example
ADJUSTL (‘anaa SUMMERTIME) hasthe value 'SUMMERTIMEAAAA '

9-21

9 Intel Fortran Language Reference

ADJUSTR

Description: Adjusts a character string to the right, removing trailing blanks and inserting
leading blanks.

Syntax: result = ADJUSTR (string)

Class: Elemental function; Generic

Arguments: string must be of type character.

Results: The result type is character with the same length and kind parameter as string.
Thevalue of theresult isthe same as string, except that any trailing blanks have
been removed and inserted as leading blanks.

Example

AIMAG

9-22

ADJUSTR ((SUMMERTIMEAAAA) hasthe value 'anasa SUMMERTIME'.

Description: Returns the imaginary part of a complex number. This function can also be
specified as IMAG.

Syntax: result = AIMAG (2
Class: Elemental function; Generic
Arguments: zmust be of type complex.

Results: The result type is real with the same kind parameter as z. If z has the value
(x,y), theresult hasthe valueYy.

Specific Name Argument Type Result Type
AIMAG! COMPLEX(4) REAL(4)
DIMAG COMPLEX(8) REAL(8)
QIMAG COMPLEX(16) REAL(16)

1. The setting of compiler options specifying real size can affect AIMAG.

Example
AIMAG ((4.0, 5.0)) hasthe value 5.0.

Intrinsic Procedures 9

AINT

ALL

Description:
Syntax:
Class:
Arguments:
a
kind
Results:

Truncates a value to a whole number.
result = AINT (a[, kind])
Elemental function; Generic

Must be of type real.
Must be a scalar integer initialization expression.

The result is of typereal. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter isthat of a.

The result is defined as the largest integer whose magnitude does not exceed
the magnitude of a and whose signisthe same asthat of a. If | a|islessthan 1,
AINT(a) has the value zero.

Specific Name Argument Type Result Type

AINT REAL(4) REAL(4)

DINT REAL(8) REAL(8)

QINT REAL(16) REAL(16)
Examples

AINT (3.678) hasthe value 3.0.
AINT (-1.375) hasthe value—1.0.

Description:

Syntax:
Class:
Arguments:
mask
dim (opt)

Results:;

Determinesif all valuesaretruein an entire array or in aspecified dimension of
an array.

result = ALL (mask [, dim])
Transformational function; Generic

Must be alogical array.

Must be a scalar integer with avalue in the range 1 to n, where nis the rank of
mask.

Theresult isan array or ascalar of typelogical.

9-23

9 Intel Fortran Language Reference

Theresult isascalar if dimisomitted or mask hasrank one. A scalar result is
true only if al elements of mask are true, or mask has size zero. The result has
the value false if any element of mask isfalse.

An array result has the same type and kind parameters as mask, and arank that
isonelessthan mask. Its shapeis(dq, d, ..., dpyjpm—1, dDiM+1s -+ Gn), Where (dq,
d,,..., dy) isthe shape of mask.

Each element in an array result istrue only if all elementsin the one
dimensional array defined by mask (S;, S, -+ SDIM—1, ©» SDIM+1s -+ Sp) e true.

Examples

ALL ((/. TRUE., .FALSE., .TRUE./)) has the value fa se because some elements of MASK are not
true.

ALL ((/. TRUE., .TRUE., .TRUE./)) hasthe value true because all elements of MASK aretrue.

A isthearray 157 and B isthe array 057.
368 269

ALL (A .EQ. B, DIM=1) teststo seeif al elementsin each column of A are equal to the elements
in the corresponding column of B. The result has the value (false, true, false) because only the
second column has elements that are all equal.

ALL (A .EQ. B, DIM=2) teststo seeif al elementsin each row of A are equal to the elementsin
the corresponding row of B. The result has the value (false, false) because each row has some
elements that are not equal.

ALLOCATED

9-24

Description: Indicates whether an allocatable array is currently allocated.
Syntax: result = ALLOCATED (array)

Class: Inquiry function; Generic

Arguments: array must be an allocatable array.

Results: Theresult isascalar of type default logical.

Theresult hasthe valuetrueif array is currently allocated, falseif array is not
currently allocated, or undefined if its allocation status is undefined.

Examples
Consider the following:

Intrinsic Procedures 9

REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E
PRI NT *, ALLOCATED (E) I Returns the value fal se
ALLOCATE (E (12, 15, 20))
PRI NT *, ALLOCATED (E) I Returns the value true
ANINT
Description: Calculates the nearest whole number.
Syntax: result = ANINT (a[, kind])
Class: Elemental function; Generic
Arguments:
a Must be of typereal.
kind (opt) Must be a scalar integer initialization expression.
Results: Theresult typeisreal. If kind is present, the kind parameter is that specified by

kind; otherwise, the kind parameter isthat of a. If aisgreater than zero, ANINT
(a) hasthevaue AINT (a + 0.5); if aislessthan or equal to zero, ANINT (a)
hasthevalue AINT (a—0.5).

Specific Name Argument Type Result Type

ANINT REAL(4) REAL(4)

DNINT REAL(8) REAL(8)

ONINT REAL(16) REAL(16)
Examples

ANINT (3.456) has the value 3.0.
ANINT (-2.798) has the value —3.0.

ANY
Description: Determinesif any valueistruein an entire array or in a specified dimension of
an array.
Syntax: result = ANY (mask [, dim])
Class: Transformational function; Generic

9-25

9 Intel Fortran Language Reference

Arguments:
mask Must be alogical array.
dim (opt) Must be a scalar integer expression with avalueintherange 1to n, wherenis
the rank of mask.
Results: Theresult isan array or ascalar of typelogical.
Theresult isascalar if dimis omitted or mask has rank one. A scalar result is
trueif any elements of mask are true. The result has the value false if no
element of mask is true, or mask has size zero.
An array result has the same type and kind parameters as mask, and arank that
isonelessthan mask. Its shapeis(dy, d, ..., dpjm—1, doiM+1s -+ On), Where (dq,
d,, ..., dy) isthe shape of mask.
Each element in an array result istrue if any elementsin the one dimensional
array defined by mask (S, S, s SDIM—1» ©» SDIM+1, -+ Sp) aretrue.
Examples
ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element istrue.
A isthearray 157 and B isthe array 057 .
368 269

ANY (A .EQ. B, DIM=1) teststo seeif any elementsin each column of A are equa to the
elements in the corresponding column of B. The result has the value (false, true, true) because the
second and third columns have at least one element that is equal.

ANY (A .EQ. B, DIM=2) teststo seeif any elementsin each row of A are equal to the elementsin
the corresponding row of B. The result has the value (true, true) because each row has at least one
element that is equal.

ASIN

Description: Produces the arcsine of x.

Syntax: result = ASIN (x)

Class: Elemental function; Generic

Arguments: x must be of typereal. The | x | must be less than or equal to 1.

Results: Theresult typeisthe sameasx and is expressed in radians. Thevaueliesin the
range—m/2to 2.

9-26

Intrinsic Procedures 9

Specific Name Argument Type Result Type

ASIN REAL(4) REAL(4)

DASIN REAL(8) REAL(8)

QASIN REAL(16) REAL(16)
Example

ASIN (0.79345021) has the value 0.9164571.

ASIND

Description: Produces the arcsine of x.

Syntax: result = ASIND (x)

Class: Elemental function; Generic

Arguments: x must be of typereal. The|x | must be less than or equal to 1.

Results: The result type is the same as x and is expressed in degrees. The vaueliesin

the range —90 to 90 degrees.

Specific Name Argument Type Result Type
ASIND REAL(4) REAL(4)
DASIND REAL(8) REAL(8)
QASIND REAL(16) REAL(16)

Example

ASIND (0.2467590) has the value 14.28581.

ASINH

Description: Produces the hyperbolic arcsine of x.
Syntax: result = ASINH (x)

Class: Elemental function; Generic
Arguments: x must be of typereal.

Results: The result type is the same as x.

9-27

9 Intel Fortran Language Reference

Specific Name Argument Type Result Type

ASINH REAL(4) REAL(4)

DASINH REAL(8) REAL(8)

QASINH REAL(16) REAL(16)
Example

ASINH (180.0) hasthe value 5.88611.

ASSOCIATED
Description:

Syntax:
Class:
Arguments:
pointer
target (opt)
Results:

Examples

Returns the association status of its pointer argument or indicates whether the
pointer is associated with the target.

result = ASSOCIATED (pointer [, target])
Inquiry function; Generic

Must be a pointer (of any data type).
Must be a pointer or target.

Theresult is ascalar of type default logical. The setting of compiler options
specifying integer size can affect this function.

If only pointer appears, the result istrueif it is currently associated with a
target; otherwise, the result isfalse.

If target also appears and is atarget, the result istrue if pointer is currently
associated with target; otherwise, the result is false.

If target is a pointer, the result is true if both pointer and target are currently
associated with the same target; otherwise, the result isfalse. (If either pointer
or target is disassociated, the result isfalse.)

Consider the following:
REAL, TARGET, DI MENSION (0:50) :: TAR
REAL, PO NTER, DIMENSION (:) :: PTR
PTR => TAR

PRI NT *,

ASSCCI ATED (PTR, TAR) I Returns the value true

The subscript range for PTR is 0:50. Consider the following pointer assignment statements:

9-28

Intrinsic Procedures 9

ATAN

(1) PTR => TAR (:)

(2) PTR => TAR (0:50)

(3) PTR => TAR (0:49)
For statements 1 and 2, ASSOCIATED (PTR, TAR) istrue because TAR has not changed (the
subscript range for PTR in both casesis 1:51, following the rules for deferred-shape arrays). For
statement 3, ASSOCIATED (PTR, TAR) is false because the upper bound of TAR has changed.

Consider the following:
REAL, PO NTER, DIMENSION (:) :: PTR2, PTR3
ALLOCATE (PTR2 (0:15))
PTR3 => PTR2
PRI NT *, ASSOCI ATED (PTR2, PTR3) I Returns the val ue true

NULLI FY (PTR2)
NULLI FY (PTR3)
PRI NT *, ASSOCI ATED (PTR2, PTR3) I Returns the value fal se

Description: Produces the arctangent of x.
Syntax: result = ATAN (X)

Class: Elemental function; Generic
Arguments: X must be of typereal.

Results: Theresult typeisthe same asx and is expressed in radians. Thevalueliesin the
range—m/2to w2

Specific Name Argument Type Result Type

ATAN REAL(4) REAL(4)

DATAN REAL(8) REAL(8)

QATAN REAL(16) REAL(16)
Example

ATAN (1.5874993) has the value 1.008666.

9-29

9 Intel Fortran Language Reference

ATAN2

9-30

Description: Produces an arctangent. The result is the principal value of the argument of the
nonzero complex number (X, y).
Syntax: result = ATAN2 (y, X)
Class: Elemental function; Generic
Arguments:
y Must be of typereal.
X Must have the same type and kind parameters asy. If y has the value zero, x
cannot have the value zero.
Results: Theresult typeisthe sameasx and isexpressed in radians. Thevaueliesin the
range -m< ATAN2(y, X) < mt. If x# zerc, the result is approximately equal to
the value of arctan (y/x).
If y > zero, the result is positive.
If y < zero, the result is negative.
If y = zero, the result is zero (if x > zero) or mt (if x < zero).
If x = zero, the absolute value of theresult is /2.
Specific Name Argument Type Result Type
ATAN2 REAL(4) REAL(4)
DATAN2 REAL(8) REAL(8)
QATAN2 REAL(16) REAL(16)
Examples

ATAN2 (2.679676, 1.0) has the value 1.213623.

IfY hasthevalue{

3n

4
=371 —
4

|

= MNiT

1 1) and X hasthevalue | ™1 1| | then ATAN2 (v, X) is
11 11

Intrinsic Procedures 9

ATAN2D

Description:

Syntax:
Class:

Arguments:

y
X

Results:

Produces an arctangent. The result is the principal value of the argument of the
nonzero complex number (X, y).

result = ATAN2D (y, X)
Elemental function; Generic

Must be of typereal.

Must have the same type and kind parameters asy. If y has the value zero, x
cannot have the value zero.

Theresult typeisthe same as x and is expressed in degrees. The valueliesin
the range —180 degrees to 180 degrees. If x # zerc, the result is approximately
equal to the value of arctan (y/x).

If y > zero, the result is positive.

If y < zero, theresult is negative.

If y = zero, theresult is zero (if x > zero) or 180 degrees (if x < zero).
If X = zero, the absolute value of the result is 90 degrees.

Specific Name Argument Type Result Type

ATAN2D REAL(4) REAL(4)

DATAN2D REAL(8) REAL(8)

QATAN2D REAL(16) REAL(16)
Example

ATAN2D (2.679676, 1.0) has the val ue 69.53546.

ATAND

Description:

Syntax:
Class:

Arguments:

Results:

Produces the arctangent of x.

result = ATAND (X)

Elemental function; Generic

x must be of type real and must be greater than or equal to zero.
Theresult typeisthe same as x and is expressed in degrees.

9-31

9 Intel Fortran Language Reference

Specific Name Argument Type Result Type

ATAND REAL(4) REAL(4)

DATAND REAL(8) REAL(8)

QATAND REAL(16) REAL(16)
Example

ATAND (0.0874679) has the value 4.998819.

ATANH

Description: Produces the hyperbolic arctangent of x.

Syntax: result = ATANH (x)

Class: Elemental function; Generic

Arguments: x must be of typereal, where | x| < 1.

Results: The result type is the same as x. The valuelies in the range —1.0 to 1.0.
Specific Name Argument Type Result Type
ATANH REAL(4) REAL(4)
DATANH REAL(8) REAL(8)
QATANH REAL(16) REAL(16)

Example

ATANH (-0.77) has the value —1.02033.

BADDRESS

Description:

Syntax:

Class:
Arguments:

9-32

Returns the address of x. It cannot be passed as an actua argument. This
function can also be specified as IADDR.

result = BADDRESS (X)
Inquiry function; Generic
x isavariable, an array or record field reference, a procedure, or a constant; it

can be of any datatype. It must not be the name of an internal procedure or
statement function. If it isapointer, it must be defined and associated with a

target.

Intrinsic Procedures 9

Results: Theresult type is INTEGER(4) on | A-32 processors, INTEGER(8) on Intel®
Itanium® processors. The value of the result represents the address of the data
object or, in the case of pointers, the address of its associated target. If the
argument is not valid, the result is undefined.

Example

Consider the following:
PROGRAM bat est

I NTEGER X(5), |
DO =1, 5
PRI NT *, BADDRESS(X(!))
END DO
END
BIT_SIZE

Description: Returns the number of bitsin an integer type.

Syntax: result = BIT_SIZE (i)

Class: Inquiry function; Generic

Arguments: i must be of type integer.

Results: Theresult isascalar integer with the same kind parameter asi. The result value
is the number of bits (s) defined by the bit model for integers with the kind
parameter of the argument. For information on the bit model, see “Model for
Bit Data’.

Example

BIT_SIZE (1_2) hasthe value 16 because the KIND=2 integer type contains 16 bits.

BTEST

Description: Tests a bit of an integer argument.

Syntax: result = BTEST (i, pos)
Class: Elemental function; Generic

Arguments:
i Must be of type integer.

9-33

9 Intel Fortran Language Reference

pos Must be of type integer. It must not be negative and it must be less than
BIT_SIZE (i).
The rightmost (least significant) bit of i isin position 0.
Results: The result type is default logical.

Theresultistrueif bit posof | hasthevalue 1. Theresult isfaseif pos hasthe
value zero. For more information on bit functions, see “Bit Functions’.

The setting of compiler options specifying integer size can affect this function.

Specific Name Argument Type Result Type
BBTEST INTEGER(1) LOGICAL(1)
BITEST! INTEGER(2) LOGICAL(2)
BTEST? INTEGER(4) LOGICAL(4)
BKTEST INTEGER(8) LOGICAL(8)

1. Or HTEST

2. Or BJTEST

Examples

BTEST (9, 3) hasthe valuetrue.

If A has the value {1 2} ,the value of BTEST (A, 2) is {f al se fal Se} and the value

34 fal se true

of BTEST (2, A)is | LT Ue false|
falsefal se

CACHESIZE (64 only)

9-34

Description: Returns the size of alevel of the memory cache. This specific function has no
generic function associated with it and is only available on Intel Itanium
processors. It must not be passed as an actual argument.

Syntax: result = CACHESIZE (n)

Class: Inquiry function; Specific

Arguments: n must be scalar and of type INTEGER(4).

Results: Theresult typeis INTEGER(4). The result value is the number of kilobytesin

the level n memory cache.

Intrinsic Procedures 9

Example

n =1 specifiesthefirst level cache; n = 2 specifies the second level cache; etc.
If cache level n does not exist, the result valueis 0.

CACHESIZE(2) returns 16 for a processor with a 16K B first level memory cache.

CEILING

CHAR

Description:
Syntax:
Class:
Arguments:
a
kind (opt)

Results:

Examples

Returns the smallest integer greater than or equal to its argument.
result = CEILING (a[, kind])
Elemental function; Generic

Must be of typereal.

Must be ascalar integer initialization expression. Thisargument is a Fortran 95
feature.

The result typeisinteger. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result isthat of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.

The value of theresult is equal to the smallest integer greater than or equal to a.
The setting of compiler options specifying integer size can affect this function.

CEILING (4.8) hasthe value 5.
CEILING (-2.55) has the value —2.0.

Description:

Syntax:
Class:

Returns the character in the specified position of the processor’s character set.
It istheinverse of the function ICHAR.

result = CHAR (i [, kind])
Elemental function; Generic

9-35

9 Intel Fortran Language Reference

Arguments:
i

kind (opt)
Results:

Must be of type integer with avaluein therange 0 to n—1, wherenisthe
number of charactersin the processor’s character set.

Must be a scalar integer initialization expression.

Theresult is of type character with length 1. If kind is present, the kind
parameter of the result is that specified by kind; otherwise, the kind parameter
of theresult isthat of default character. |f the processor cannot represent the
result value in the kind of the result, the result is undefined.

Theresult is the character in position i of the processor’s character set.
ICHAR(CHAR (I, KIND(C))) hasthevalue |l forOton—1 and
CHAR(ICHAR(C), KIND(C)) hasthe value C for any character C capable of
representation in the processor.

Specific Name

CHAR!

Argument Type Result Type
INTEGER(1) CHARACTER
INTEGER(2) CHARACTER
INTEGER(4) CHARACTER
INTEGER(8) CHARACTER

1. This specific function cannot be passed as an actual argument.

Examples

CHAR (76) hasthevalue'L".
CHAR (94) hasthe value "'

CMPLX
Description:

Syntax:
Class:
Arguments:
X
y (opt)
kind (opt)

9-36

Converts the argument to complex type. This function cannot be passed as an
actual argument.

result = CMPLX (X[, y] [, kind])
Elemental function; Specific

Must be of type integer, real, or complex.
Must be of type integer or real. It must not be present if x is of type complex.
Must be a scalar integer initialization expression.

Intrinsic Procedures 9

Results: The result type is complex. If kind is present, the kind parameter is that
specified by kind; otherwise, the kind parameter is that of default real type.

If only one noncomplex argument appears, it is converted into the real part of
the result value and zero is assigned to the imaginary part. If y isnot specified
and x is complex, the result valueis CMPLX (REAL(X), AIMAG(X)).

If two noncomplex arguments appear, the complex valueis produced by
converting the first argument into the real part of the value, and converting the
second argument into the imaginary part.

CMPLX(x, y, kind) has the complex valuewhosereal part isREAL(x, kind) and
whose imaginary part is REAL (y, kind).

The setting of compiler options specifying real size can affect this function.

Examples
CMPLX (=3) hasthe vaue (-3.0, 0.0).
CMPLX (4.1, 2.3) hasthe value (4.1, 2.3).

CONJG

Description: Calculates the conjugate of a complex number.

Syntax: result = CONJG (2)

Class: Elemental function; Generic

Arguments: zmust be of type complex.

Results: Theresult typeisthe same as z If zhasthe value (, y), the result has the value

X, =)

Specific Name Argument Type Result Type
CONJG COMPLEX(4) COMPLEX(4)
DCONJG COMPLEX(8) COMPLEX(8)
QCONJG COMPLEX(16) COMPLEX(16)

Examples

CONJG ((2.0, 3.0)) has the value (2.0,-3.0).
CONJG ((1.0, -4.2)) has the value (1.0, 4.2).

9-37

9 Intel Fortran Language Reference

COS

Description: Produces the cosine of x.

Syntax: result = COS (x)

Class: Elemental function; Generic

Arguments: x must be of type real or complex. It must bein radians and istreated as modulo

2* .
If x is of type complex, itsreal part isregarded asavaluein radians.

Results: Theresult typeis the same as x.
Specific Name Argument Type Result Type
COS REAL(4) REAL(4)
DCOS REAL(8) REAL(8)
QCOSs REAL(16) REAL(16)
ccos? COMPLEX(4) COMPLEX(4)
CDCOS?2 COMPLEX(8) COMPLEX(8)
CQCOSs COMPLEX(16) COMPLEX(16)

1. The setting of compiler options specifying real size can affect CCOS.

2. This function can also be specified as ZCOS.

Examples

COS (2.0) has the value —0.4161468.

COS (0.567745) has the value 0.8431157.

COSD

Description: Produces the cosine of x.

Syntax: result = COSD (X)
Class: Elemental function; Generic
Arguments: x must be of typereal. It must be in degrees and is treated as modul o 360.
Results: The result type is the same as x.
Specific Name Argument Type Result Type
COSD REAL(4) REAL(4)

9-38

Intrinsic Procedures 9

Specific Name Argument Type Result Type

DCOSD REAL(8) REAL(8)

QCOSD REAL(16) REAL(16)
Examples

COSD (2.0) has the value 0.9993908.
COSD (30.4) has the value 0.8625137.

COSH
Description: Produces a hyperbolic cosine.
Syntax: result = COSH (X)
Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as x.
Specific Name Argument Type Result Type
COSH REAL(4) REAL(4)
DCOSH REAL(8) REAL(8)
QCOSH REAL(16) REAL(16)
Examples

COSH (2.0) has the value 3.762196.
COSH (0.65893) has the value 1.225064.

COTAN
Description: Produces the cotangent of x.
Syntax: result = COTAN (X)
Class: Elemental function; Generic
Arguments: x must be of type redl; it cannot be zero. It must be in radians and is treated as
modulo 2* 1.
Results: The result type is the same as x.

9-39

9 Intel Fortran Language Reference

Specific Name Argument Type Result Type

COTAN REAL(4) REAL(4)

DCOTAN REAL(8) REAL(8)

QCOTAN REAL(16) REAL(16)
Examples

COTAN (2.0) has the value —4.576575E-01.
COTAN (0.6) has the value 1.461696.

COTAND

Description: Produces the cotangent of X.
Syntax: result = COTAND (x)
Class: Elemental function; Generic

Arguments: x must be of typereal. It must be in degrees and is treated as modulo 360.

Results: The result type is the same as x.
Specific Name Argument Type Result Type
COTAND REAL(4) REAL(4)
DCOTAND REAL(8) REAL(8)
QCOTAND REAL(16) REAL(16)
Examples

COTAND (2.0) has the value 0.2863625E+02.
COTAND (0.6) hasthe value 0.9548947E+02.

COUNT

Description: Counts the number of true elementsin an entire array or in a specified

dimension of an array.
Syntax: result = COUNT (mask [, dim] [, kind])
Class: Transformational function; Generic

9-40

Intrinsic Procedures 9

Arguments:
mask Must be alogica array.

dim (opt) Must be a scalar integer expression with avaluein the range 1 to n, wheren is
the rank of mask.

kind (opt) Must be a scalar integer initialization expression.

Results: Theresult isan array or scalar of typeinteger. If kind is present, the kind
parameter of the result isthat specified by kind; otherwise, the kind parameter
of the result isthat of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.

Theresult isascalar if dimisomitted or mask has rank one. A scalar result has
avalue equal to the number of true elements of mask. If mask has size zero, the
result is zero.

An array result has arank that is one |less than mask, and shape (d4, d,, ...,
dpim—1> ADiM+1s --» dr), Where (dy, do,..., dy,) is the shape of mask.

Each element in an array result equals the number of elementsthat are truein
the one dimensional array defined by mask (Sq, Sp, -+, SDIM—1+ =+ SDIM+1s -+ Sn)-

The setting of compiler options specifying integer size can affect this function.

Examples
COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements are true.
COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements are true.

A isthearray 157 and B isthe array 057.
368 269

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of A are not equal to
the elements in the corresponding column of B. The result has the value (2, 0, 1) because:

® Thefirst column of A and B have 2 elements that are not equal.
® The second column of A and B have 0 elements that are not equal.
® Thethird column of A and B have 1 element that is not equal.

COUNT (A .NE. B, DIM=2) tests to see how many elementsin each row of A are not equal to the
elements in the corresponding row of B. The result has the value (1, 2) because:

® Thefirst row of A and B have 1 element that is not equal.
® Thesecond row of A and B have 2 elements that are not equal.

9-41

9 Intel Fortran Language Reference

CPU_TIME

Description:

Syntax:

Class:
Arguments:

Returns a processor-dependent approximation of the processor timein seconds.
Thisisanew intrinsic procedure in Fortran 95.

CALL CPU_TIME (time)
Subroutine
time must be scalar and of typered. Itisan INTENT(OUT) argument.

If ameaningful time cannot be returned, a processor-dependent negative value is returned.

Example

Consider the following:

REAL ti me_begin,

tinme_end

CALL CPU_TI ME(ti me_begi n)

CALL CPU_TI ME(ti me_end)

PRINT (*,*) 'Tine of operation was ', tinme_end - tine_begin, ' seconds'
CSHIFT
Description: Performs acircular shift on arank-one array, or performs circular shiftson all

Syntax:

Class:

Arguments:
array
shift

dim (opt)

9-42

the compl ete rank-one sections (vectors) along a given dimension of an array of
rank two or greater.

Elements shifted off one end are inserted at the other end. Different sections
can be shifted by different amounts and in different directions.

result = CSHIFT (array, shift [, dim])
Transformational function; Generic

Must be an array; it can be of any datatype.

Must be a scalar integer or an array with arank that is one less than array, and
shape (dy, dy, ..., dpyv—1: IDIM+1s -+ Ar)s Where (dy, do, ..., d) is the shape of
array.

Must be a scalar integer with avaluein the range 1 to n, where nis the rank of
array. If dimisomitted, it is assumed to be 1.

Intrinsic Procedures 9

Results: Theresult is an array with the same type and kind parameters, and shape as
array.

If array hasrank one, element i of theresultisarray (1 + MODULO (i + shift —
1, SIZE (array))). (The same shift is applied to each element.)

If array has rank greater than one, each section (S,Sy, .., SpIM—1s » SDIM+1r +-»

S,y of theresult is shifted as follows:

* By thevalue of shift, if shift is scalar

® According to the corresponding value in shift(S;, Sp,---, SDIM—1s SDIM+1s+++s
Sy, if shiftisan array

The value of shift determines the amount and direction of the circular shift. A
positive shift value causes a shift to the left (in rows) or up (in columns). A
negative shift value causes a shift to theright (in rows) or down (in columns). A
zero shift value causes no shift.

Examples
Visthearray (1, 2, 3, 4, 5, 6).

CSHIFT (V, SHIFT=2) shiftsthe elementsin V circularly to the left by 2 positions, producing the
value (3, 4,5, 6, 1, 2). 1 and 2 are shifted off the beginning and inserted at the end.

CSHIFT (V, SHIFT=-2) shiftsthe elementsin V circularly to theright by 2 positions, producing
thevalue (5, 6, 1, 2, 3, 4). 5 and 6 are shifted off the end and inserted at the beginning.

123 231
Misthearray |4 5 g| . CSHIFT (M, SHIFT =1, DIM = 2) producestheresult |5 g 4| -
789 897

Each element in rows 1, 2, and 3 is shifted to the left by 2 positions. The elements shifted off the

beginning are inserted at the end.
789

CSHIFT (M, SHIFT = -1, DIM = 1) producestheresult {1 2 3| .

456

Each element in columns 1, 2, and 3 is shifted down by 1 position. The elements shifted off the
end are inserted at the beginning.)31

CSHIFT (M, SHIFT = (/1, -1, 0/), DIM = 2) producestheresult |g 4 5| .

789

Each element in row 1 is shifted to the left by 1 position; each element in row 2 is shifted to the
right by 1 position; no element in row 3 is shifted at al.

9-43

9 Intel Fortran Language Reference

DATE

Description: Returns the current date as set within the system.

Syntax: CALL DATE (buf)

Class: Subroutine

Arguments: buf is a 9-byte variable, array, array element, or character substring.

The date is returned as a 9-byte ASCII character string taking the form dd-mmm-yy, where:
dd is the 2-digit date
mmm is the 3-letter month
yy is the last two digits of the year

If buf is of numeric type and smaller than 9 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 9
bytes, the subroutine truncates the date to fit in the specified length. If an array of type character is
passed, the subroutine stores the date in the first array element, using the element length, not the
length of the entire array.

A CAUTION. Thetwo-digit year return value may cause problems with the year
2000 or later. Use DATE_AND_TIME instead (see “DATE_AND_TIME").

Example

Consider the following:
CHARACTER* 1 DAY(9)

CALL DATE (DAY)

The length of thefirst array element in CHARACTER array DAY is passed to the DATE
subroutine. The subroutine then truncates the date to fit into the one-character element, producing
an incorrect result.

DATE_AND_TIME

Description: Returns character data on the real-time clock and date in aform compatible
with the representations defined in Standard 1SO 8601:1988.

Intrinsic Procedures 9

Syntax:

Class:

Arguments:
date (opt)

time (opt)

zone (opt)

values (opt)

CALL DATE_AND_TIME ([date] [, time] [, zon€] [, values])
Subroutine
There are four optional arguments:t

Must be scalar and of type default character; its length must be at least 8 to
contain the complete value. Its leftmost 8 characters are set to avalue of the
form CCYYMMDD, where:

CC is the century

MM is the month within the year

DD is the day within the month

Must be scalar and of type default character; itslength must be at least 10 to
contain the complete value. Its leftmost 10 characters are set to avalue of the
form hhmmss.sss, where:

hh is the hour of the day

mm is the minutes of the hour

ss.sss is the seconds and milliseconds of the minute

Must be scalar and of type default character; its length must be at least 5 to
contain the complete value. Its leftmost 5 characters are set to avalue of the
form hhmm, where hh and mm are the time difference with respect to
Coordinated Universal Time (UTC)? in hours and parts of an hour expressed in
minutes, respectively.

Must be of type default integer and of rank one. Its size must be at least 8. The
valuesreturned in VALUES are asfollows:

VALUES (1) is the 4-digit year.

VALUES (2) is the month of the year.

VALUES (3) is the day of the month.

VALUES (4) is the time difference with respect to Coordinated Universal Time

(UTC) in minutes.

VALUES (5) is the hour of the day (range 0 to 23). 3

VALUES (6) is the minutes of the hour (range O to 59). 3

VALUES (7) is the seconds of the minute (range 0 to 59). 3

VALUES (8) is the milliseconds of the second (range 0 to 999).3

1. Allare INTENT(OUT) arguments. (See “INTENT Attribute and Statement”.)
2. UTC (also known as Greenwich Mean Time) is defined by CCIR Recommendation 460-2.

3. Inlocal time.

The setting of compiler options specifying integer size can affect this subroutine.

Examples

Consider the following example executed 2000 March 28 at 11:04:14.5;

9-45

9 Intel Fortran Language Reference

DBLE

9-46

| NTEGER DATE_TI ME (8)
CHARACTER (LEN = 12) REAL_CLOCK (3)
CALL DATE_AND_TI ME (REAL_CLOCK (1), REAL_CLOCK (2), &

REAL_CLOCK (3), DATE_TI ME)

This assigns the value "20000328" to REAL_CLOCK (1), the value "110414.500" to
REAL_CLOCK (2), and the value "-0500" to REAL_CLOCK (3). Thefollowing values are
assigned to DATE_TIME: 2000, 3, 28, -300, 11, 4, 14, and 500.

Description:

Syntax:
Class:

Arguments:

Results:

Converts a number to double-precision real type.
result = DBLE (a)

Elemental function; Generic

a must be of type integer, real, or complex.

The result type is double precision real (REAL(8) or REAL*8). Functions that
cause conversion of one data type to another type have the same effect as the
implied conversion in assignment statements.

If ais of type double precision, the result is the value of the a with no
conversion (DBLE(a) = a).

If aisof typeinteger or rea, the result has as much precision of the significant
part of a as adouble precision value can contain.

If ais of type complex, the result has as much precision of the significant part
of thereal part of a asadouble precision value can contain.

Specific Name

DBLE?

DBLEQ

1

Argument Type Result Type
INTEGER(1) REAL(8)
INTEGER(2) REAL(8)
INTEGER(4) REAL(8)
INTEGER(8) REAL(8)
REAL(4) REAL(8)
REAL(8) REAL(8)
REAL(16) REAL(8)
COMPLEX(4) REAL(8)
COMPLEX(8) REAL(8)

Intrinsic Procedures 9

Specific Name

1

Argument Type Result Type

COMPLEX(16) REAL(8)

1. These specific functions cannot be passed as actual arguments.

2. For compatibility with older versions of Fortran, DBLE can be specified as a specific function.

Examples

DBLE (4) has the value 4.0.
DBLE ((3.4, 2.0)) hasthe value 3.4.

DCMPLX

Description:

Syntax:
Class:

Arguments:

X

y
Results:

Examples

Converts the argument to double complex type. Thisfunction cannot be passed
as an actua argument.

result = DCMPLX (X[, Vy])
Elemental function; Specific

Must be of type integer, real, or complex.
Must be of type integer or real. It must not be present if x is of type complex.
The result type is double complex (COMPLEX(8) or COMPLEX* 16).

If only one noncomplex argument appears, it is converted into the real part of
the result value and zero is assigned to the imaginary part. If y isnot specified
and x is complex, the result valueis CMPLX (REAL(X), AIMAG(X)).

If two noncomplex arguments appear, the complex valueis produced by
converting the first argument into the real part of the value, and converting the
second argument into the imaginary part.

DCMPLX(x, y) has the complex value whose real part is REAL (x, KIND=8)
and whose imaginary part is REAL(y, KIND=8).

DCMPLX (-3) has the value (3.0, 0.0).
DCMPLX (4.1, 2.3) hasthe value (4.1, 2.3).

9-47

9 Intel Fortran Language Reference

DFLOAT

Description:
Syntax:
Class:
Arguments:
Results:

Converts an integer to double-precision real (REAL(8)) type.
result = DFLOAT (a)

Elemental function; Generic

a must be of type integer.

The result type is double precision real (REAL(8) or REAL*8).

Functions that cause conversion of one data type to another type have the same
affect as the implied conversion in assignment statements.

Specific Name

DFLOTI
DFLOTJ
DFLOTK

1

Argument Type Result Type
INTEGER(1) REAL(8)
INTEGER(2) REAL(8)
INTEGER(4) REAL(8)
INTEGER(8) REAL(8)

1. These specific functions cannot be passed as actual arguments.

Example

DFLOAT (—4) hasthe value —4.0.

DIGITS

9-48

Description:

Syntax:
Class:
Arguments:
Results:

Example

Returns the number of significant digits for numbers of the same type and kind
parameters as the argument.

result = DIGITS (X)

Inquiry function; Generic

x must be of type integer or real; it can be scalar or array valued.
Theresult isascalar of type default integer.

Theresult hasthe value q if x is of type integer; it hasthe value p if x is of type
real. Integer parameter qisdefined in “Model for Integer Data’; real parameter
pisdefinedin “Model for Real Data’.

If X isof type REAL(4), DIGITS (X) has the value 24.

Intrinsic Procedures 9

DIM

DNUM

Description:

Syntax:
Class:

Arguments:

X

y
Results:

Returns the difference between two numbers (if the difference is positive).
result = DIM (X, y)
Elemental function; Generic

Must be of type integer or real.
Must have the same type and kind parameters as x.

The result type is the same as x. The value of theresultisx —y if X is greater
than y; otherwise, the value of the result is zero.

Specific Name Argument Type Result Type
BDIM INTEGER(1) INTEGER(1)
1IDIMY INTEGER(2) INTEGER(2)
IDIM? INTEGER(4) INTEGER(4)
KIDIM®3 INTEGER(8) INTEGER(8)
DIM REAL(4) REAL(4)
DDIM REAL(8) REAL(8)
QDIM REAL(16) REAL(16)

1. Or HDIM.

2. Or JIDIM. For compatibility, IDIM can also be specified as a generic function.

3. Or KDIM.

Examples

DIM (6, 2) hasthe value 4.
DIM (4.0, 3.0) hasthe value 0.0.

Description:

Syntax:
Class:

Arguments:

Converts a character string to a double-precision real value.
result = DNUM (i)

Elemental function; Specific

i must be of type character.

9-49

9 Intel Fortran Language Reference

Results: Theresult typeisdouble-precision real. The result valueisthe double-precision
real value represented by the character stringi.

Examples
DNUM ("3.14159") has the double-precision vaue 3.14159.
Thefollowing sets x to 311.0:

CHARACTER(3) i

DOUBLE PRECI SI ON x

i = "311"

X = DNUMi)

DOT_PRODUCT

Description: Performs dot-product multiplication of numeric or logical vectors (rank-one

arrays).
Syntax: result = DOT_PRODUCT (vector_a, vector_b)
Class: Transformational function; Generic
Arguments:
vector_a Must be arank-one array of numeric (integer, real, or complex) or logical type.
vector_b Must be arank-one array of numeric typeif vector_a is of numeric type, or of
logical typeif vector_aisof logical type. It must be the same size as vector_a.
Results: Theresult is a scalar whose type depends on the types of vector_a and
vector_b.
If vector_ais of typeinteger or real, the result value is SUM
(vector_a*vector_b).
If vector_ais of type complex, the result valueis SUM (CONJG
(vector_a)*vector_b).
If vector_ais of typelogical, the result has the value ANY (vector_a .AND.
vector_b).
If either rank-one array has size zero, theresult is zero if the array is of numeric
type, and false if the array is of logical type. (For more information on
expressions, see “ Expressions’.)
Examples

DOT_PRODUCT ((/1, 2, 3/), (/13, 4, 5/)) has the value 26, calculated as follows:

9-50

Intrinsic Procedures 9

((1 x3) +(2x4) +(3x05)) =26
DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) hasthe value (17.0, 4.0).
DOT_PRODUCT ((/ . TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) hasthe value false.

DPROD
Description:

Syntax:

Class:

Arguments:
X

y
Results:

Examples

Produces a higher precision product. Thisis a specific function that has no
generic name associated with it. It cannot be passed as an actual argument.

result = DPROD (x, Y)
Elemental function; Specific

Must be of type REAL (4) or REAL(8).
Must have the same type and kind parameters as x.

If x and y are of type REAL(4), the result type is double-precision real
(REAL(8) or REAL*8). If x and y are of type REAL(8), the result is of type
REAL(16). Theresult valueis equal to x*y.

The setting of compiler options specifying real size can affect this function.

DPROD (2.0, —4.0) has the value —8.00DO0.
DPROD (5.0D0, 3.0D0) has the value 15.00Q0.
The following shows another example:

REAL(4) e
REAL(8) d

e = 123456.7
d = 123456. 7D0 ! DPROD (e, e) returns 15241557546. 4944
! DPROD (d,d) returns 15241556774.8899992813874268904328

DREAL

Description:

Syntax:

Convertsthe real part of a double complex argument to double-precision real
type. This specific function has no generic function associated with it. It cannot
be passed as an actual argument.

result = DREAL (a)

9-51

9 Intel Fortran Language Reference

Class:
Arguments:
Results:

Example

Elemental function; Specific
a must be of type double complex (COMPLEX(8) or COMPLEX* 16).
The result type is double precision real (REAL(8) or REAL*8).

DREAL ((2.0dO, 3.0d0)) has the value 2.0d0.

DSHIFTL

Description:

Syntax:

Class:

Arguments:
ileft
iright
ishift

Results:

Example

Arithmetically shifts a 128-bit integer to the | eft.
result = DSHIFTL (ileft, iright, ishift)
Elemental function; Specific

Must be of type INTEGER(8).
Must be of type INTEGER(8).

Must be of type INTEGER(8). It must be nonnegative and less than or equal to
64. Thisisthe shift count.

The result type is INTEGER(8). The result value is the 64-bit value starting at
bit 128 —ishift of the 128-bit concatenation of the values of ileft and iright.

Consider the following:

| NTEGER(8)
| NTEGER(8)

PRI NT *,

DSHIFTR

9-52

Description:

Syntax:

Class:

Arguments:
ileft

| LEFT / Z'111122221111222"' /
| RIGHT / Z' FFFFFFFFFFFFF /
DSHI FTL (I LEFT,

| RIGHT, 16_8)! prints 1306643199093243919

Arithmetically shifts a 128-bit integer to the right.
result = DSHIFTR (ileft, iright, ishift)
Elemental function; Specific

Must be of type INTEGER(8).

Intrinsic Procedures 9

EOF

iright Must be of type INTEGER(8).
ishift Must be of type INTEGER(8). It must be nonnegative and less than or equal to
64. Thisis the shift count.
Results: Theresult typeis INTEGER(8). The result value is the 64-bit value starting at

bit 64 + ishift of the 128-bit concatenation of the values of ileft and iright.

Example

Consider the following:

| NTEGER(8) | LEFT / Z'111122221111222' |/

| NTEGER(8) | RI GHT / Z' FFFFFFFFFFFFF /

PRINT *, DSH FTR (I LEFT, IRIGHT, 16_8)! prints 1306606910610341887

Description: Checks whether afileis at or beyond the end-of-file record. This specific
function has no generic function associated with it. It cannot be passed as an
actual argument.

Syntax: result = EOF (a)

Class: Inquiry function; Specific

Arguments: amust be of typeinteger. It represents a unit specifier corresponding to an open
file. It cannot be zero unless you have reconnected unit zero to aunit other than
the screen or keyboard.

Results: Theresult typeislogical. Thevaue of theresultis. TRUE. if the file connected
toaisat or beyond the end-of-file record; otherwise, .FALSE..

Example

Consider the following:
I Creates a file of random nunbers, and reads them back
REAL x, total
I NTEGER count
OPEN (1, FILE = 'TEST. DAT'")
DOl =1, 20
CALL RANDOM NUMBER(x)
WRITE (1, '(F6.3)') x * 100.0
END DO
CLOSE(1)

9-53

9 Intel Fortran Language Reference

OPEN (1, FILE = ' TEST. DAT")
DO WHI LE (. NOT. EOF(1))

count

= count + 1

READ (1, *) value

total = total + value
END DO
100 IF (count .GI. 0) THEN
WRITE (*,*) 'Average is: ', total / count
ELSE
WRITE (*,*) '"Input file is enpty '
END | F
STOP
END
EOSHIFT
Description: Performs an end-off shift on arank-one array, or performs end-off shifts on all
the complete rank-one sections along a given dimension of an array of rank
two or greater.
Elements are shifted off at one end of a section and copies of aboundary value
arefilled in at the other end. Different sections can have different boundary
values and can be shifted by different amounts and in different directions.
Syntax: result = EOSHIFT (array, shift [, boundary] [, dim])
Class: Transformational function; Generic
Arguments:
array Must be an array (of any datatype).
shift Must be a scalar integer or an array with arank that is one less than array, and
Shape (dl’ d2, veey leM—l' dD|M+1' ey dn), where (dl' d2, veey dn) isthe Shape of
array.
boundary (opt) Must have the same type and kind parameters asarray. It must be ascalar or an

9-54

array with arank that is one less than array, and shape (dq, d, ..., dpjm-1.

dpim+1s -+ Ap)-
If boundary is not specified, it is assumed to have the following default values

(depending on the data type of array):

Intrinsic Procedures 9

dim (opt)

Results:

Examples

ARRAY Type BOUNDARY Value
Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical false
Character(len) len blanks

Must be a scalar integer with avalue in the range 1 to n, where n is the rank of
array. If dimisomitted, it is assumed to be 1.

Theresult is an array with the same type and kind parameters, and shape as
array.

If array has rank one, the same shift is applied to each element. If an element is
shifted off one end of the array, the boundary value is placed at the other end
the array.

If array has rank greater than one, each section (Sy, S, -+, SDIM—1: :» SDIM+1s +-»

S, of theresult is shifted asfollows:

® By thevalue of shift, if shift is scalar

® According to the corresponding value in shift(s, Sp...., SoiM—1: SDIM+1++++»
), if shift isan array

If an element is shifted off one end of a section, the boundary valueis placed at

the other end of the section.

The value of shift determines the amount and direction of the end- off shift. A
positive shift value causes a shift to the left (in rows) or up (in columns). A
negative shift value causes a shift to the right (in rows) or down (in columns).

Visthearray (1, 2, 3, 4, 5, 6).

EOSHIFT (V, SHIFT=2) shiftsthe elementsin V to theleft by 2 positions, producing the value (3,
4,5, 6,0,0).1and 2 are shifted off the beginning and two elements with the default BOUNDARY
value are placed at the end.

EOSHIFT (V, SHIFT= -3, BOUNDARY = 99) shiftsthe elementsin V to theright by 3 positions,
producing the value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are shifted off the end and three elements with
BOUNDARY vaue 99 are placed at the beginning.

123

M isthe character array |4 5 6| -

789

9-55

9 Intel Fortran Language Reference

23*
EOSHIFT (M, SHIFT = 1, BOUNDARY ="', DIM = 2) producestheresult |5 g *| .

89*
Each element inrows 1, 2, and 3 is shifted to the left by 1 position. This causesthe first element in
each row to be shifted off the beginning, and the BOUNDARY value to be placed at the end.

000
EOSHIFT (M, SHIFT =-1, DIM =1) producestheresult |1 2 3| .

456

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes the last element in
each column to be shifted off the end and the BOUNDARY value to be placed at the beginning.
EOSHIFT (M, SHIFT = (/1, -1, 0/), BOUNDARY = (/ *','?,''[), DIM = 2) produces the result

23*

?45|-

789
Each element in row 1 is shifted to the left by 1 position, causing the first element to be shifted off
the beginning and the BOUNDARY value * to be placed at the end. Each element inrow 2 is
shifted to the right by 1 position, causing the last element to be shifted off the end and the

BOUNDARY value ?to be placed at the beginning. No element in row 3 is shifted at all, so the
specified BOUNDARY valueis not used.

EPSILON

Description: Returns a positive model number that is almost negligible compared to unity in
the model representing real numbers.

Syntax: result = EPSILON (X)

Class: Inquiry function; Generic

Arguments: X must be of typered; it can be scalar or array valued.

Results: Theresult isascalar of the same type and kind parameters as x. The result has
the value b'™P. Parameters b and p are defined in “Model for Real Data’.

Example

9-56

If X isof type REAL(4), EPSILON (X) hasthe value 2723,

Intrinsic Procedures 9

ERF

ERFC

Description:

Syntax:
Class:
Arguments:
Results:

Returns the error function of an argument.

result = ERF ()

Elemental function; Generic

x must be of typereal.

Theresult typeisthe sameasx. Theresultisintherange—1to 1.

ERF returns the error function of x defined as follows:
2

2 ¢
—| e dt
A/ﬁJ.O

Specific Name Argument Type Result Type

ERF REAL(4) REAL(4)

DERF REAL(8) REAL(8)

QERF REAL(16) REAL(16)
Example

ERF (1.0) has the value 0.842700794.

Description:

Syntax:
Class:

Arguments:

Results;

Returns the complementary error function of an argument.
result = ERFC (x)
Elemental function; Generic
X must be of typereal.
Theresult typeisthesameasx. TheresultisintherangeOto 2.
ERFC returns 1 — ERF(x) and is defined as follows:
00 2
ij et dt
STy
ERFC is provided because of the extreme loss of relative accuracy if ERF(X) is
called for large x and the result is subtracted from 1.

9-57

9 Intel Fortran Language Reference

Specific Name Argument Type Result Type

ERFC REAL(4) REAL(4)

DERFC REAL(8) REAL(8)

QERFC REAL(16) REAL(16)
Example

ERFC (1.0) has the value 0.1572992057.

ERRSNS

9-58

Description:
Syntax:
Class:
Arguments:
io_err (opt)

sys err (opt)

stat (opt)
unit (opt)

cond (opt)

Returnsinformation about the most recently detected 1/0 system error condition.
CALL ERRSNS ([io_err] [, sys_err] [, stat] [, unit] [, cond])

Subroutine

There are five optional arguments:

Isan integer variable or array element that stores the most recent Run-Time
Library error number that occurred during program execution. (For alisting of
error numbers, see your user’s guide.)

A zero indicates no error has occurred since the last call to ERRSNS or since the
start of program execution.

Is an integer variable or array element that stores the most recent system error

number associated withio_err. This code is one of the following:

® OnLinux* systems, itisanerrno value. (Seeerrno(2).)

® On Windows* systems, it isthe valuereturned by Get Last Error () at
thetime of the error.

Isan integer variable or array element that stores a status value that occurred
during program execution. Thisvalueis zero.

Is an integer variable or array element that stores the logical unit number, if the
last error was an /O error.

Isaninteger variable or array element that stores the actual processor value. This
valueis aways zero.

If you specify INTEGER(2) arguments, only the low-order 16 bits of information are returned or
adjacent data can be overwritten. Because of this, it is best to use INTEGER(4) arguments.

The saved error information is set to zero after each call to ERRSNS.

Intrinsic Procedures 9

EXIT

EXP

Example

Any of the arguments can be omitted. For example, the following is valid:
CALL ERRSNS (SYS ERR, STAT, , UNIT)

Description: Terminates program execution, closes al files, and returns control to the
operating system.

Syntax: CALL EXIT ([status])

Class: Subroutine

Arguments: status (opt)
Is an integer argument you can use to specify the image exit-status value.

Example
CALL EXIT (100)

Description: Computes an exponential value.

Syntax: result = EXP (X)

Class: Elemental function; Generic

Arguments: X must be of type real or complex.

Results: The result type is the same as x. The value of the result is €°. If x is of type

complex, itsimaginary part is regarded asavaluein radians.

Specific Name Argument Type Result Type
EXP REAL(4) REAL(4)
DEXP REAL(8) REAL(8)
QEXP REAL(16) REAL(16)
CEXp?! COMPLEX(4) COMPLEX(4)
CDEXP? COMPLEX(8) COMPLEX(8)
CQEXP COMPLEX(16) COMPLEX(16)

1. The setting of compiler options specifying real size can affect CEXP.
2. This function can also be specified as ZEXP.

9-59

9 Intel Fortran Language Reference

Examples

EXP (2.0) has the value 7.389056.
EXP (1.3) has the value 3.669297.

EXPONENT

Description:

Syntax:
Class:
Arguments:
Results:

Examples

Returns the exponent part of the argument when represented as a model
number.

result = EXPONENT (X)
Elemental function; Generic
x must be of typereal.

Theresult type is default integer. If x is not equal to zero, the result value isthe
exponent part of x. The exponent must be within default integer range;
otherwise, the result is undefined.

If X is zero, the exponent of x is zero. For more information on the exponent
part (e) in the real model, see“Model for Real Data’.

EXPONENT (2.0) hasthe value 2.
If 4.1isaREAL(4) value, EXPONENT (4.1) hasthe value 3.

FLOOR

9-60

Description:

Syntax:
Class:
Arguments:

Results;

Returns the greatest integer less than or equal to its argument.

result = FLOOR (a[, kind])

Elemental function; Generic

amust be of typered.

kind (opt)

Must be ascalar integer initialization expression. This argument is a Fortran 95
feature.

Theresult typeisinteger. If kind is present, the kind parameter of theresult is
that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.

Intrinsic Procedures 9

Examples

FLOOR (4.8) hasthe value 4.
FLOOR (-5.6) has the value —6.

FP_CLASS
Description:

Syntax:
Class:
Arguments:
Results:

Example

The value of theresult is equal to the greatest integer less than or equa to a.
The setting of compiler options specifying integer size can affect this function.

Returns the class of an IEEE* real (S floating, T_floating, or X_floating)

argument.

result = FP_CLASS (X)
Elemental function; Generic
X must be of typereal.

The result type is default integer. The return value is one of the following:

Class of Argument

Signaling NaN

Quiet NaN

Positive Infinity

Negative Infinity

Positive Normalized Number
Negative Normalized Number
Positive Denormalized Number
Negative Denormalized Number
Positive Zero

Negative Zero

Return Value

FOR_K_FP_SNAN
FOR_K_FP_QNAN
FOR_K_FP_POS_INF
FOR_K_FP_NEG_INF
FOR_K_FP_POS_NORM
FOR_K_FP_NEG_NORM
FOR_K_FP_POS_DENORM
FOR_K_FP_NEG_DENORM
FOR_K_FP_POS_ZERO
FOR_K_FP_NEG_ZERO

The preceding return values are defined in filef or def . f on Linux* systems
andfilef or def . f or on Windows* systems. For information on the location

of thesefiles, see your user’s guide.

FP_CLASS (4.0_8) hasthe value 4 (FOR_K_FP_POS NORM).

FRACTION

Description:

Returns the fractional part of the model representation of the argument value.

9-61

9 Intel Fortran Language Reference

Syntax: result = FRACTION (X)

Class: Elemental function; Generic

Arguments: x must be of type real.

Results: The result type is the same as x. The result has the value x * b°. Parameters b
and e are defined in “Model for Real Data’. If x has the value zero, the result
has the value zero.

Examples

If 3.0isaREAL(4) value, FRACTION (3.0) hasthe value 0.75.

FREE
Description: Frees ablock of memory that is currently allocated.
Syntax: CALL FREE (a)
Class: Subroutine

Arguments: a must be of type INTEGER(4) on | A-32 processors, INTEGER(8) on Intel
Itanium processors. Thisvalueis the starting address of the memory to be
freed, previously allocated by MALLOC (see“MALLOC").

If the freed address was not previously allocated by MALLOC, or if an address is freed more than

once, results are unpredictable.

Example

Consider the following:
| NTEGER(4) SI ZE
REAL(4) STORAGE(*)
PO NTER (ADDR, STORAGE) | ADDR wi |l point to STORAGE
SI ZE = 1024 I Size in bytes
ADDR = NMALLOC(SI ZE) ! Al'locate the nenory
CALL FREE(ADDR) | Free it

GETARG

Description: Returns the specified command-line argument (where the command itself is
argument number zero). This subroutine cannot be passed as an actual
argument.

9-62

Intrinsic Procedures 9

Syntax: CALL GETARG (n, buffer [, status])
Class: Subroutine
Arguments:
n Must be a scalar of type INTEGER(2) or INTEGER(4). Thisvaueisthe

position of the command-line argument to retrieve. The command itself is
argument number 0.

buffer Must be a scalar of type default character. Its valueis the returned
command-line argument.

status (opt) Must be ascalar and have the same type and kind parameters as n. If specified,
its value is the returned compl etion status.

If there were no errors, status returns the number of charactersin the retrieved
command-line argument before truncation or blank-padding. (That is, statusis
the original number of charactersin the command-line argument.) Errorsreturn
avalue of —1. Errorsinclude specifying an argument position less than O or
greater than the value returned by IARGC.

GETARRG returns the nth command-line argument. If nis zero, the name of the executing program
fileisreturned.

GETARG returns command-line arguments as they were entered. There is no case conversion.

If the command-line argument is shorter than buffer, GETARG pads buffer on the right with
blanks. If the argument is longer than buffer, GETARG truncates the argument on the right. If
thereis an error, GETARG fills buffer with blanks.

Example

Assume a command-line invocation of PROGL -g -c - a, and that buffer isat least five
characterslong. The following callsto GETARG return the corresponding arguments in buffer and
status:

String returned in Length returned in
Statement buffer status
CALL GETARG (0, buffer, status) PROG1 5
CALL GETARG (1, buffer) -9 undefined
CALL GETARG (2, buffer, status) -C 2
CALL GETARG (3, buffer) -a undefined
CALL GETARG (4, buffer, status) all blanks -1

9-63

9 Intel Fortran Language Reference

See Also
e “JARGC”

* “‘NARGS

HUGE
Description:

Syntax:
Class:
Arguments:
Results:

Example

Returns the largest number in the model representing the same type and kind
parameters as the argument.

result = HUGE (X)
Inquiry function; Generic
X must be of type integer or real; it can be scalar or array valued.

Theresult isascalar of the same type and kind parameters as x. If x is of type
integer, the result hasthe valuerd— 1. If x is of typereal, the result has the value
(1-b P,

Integer parametersr and q are defined in “Model for Integer Data”; real
parameters b, p, and e, are defined in “Model for Real Data”.

If X is of type REAL(4), HUGE (X) hasthe value (1—272% x 218,

IACHAR
Description:
Syntax:
Class:

Arguments:
Results:

9-64

Returns the position of a character in the ASCII character set, even if the
processor’s default character set is different. In Intel Fortran, IACHAR is
equivalent to the ICHAR function.

result = IACHAR (c)
Elemental function; Generic
¢ must be of type character of length 1.

Theresult typeis default integer. If cisin the ASCII collating sequence, the
result isthe position of ¢ in that sequence and satisfies the inequality
(0<1ACHAR(c) £127).

The results must be consistent with the LGE, LGT, LLE, and LLT lexical
comparison functions. For example, if LLE(C, D) istrue, IACHAR(C) .LE.
IACHAR(D) isaso true.

Intrinsic Procedures 9

IAND

Examples

IACHAR ('Y") has the value 89.
IACHAR ('%') has the value 37.

Description:

Syntax:
Class:

Arguments:

i
j
Results;

Performs alogical AND on corresponding bits. This function can also be
specified as AND.

result = IAND (i, j)
Elemental function; Generic

Must be of type integer.
Must be of type integer with the same kind parameter asi.

Theresult typeisthe same as |. The result value is derived by combining i and
j bit-by-bit according to the following :

I J 1AND(.J)
11 1
10 O
01 O
00 O

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type
BIAND INTEGER(2) INTEGER(2)
IIAND? INTEGER(2) INTEGER(2)
JIAND INTEGER(4) INTEGER(4)
KIAND INTEGER(8) INTEGER(8)
1. Or HIAND
Examples

IAND (2, 3) has the value 2.
IAND (4, 6) has the value 4.

9-65

9 Intel Fortran Language Reference

IARGC

Description: Returns the index of the last command-line argument. It cannot be passed as an
actual argument. This function can aso be specified as ARG or NUMARG.

Syntax: result = 1ARGC ()

Class: Inquiry function; Specific

Arguments: None.

Results: Theresult typeis INTEGER(4). The result isthe index of the last
command-line argument, which is also the number of arguments on the
command line. The command is not included in the count. For example,
IARGC returns 3 for the command-line invocation of PROGL -g -c¢ -a.
IARGC returns avalue that is 1 less than that returned by NARGS.

Example

Consider the following:
i nteger(4) no_of _argunents
no_of _argunments = | ARGC ()
print *, 'total command |line argunents are ', no_of argunents
For acommand-lineinvocation of PROGL -g -c - a, the program above prints:
total command |ine argunents are 3

See Also

* “GETARG”

* “NARGS

IARGPTR

Description: Returns a pointer to the actual argument list for the current routine.

Syntax: result = IARGPTR ()

Class: Inquiry function; Specific

Arguments: None.

Results: Theresult typeis INTEGER(4) on | A-32 processors, INTEGER(8) on Intel
[tanium processors. The actual argument list is an array of values of the same
type.

9-66

Intrinsic Procedures 9

Example

An argument count is not present and the first element has the address of the
first argument.

Formal (dummy) arguments that can be omitted must be declared VOLATILE.
For more information, see “VOLATILE Attribute and Statement”.

Consider the following:

IBCHNG

IBCLR

WRITE (*,' (" Address of argunent list is ",Z16.8)') | ARGPTR()
Description: Reverses the value of a specified bit in an integer.
Syntax: result = IBCHNG (i, pos)
Class: Elemental function; Generic
Arguments:
[Must be of type integer. This argument contains the bit to be reversed.
pos Must be of type integer. This argument is the position of the bit to be changed.
The rightmost (least significant) bit of i isin position 0.
Results: Theresult typeisthe same asi. Theresult is equal to i with the bit in position
pos reversed.
For more information on bit functions, see “Bit Functions”.
Example
Consider the following:
I NTEGER J, K
J = I BCHNG 10, 2) ! returns 14 = 1110
K = I BCHNG 10, 1) I returns 8 = 1000
Description: Clears one hit to zero.
Syntax: result = IBCLR (i, pos)
Class: Elemental function; Generic

9-67

9 Intel Fortran Language Reference

Arguments:
i
pos

Results;

Must be of type integer.

Must be of type integer. It must not be negative and it must be less than
BIT_SIZE (i).

The rightmost (least significant) bit of i isin position O.

Theresult type isthe same asi. The result has the value of the sequence of hits
of i, except that bit pos of i is set to zero.

For more information on bit functions, see “Bit Functions’.

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data’.

Specific Name Argument Type Result Type
BBCLR INTEGER(1) INTEGER(1)
IIBCLRY INTEGER(2) INTEGER(2)
JIBCLR INTEGER(4) INTEGER(4)
KIBCLR INTEGER(8) INTEGER(8)
1. Or HBCLR.
Examples

IBCLR (18, 1) hasthe value 16.
If V hasthevalue (1, 2, 3, 4), the value of IBCLR (POS =V, | = 15) is (13, 11, 7, 15).

IBITS

Description:

Syntax:
Class:

Arguments:

i
pos

9-68

Extracts a sequence of bits (a bit field).
result = IBITS (i, pos, len)
Elemental function; Generic

Must be of type integer.

Must be of typeinteger. It must not be negative and pos + len must be less than
or equa to BIT_SIZE (i).

The rightmost (least significant) bit of i isin position O.
Must be of type integer. It must not be negative.

Intrinsic Procedures 9

Results:;

Theresult typeisthe same asi. The result has the value of the sequence of len
bitsin i, beginning at pos right-adjusted and with all other bits zero.

For more information on bit functions, see “Bit Functions”.

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data’.

Specific Name Argument Type Result Type
BBITS INTEGER() INTEGER()
BITS! INTEGER(2) INTEGER(2)
JIBITS INTEGER(4) INTEGER(4)
KIBITS INTEGER(8) INTEGER(8)
1. Or HBITS.
Examples
IBITS (12, 1, 4) has the value 6.
IBITS (10, 1, 7) hasthevalueb.
Description: Setsone bit to 1.
Syntax: result = IBSET (i, pos)
Class: Elemental function; Generic
Arguments:
i Must be of type integer.
pos Must be of type integer. It must not be negative and it must be less than
BIT_SIZE (i).
The rightmost (least significant) bit of i isin position 0.
Results: Theresult type isthe same asi. The result has the value of the sequence of bits

of i, except that bit pos of i isset to 1.
For more information on bit functions, see “Bit Functions”.

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data’.

9-69

9 Intel Fortran Language Reference

ICHAR

9-70

Specific Name Argument Type Result Type
BBSET INTEGER(1) INTEGER(1)
IIBSET? INTEGER(2) INTEGER(2)
JIBSET INTEGER(4) INTEGER(4)
KIBSET INTEGER(8) INTEGER(8)
1. Or HBSET.
Examples

IBSET (8, 1) hasthe value 10.
If V hasthevalue (1, 2, 3, 4), thevalue of IBSET (POS=V, | =2)is(2, 6, 10, 18).

Description:
Syntax:
Class:
Arguments:
c
kind (opt)
Results:

Returns the position of a character in the processor’s character set.
result = ICHAR (c [, kind])
Elemental function; Generic

Must be of type character of length 1.
Must be a scalar integer initialization expression.

The result typeisinteger. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result is that of
default integer.

Theresult value isthe position of ¢ in the processor’s character set. Argument ¢
isintherange zero to n—1, where n isthe number of charactersin the character
Set.

For any characters C and D (capabl e of representation in the processor), C .LE.
Distrueonly if ICHAR(C) .LE. ICHAR(D) istrue, and C .EQ. D istrue only if
ICHAR(C) .EQ. ICHAR(D) istrue.

Specific Name

ICHAR?

Argument Type Result Type
CHARACTER INTEGER(2)
CHARACTER INTEGER(4)
CHARACTER INTEGER(8)

1. This specific function cannot be passed as an actual argument.

Intrinsic Procedures 9

Examples
ICHAR ('W") hasthe value 87.
ICHAR ('#) has the value 35.

IDATE
Description: Returns three integer values representing the current month, day, and year.
Syntax: CALL IDATE (i, j, k)
Class: Subroutine
Arguments:
[Must be of type INTEGER(4). The current month.
| Must be of type INTEGER(4). The current day.
k Must be of type INTEGER(4). The current year.
The current month isreturned ini; the current day in j. The last two digits of the current year are
returned in k.
A CAUTION. Thetwo-digit year return value may cause problems with the year
2000 or later. Use DATE_AND_TIME instead (see “DATE_AND_TIME”").
Example

If the current date is September 16, 1996, the values of the integer variables upon return are: | =9,
J=16, and K = 96.

IEOR

Description: Performs an exclusive OR on corresponding bits. This function can also be
specified as XOR or IXOR.

Syntax: result = IEOR (i, j)
Class: Elemental function; Generic

Arguments:
i Must be of type integer.
i Must be of type integer with the same kind parameter asi.

9-71

9 Intel Fortran Language Reference

ILEN

9-72

Results: Theresult typeisthe same asi. Theresult value is derived by combining i and
bit-by-hit according to the following truth table:

IEOR(l, J)

N]
1
0
1

cor R —
=)

0

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data”.

o

Specific Name Argument Type Result Type
BIEOR?! INTEGER(1) INTEGER(1)
IIEOR? INTEGER(2) INTEGER(2)
JIEOR® INTEGER(4) INTEGER(4)
KIEOR* INTEGER(8) INTEGER(8)

1. Or BIXOR

2. Or HIEOR, HIXOR, or IIXOR

3. OrJIXOR

4. For compatibility, this specific function can also be specified as IXOR.

Example
IEOR (12, 7) hasthe value 11; binary 1100 exclusive OR with binary 0111 is binary 1011.

Description: Returns the length (in bits) of the two’s complement representation of an integer.

Syntax: result = ILEN (i)

Class: Elemental function; Generic

Arguments: i must be of typeinteger.

Results: Theresult typeisthe sameasi. Theresult valueis (LOG,(| + 1)) if i isnot

negative; otherwise, the result valueis (LOG,(-1)).

Examples
ILEN (4) hasthe value 3.
ILEN (—4) hasthe value 2.

Intrinsic Procedures 9

INDEX

INT

Description: Returns the starting position of a substring within a string.
Syntax: result = INDEX (string, substring [, back] [, kind])
Class: Elemental function; Generic
Arguments:
string Must be of type character.
substring Must be of type character.
back (opt) Must be of typelogical.
kind (opt) Must be a scalar integer initialization expression.
Results: Theresult typeisinteger. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.

If back does not appear (or appears with the value false), the value returned is
the minimum value of | such that string (I : | + LEN (substring) — 1) =
substring (or zero if thereisno such value). If LEN (string) < LEN (substring),
zeroisreturned. If LEN (substring) = zero, 1 isreturned.

If back appears with the value true, the value returned is the maximum value of
I such that string (I : | + LEN (substring) — 1) = substring (or zero if thereisno
such value). If LEN(string) < LEN (substring), zero isreturned. If LEN
(substring) = zero, LEN (string) + 1 is returned.

Specific Name Argument Type Result Type
INDEX! CHARACTER INTEGER(4)
CHARACTER INTEGER(8)

1. The setting of compiler options specifying integer size can affect this function.

Examples
INDEX ('FORTRAN', 'O, BACK = .TRUE.) hasthe value 2.
INDEX (XXXX'," ", BACK =.TRUE.) hasthe value 5.

Decription: Converts avalue to integer type.

9-73

9 Intel Fortran Language Reference

9-74

Syntax:
Class:

Arguments:

a
kind (opt)
Results:

result = INT (a[, kind])
Elemental function; Generic

Must be of type integer, real, or complex.
Must be a scalar integer initialization expression.

Theresult typeisinteger. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result is shown in
the following table. If the processor cannot represent the result value in the
kind of the result, the result is undefined.

Functions that cause conversion of one datatype to another type have the same

affect asthe implied conversion in assignment statements.

The result value depends on the type and absolute value of a, as follows:

¢ If aisof typeinteger, INT (a) = a.

* |faisof typereal and | a| <1, INT (a) has the value zero.
If aisof typereal and | a| = 1, INT (a) isthe integer whose magnitudeis
the largest integer that does not exceed the magnitude of a and whose signis
the same asthe sign of a.

* |If aisof typecomplex, INT (a) = aisthe value obtained by applying the
preceding rules (for areal argument) to the real part of a.

Specific Name

IJINT
IFIX?
IINT
IFIX34
JFIX

INT>67
KIFIX
KINT
IIDINT
IDINTS:8

1

Argument Type Result Type
INTEGER(1), INTEGER(2), INTEGER(4) INTEGER(4)
INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8) INTEGER(8)
INTEGER(4) INTEGER(2)
REAL(4) INTEGER(2)
REAL(4) INTEGER(2)
REAL(4) INTEGER(4)

INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8), INTEGER(4)
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

REAL(4) INTEGER(4)
REAL(4) INTEGER(8)
REAL(4) INTEGER(8)
REAL(8) INTEGER(2)
REAL(8) INTEGER(4)

Intrinsic Procedures 9

1

Specific Name Argument Type Result Type
KIDINT REAL(8) INTEGER(8)
IQINT REAL(16) INTEGER(2)
IQINTS-? REAL(16) INTEGER(4)
KIQINT REAL(16) INTEGER(8)
INT210 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8), INTEGER(1)

REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INT210 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8), INTEGER(2)
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INT410 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8), INTEGER(4)
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INT810 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8), INTEGER(8)
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

1. These specific functions cannot be passed as actual arguments.

2. This function can also be specified as HFIX.

3. The setting of compiler options specifying integer size or real size can affect IFIX.

4. For compatibility with older versions of Fortran, IFIX can also be specified as a generic function.

5. OrJINT.

6. The setting of compiler options specifying integer size can affect INT, IDINT, and IQINT.

7. ORJIFIX.

8. Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as a generic function.
9. Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as a generic function.

10. For compatibility, these functions can be specified as generic functions.

Examples
INT (4.2) hasthe value —4.
INT (7.8) hasthevalue 7.

INT_PTR_KIND

Description: Returnsthe INTEGER KIND that will hold an address. Thisis a specific
function that has no generic function associated with it. It cannot be passed as
an actual argument.

Syntax: result = INT_PTR_KIND ()

9-75

9 Intel Fortran Language Reference

Class: Inquiry function; Specific

Arguments: None.

Results: The result type is default integer. The result is a scalar with the value equal to
the value of the kind parameter of the integer data type that can represent an
address on the host platform.

Theresult valueis 4 on |A-32 processors; 8 on Intel Itanium processors.

Example

Consider the following:
REAL A(100)
PO NTER (P, A)
| NTEGER (KI ND=I NT_PTR_KI ND()) SAVE P
P = MALLOC (400)

SAVE P = P
INUM
Description: Converts a character string to an INTEGER(2) value.
Syntax: result = INUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
Results: Theresult typeis INTEGER(2). The result value isthe INTEGER(2) value
represented by the character string i.
Example
INUM ("451.92") has the value 451 of type INTEGER(2).
IOR
Description: Performs an inclusive OR on corresponding bits. This function can also be
specified as OR.
Syntax: result = IOR (i, j)
Class: Elemental function; Generic

9-76

Intrinsic Procedures 9

ISHA

Arguments:
i
j

Results:

Must be of type integer.
Must be of type integer with the same kind parameter asi.

Theresult typeisthe same asi. Theresult value is derived by combining i and |
bit-by-hit according to the following truth table:

I3 10R(l.J)

11

10

01

00

The model for the interpretation of an integer value as a sequence of bitsis
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type
BIOR INTEGER(1) INTEGER(1)
lIOR? INTEGER(2) INTEGER(2)
JIOR INTEGER(4) INTEGER(4)
KIOR INTEGER(8) INTEGER(8)
1. Or HIOR.
Examples

IOR (1, 4) hasthe value 5.
IOR (1, 2) hasthe value 3.

Description:

Syntax:

Class:
Arguments:
[
shift

Arithmetically shifts an integer left or right by a specified number of bits.
result = ISHA (i, shift)
Elemental function; Generic

Must be of type integer. This argument is the value to be shifted.
Must be of type integer. This argument is the direction and distance of shift.

Positive shifts are | eft (toward the most significant bit); negative shifts are right
(toward the least significant bit).

9-77

9 Intel Fortran Language Reference

ISHC

9-78

Results:

Example

Theresult typeisthe sameasi. Theresult isequal toi shifted arithmetically by
shift bits.

If shift is positive, the shift isto the left; if shift is negative, the shift isto the
right. If shift is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. If the
shift isto the left, zeros are shifted in on theright. If the shift isto the right,
copies of the sign bit (O for non-negativei; 1 for negativei) are shifted in on the
left.

The kind of integer isimportant in arithmetic shifting because sign varies
among integer representations (see the following example). If you want to shift
aone-byte or two-byte argument, you must declare it as INTEGER(1) or
INTEGER(2).

Consider the following:

| NTEGER(1) i,

resil

| NTEGER(2) j, res2

i = -128 I equal to 10000000
j = -32768 I equal to 10000000 00000000
resl =1SHA (i, -4) ! returns 11111000 = -8
res2 = ISHA (j, -4) ! returns 11111000 00000000 = - 2048
Description: Rotates an integer left or right by specified number of bits. Bits shifted out one
end are shifted in the other end. No bits are lost.
Syntax: result = ISHC (i, shift)
Class: Elemental function; Generic
Arguments:
i Must be of type integer. This argument is the value to be rotated.
shift Must be of type integer. This argument is