
Intel® Fortran
Language Reference

Copyright © 2003 Intel Corporation

Document Number: 253261-001
World Wide Web: http://developer.intel.com

http://developer.intel.com

Disclaimer and Legal Information
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPY-
RIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustain-
ing applications.

This Reference as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccura-
cies that may appear in this document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this Reference may contain software defects which may cause the product to deviate from published specifica-
tions. Current characterized software defects are available on request.
Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo,
Pentium, Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.
* Other names and brands may be claimed as the property of others.

Copyright © 2003 Intel Corporation.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.
ii

Contents
About This Manual
Product Website and Support .. xxvi
Related Publications... xxvii
Conventions ... xxix

Platform Labels.. xxxi

Chapter 1 Overview
Language Standards Conformance .. 1-2
Language Compatibility... 1-2
Fortran 2003 Features... 1-2

Improved Features.. 1-3
Fortran 95 Features... 1-3

New Features ... 1-3
Improved Features.. 1-4

Fortran 90 Features... 1-5
New Features ... 1-5
Improved Features.. 1-7

Chapter 2 Program Structure, Characters, and Source Forms
Program Structure ... 2-1

Statements ... 2-2
Names .. 2-4

Character Sets .. 2-5
Source Forms.. 2-6

Free Source Form... 2-9
iii

Intel Fortran Language Reference
Fixed and Tab Source Forms.. 2-11
Fixed-Format Lines .. 2-13
Tab-Format Lines ... 2-13

Source Code Useable for All Source Forms 2-15

Chapter 3 Data Types, C onstants, and Variables
Intrinsic Data Types ... 3-2

Integer Data Types.. 3-4
Real Data Types.. 3-6

General Rules for Real Constants.. 3-7
REAL(4) Constants .. 3-8
REAL(8) or DOUBLE PRECISION Constants 3-9
REAL(16) Constants .. 3-10

Complex Data Types... 3-10
General Rules for Complex Constants... 3-11
COMPLEX(4) Constants .. 3-11
COMPLEX(8) or DOUBLE COMPLEX Constants 3-12
COMPLEX(16) Constants .. 3-13

Logical Data Types.. 3-14
Character Data Type... 3-14

C Strings in Character Constants... 3-16
 Character Substrings .. 3-17

Derived Data Types ... 3-19
Derived-Type Definition... 3-20
Default Initialization... 3-22
Structure Components.. 3-23
Structure Constructors.. 3-26

Binary, Octal, Hexadecimal, and Hollerith Constants 3-28
Binary Constants .. 3-28
Octal Constants .. 3-29
Hexadecimal Constants .. 3-29
Hollerith Constants ... 3-30
Determining the Data Type of Nondecimal Constants 3-31

Variables.. 3-33
iv

Contents
Data Types of Scalar Variables ... 3-34
Specification of Data Type.. 3-34
Implicit Typing Rules... 3-35

Arrays.. 3-35
Whole Arrays .. 3-38
Array Elements ... 3-38
Array Sections .. 3-41
Array Constructors.. 3-44

Chapter 4 Expressi ons and Assignme nt Statements
Expressions ... 4-1

Numeric Expressions .. 4-2
Using Parentheses in Numeric Expressions 4-4
Data Type of Numeric Expressions .. 4-5

Character Expressions.. 4-6
Relational Expressions.. 4-7
Logical Expressions .. 4-8

Data Types Resulting from Logical Operations 4-9
Evaluation of Logical Expressions.. 4-9

Defined Operations ... 4-10
Summary of Operator Precedence ... 4-11
Initialization and Specification Expressions .. 4-11

Initialization Expressions .. 4-12
Specification Expressions .. 4-13

Assignment Statements... 4-15
Intrinsic Assignments .. 4-16

Numeric Assignment Statements ... 4-17
Logical Assignment Statements ... 4-18
Character Assignment Statements... 4-18
Derived-Type Assignment Statements ... 4-19
Array Assignment Statements .. 4-20

Defined Assignments .. 4-21
Pointer Assignments ... 4-22
WHERE Statement and Construct .. 4-23
v

Intel Fortran Language Reference
FORALL Statement and Construct ... 4-26

Chapter 5 Specification Statements
Type Declaration Statements... 5-2

Declaration Statements for Noncharacter Types................................... 5-6
Declaration Statements for Character Types .. 5-8
Declaration Statements for Derived Types.. 5-10
Declaration Statements for Arrays .. 5-10

Explicit-Shape Specifications ... 5-11
Assumed-Shape Specifications ... 5-14
Assumed-Size Specifications... 5-15
Deferred-Shape Specifications .. 5-16

ALLOCATABLE Attribute and Statement ... 5-17
AUTOMATIC and STATIC Attributes and Statements.............................. 5-18
COMMON Statement .. 5-21
DATA Statement... 5-24
DIMENSION Attribute and Statement ... 5-27
EQUIVALENCE Statement .. 5-29

Making Arrays Equivalent ... 5-31
Making Substrings Equivalent... 5-33
EQUIVALENCE and COMMON Interaction .. 5-35

EXTERNAL Attribute and Statement... 5-38
IMPLICIT Statement .. 5-39
INTENT Attribute and Statement... 5-41
INTRINSIC Attribute and Statement.. 5-43
NAMELIST Statement ... 5-45
OPTIONAL Attribute and Statement.. 5-46
PARAMETER Attribute and Statement.. 5-48
POINTER Attribute and Statement.. 5-50
PRIVATE and PUBLIC Attributes and Statements................................... 5-51
SAVE Attribute and Statement .. 5-54
TARGET Attribute and Statement.. 5-55
VOLATILE Attribute and Statement ... 5-57
vi

Contents
Chapter 6 Dynamic Allocation
ALLOCATE Statement ... 6-2

Allocation of Allocatable Arrays... 6-3
Allocation of Pointer Targets.. 6-4

DEALLOCATE Statement .. 6-5
Deallocation of Allocatable Arrays... 6-6
Deallocation of Pointer Targets ... 6-7

NULLIFY Statement... 6-8

Chapter 7 Execution Control
Branch Statements .. 7-2

Unconditional GO TO Statement .. 7-2
Computed GO TO Statement.. 7-3
The ASSIGN and Assigned GO TO Statements................................... 7-4

ASSIGN Statement .. 7-4
Assigned GO TO Statement... 7-5

Arithmetic IF Statement .. 7-6
CALL Statement .. 7-7
CASE Constructs... 7-9
CONTINUE Statement... 7-14
DO Constructs ... 7-14

Forms for DO Constructs .. 7-15
Execution of DO Constructs.. 7-17

Iteration Loop Control ... 7-17
Nested DO Constructs ... 7-19
Extended Range... 7-21

DO WHILE Statement ... 7-23
CYCLE Statement... 7-24
EXIT Statement... 7-24

END Statement.. 7-25
IF Construct and Statement... 7-26

IF Construct .. 7-26
IF Statement.. 7-31

PAUSE Statement.. 7-32
vii

Intel Fortran Language Reference
RETURN Statement .. 7-33
STOP Statement.. 7-35

Chapter 8 Program Units and Procedures
Main Program .. 8-2
Modules and Module Procedures.. 8-4

Module References... 8-7
USE Statement ... 8-8

Block Data Program Units ... 8-10
Functions, Subroutines, and Statement Functions.................................. 8-12

General Rules for Function and Subroutine Subprograms 8-13
Recursive Procedures.. 8-13
Pure Procedures .. 8-14
Elemental Procedures.. 8-17

Functions .. 8-18
RESULT Keyword... 8-23
Function References .. 8-23

Subroutines... 8-24
Statement Functions... 8-27

External Procedures.. 8-28
Internal Procedures ... 8-29
Argument Association.. 8-30

Optional Arguments .. 8-32
Array Arguments ... 8-33
Pointer Arguments .. 8-34
Assumed-Length Character Arguments.. 8-35
Character Constant and Hollerith Arguments 8-36
Alternate Return Arguments ... 8-37
Dummy Procedure Arguments.. 8-37
References to Generic Procedures... 8-38

References to Generic Intrinsic Functions 8-39
References to Elemental Intrinsic Procedures 8-42

References to Non-Fortran Procedures.. 8-43
%REF and %VAL Argument List Functions 8-43
viii

Contents
%LOC Function .. 8-44
Procedure Interfaces.. 8-45

Determining When Procedures Require Explicit Interfaces 8-46
Defining Explicit Interfaces.. 8-47
Defining Generic Names for Procedures .. 8-49
Defining Generic Operators .. 8-50
Defining Generic Assignment ... 8-51

CONTAINS Statement ... 8-53
ENTRY Statement ... 8-53

ENTRY Statements in Function Subprograms.................................... 8-55
ENTRY Statements in Subroutine Subprograms 8-56

Chapter 9 Intrinsic Procedures
Argument Keywords in Intrinsic Procedures .. 9-3
Overview of Intrinsic Procedures ... 9-4

Categories of Intrinsic Functions... 9-4
Intrinsic Subroutines ... 9-15
Bit Functions ... 9-16

Descriptions of Intrinsic Procedures .. 9-18
ABS... 9-18
ACHAR.. 9-19
ACOS .. 9-20
ACOSD ... 9-20
ACOSH ... 9-21
ADJUSTL .. 9-21
ADJUSTR.. 9-22
AIMAG... 9-22
AINT.. 9-23
ALL.. 9-23
ALLOCATED ... 9-24
ANINT ... 9-25
ANY... 9-25
ASIN.. 9-26
ASIND ... 9-27
ix

Intel Fortran Language Reference
ASINH... 9-27
ASSOCIATED ... 9-28
ATAN ... 9-29
ATAN2 ... 9-30
ATAN2D... 9-31
ATAND... 9-31
ATANH... 9-32
BADDRESS .. 9-32
BIT_SIZE .. 9-33
BTEST .. 9-33
CACHESIZE (i64 only).. 9-34
CEILING ... 9-35
CHAR.. 9-35
CMPLX ... 9-36
CONJG ... 9-37
COS .. 9-38
COSD ... 9-38
COSH ... 9-39
COTAN.. 9-39
COTAND ... 9-40
COUNT ... 9-40
CPU_TIME.. 9-42
CSHIFT... 9-42
DATE... 9-44
DATE_AND_TIME... 9-44
DBLE .. 9-46
DCMPLX... 9-47
DFLOAT .. 9-48
DIGITS.. 9-48
DIM ... 9-49
DNUM ... 9-49
DOT_PRODUCT... 9-50
DPROD... 9-51
DREAL.. 9-51
x

Contents
DSHIFTL ... 9-52
DSHIFTR... 9-52
EOF... 9-53
EOSHIFT... 9-54
EPSILON... 9-56
ERF... 9-57
ERFC .. 9-57
ERRSNS ... 9-58
EXIT .. 9-59
EXP... 9-59
EXPONENT .. 9-60
FLOOR.. 9-60
FP_CLASS.. 9-61
FRACTION.. 9-61
FREE... 9-62
GETARG ... 9-62
HUGE.. 9-64
IACHAR... 9-64
IAND.. 9-65
IARGC... 9-66
IARGPTR .. 9-66
IBCHNG .. 9-67
IBCLR.. 9-67
IBITS ... 9-68
IBSET.. 9-69
ICHAR... 9-70
IDATE .. 9-71
IEOR ... 9-71
ILEN .. 9-72
INDEX ... 9-73
INT .. 9-73
INT_PTR_KIND... 9-75
INUM... 9-76
IOR.. 9-76
xi

Intel Fortran Language Reference
ISHA ... 9-77
ISHC ... 9-78
ISHFT ... 9-79
ISHFTC... 9-80
ISHL.. 9-81
ISNAN... 9-82
JNUM.. 9-82
KIND ... 9-82
LBOUND... 9-83
LEADZ .. 9-84
LEN... 9-85
LEN_TRIM .. 9-85
LGE... 9-86
LGT... 9-87
LLE ... 9-87
LLT .. 9-88
LOC .. 9-89
LOG .. 9-89
LOG10 .. 9-90
LOGICAL .. 9-91
MALLOC ... 9-91
MATMUL ... 9-92
MAX .. 9-93
MAXEXPONENT .. 9-95
MAXLOC... 9-95
MAXVAL.. 9-97
MCLOCK .. 9-98
MERGE... 9-98
MIN ... 9-99
MINEXPONENT ... 9-100
MINLOC.. 9-100
MINVAL... 9-102
MM_PREFETCH .. 9-103
MOD ... 9-105
xii

Contents
MODULO .. 9-106
MULT_HIGH (i64 only) ... 9-106
MVBITS... 9-107
NARGS ... 9-108
NEAREST ... 9-110
NINT.. 9-110
NOT... 9-111
NULL... 9-112
PACK... 9-113
POPCNT ... 9-114
POPPAR.. 9-114
PRECISION .. 9-114
PRESENT ... 9-115
PRODUCT .. 9-116
QCMPLX... 9-117
QEXT .. 9-117
QFLOAT .. 9-118
QNUM ... 9-119
QREAL.. 9-119
RADIX ... 9-120
RAN... 9-120
RANDOM_NUMBER... 9-121
RANDOM_SEED .. 9-121
RANDU ... 9-122
RANGE ... 9-123
REAL... 9-123
REPEAT .. 9-124
RESHAPE... 9-125
RNUM ... 9-126
RRSPACING ... 9-126
SCALE .. 9-127
SCAN .. 9-127
SECNDS ... 9-128
SELECTED_INT_KIND... 9-129
xiii

Intel Fortran Language Reference
SELECTED_REAL_KIND... 9-129
SET_EXPONENT ... 9-130
SHAPE.. 9-130
SHIFTL ... 9-131
SHIFTR... 9-131
SIGN ... 9-132
SIN.. 9-133
SIND ... 9-134
SINH ... 9-134
SIZE.. 9-135
SIZEOF... 9-135
SPACING .. 9-136
SPREAD ... 9-136
SQRT.. 9-137
SUM.. 9-138
SYSTEM_CLOCK... 9-139
TAN ... 9-140
TAND .. 9-141
TANH .. 9-141
TIME ... 9-142
TINY.. 9-143
TRAILZ ... 9-143
TRANSFER .. 9-144
TRANSPOSE.. 9-145
TRIM ... 9-145
UBOUND .. 9-146
UNPACK ... 9-147
VERIFY... 9-148
ZEXT... 9-148

Chapter 10 Data Transfer I/O Statements
Records and Files.. 10-1
Components of Data Transfer Statements... 10-2

I/O Control List .. 10-3
xiv

Contents
Unit Specifier .. 10-4
Format Specifier ... 10-5
Namelist Specifier .. 10-6
Record Specifier... 10-6
I/O Status Specifier .. 10-6
Branch Specifiers ... 10-7
Advance Specifier .. 10-8
Character Count Specifier .. 10-9

I/O Lists ... 10-9
Simple List Items in I/O Lists .. 10-10
implied-DO Lists in I/O Lists ... 10-12

READ Statements.. 10-13
Forms for Sequential READ Statements... 10-13

Rules for Formatted Sequential READ Statements...................... 10-15
Rules for List-Directed Sequential READ Statements.................. 10-15
Rules for Namelist Sequential READ Statements 10-18
Rules for Unformatted Sequential READ Statements 10-23

Forms for Direct-Access READ Statements 10-24
Rules for Formatted Direct-Access READ Statements 10-25
Rules for Unformatted Direct-Access READ Statements 10-26

Forms and Rules for Internal READ Statements 10-26
ACCEPT Statement ... 10-28
WRITE Statements .. 10-29

Forms for Sequential WRITE Statements ... 10-29
Rules for Formatted Sequential WRITE Statements 10-30
Rules for List-Directed Sequential WRITE Statements 10-31
Rules for Namelist Sequential WRITE Statements 10-33
Rules for Unformatted Sequential WRITE Statements................. 10-34

Forms for Direct-Access WRITE Statements.................................... 10-35
Rules for Formatted Direct-Access WRITE Statements............... 10-36
Rules for Unformatted Direct-Access WRITE Statements 10-36

Forms and Rules for Internal WRITE Statements............................. 10-36
PRINT and TYPE Statements ... 10-38
REWRITE Statement... 10-39
xv

Intel Fortran Language Reference
Chapter 11 I/O Formatting
Format Specifications .. 11-2
Data Edit Descriptors... 11-6

Forms for Data Edit Descriptors.. 11-6
General Rules for Numeric Editing ... 11-8
Integer Editing... 11-9

I Editing .. 11-9
B Editing... 11-11
O Editing .. 11-12
Z Editing ... 11-13

Real and Complex Editing .. 11-14
F Editing ... 11-15
E and D Editing .. 11-16
EN Editing .. 11-19
ES Editing .. 11-20
G Editing .. 11-22
Complex Editing ... 11-24

Logical Editing (L) ... 11-25
Character Editing (A) .. 11-26
Default Widths for Data Edit Descriptors .. 11-28
Terminating Short Fields of Input Data ... 11-29

Control Edit Descriptors... 11-30
Forms for Control Edit Descriptors.. 11-30
Positional Editing .. 11-31

T Editing ... 11-31
TL Editing ... 11-32
TR Editing .. 11-32
X Editing... 11-32

Sign Editing... 11-33
SP Editing .. 11-33
SS Editing .. 11-33
S Editing... 11-33

Blank Editing... 11-33
BN Editing .. 11-34
xvi

Contents
BZ Editing... 11-34
Scale Factor Editing (P) .. 11-34
Slash Editing (/)... 11-36
Colon Editing (:) .. 11-37
Dollar Sign ($) and Backslash (\) Editing .. 11-37
Character Count Editing (Q).. 11-38

Character String Edit Descriptors .. 11-38
Character Constant Editing ... 11-39
H Editing.. 11-39

Nested and Group Repeat Specifications.. 11-40
Variable Format Expressions ... 11-41
Printing of Formatted Records... 11-42
Interaction Between Format Specifications and I/O Lists 11-43

Chapter 12 File Oper ation I/O Statements
BACKSPACE Statement .. 12-2
CLOSE Statement ... 12-3
DELETE Statement ... 12-4
ENDFILE Statement .. 12-5
INQUIRE Statement .. 12-7

ACCESS Specifier .. 12-8
ACTION Specifier.. 12-9
BINARY Specifier (W*32, W*64) ... 12-9
BLANK Specifier ... 12-9
BLOCKSIZE Specifier ... 12-10
BUFFERED Specifier.. 12-10
CARRIAGECONTROL Specifier ... 12-10
CONVERT Specifier.. 12-11
DELIM Specifier .. 12-12
DIRECT Specifier.. 12-12
EXIST Specifier... 12-12
FORM Specifier... 12-13
FORMATTED Specifier ... 12-13
IOFOCUS Specifier (W*32, W*64).. 12-13
xvii

Intel Fortran Language Reference
MODE Specifier .. 12-14
NAME Specifier .. 12-14
NAMED Specifier .. 12-14
NEXTREC Specifier.. 12-15
NUMBER Specifier ... 12-15
OPENED Specifier.. 12-15
ORGANIZATION Specifier .. 12-16
PAD Specifier .. 12-16
POSITION Specifier.. 12-16
READ Specifier ... 12-17
READWRITE Specifier ... 12-17
RECL Specifier ... 12-17
RECORDTYPE Specifier .. 12-18
SEQUENTIAL Specifier .. 12-18
SHARE Specifier (W*32, W*64) ... 12-19
UNFORMATTED Specifier.. 12-19
WRITE Specifier ... 12-19

OPEN Statement ... 12-20
ACCESS Specifier .. 12-24
ACTION Specifier ... 12-25
ASSOCIATEVARIABLE Specifier ... 12-25
BLANK Specifier ... 12-26
BLOCKSIZE Specifier... 12-26
BUFFERCOUNT Specifier.. 12-26
BUFFERED Specifier.. 12-27
CARRIAGECONTROL Specifier... 12-28
CONVERT Specifier ... 12-28
DEFAULTFILE Specifier.. 12-30
DELIM Specifier .. 12-30
DISPOSE Specifier ... 12-31
FILE Specifier ... 12-32
FORM Specifier .. 12-32
IOFOCUS Specifier (W*32, W*64) ... 12-33
MAXREC Specifier ... 12-33
xviii

Contents
MODE Specifier .. 12-33
NAME Specifier... 12-33
ORGANIZATION Specifier .. 12-34
PAD Specifier .. 12-34
POSITION Specifier .. 12-35
READONLY Specifier.. 12-35
RECL Specifier.. 12-36
RECORDSIZE Specifier.. 12-37
RECORDTYPE Specifier .. 12-37
SHARE Specifier (W*32, W*64).. 12-38
SHARED Specifier .. 12-39
STATUS Specifier.. 12-39
TITLE Specifier (W*32, W*64) .. 12-40
TYPE Specifier.. 12-40
USEROPEN Specifier ... 12-40

REWIND Statement... 12-41
UNLOCK Statement .. 12-42

Chapter 13 Compilati on Control Statements
INCLUDE Statement.. 13-1
OPTIONS Statement ... 13-3

Chapter 14 Directive Enhanced Compilation
Syntax Rules for Compiler Directives .. 14-1
General Compiler Directives .. 14-2

Rules for General Directives that Affect DO Loops 14-4
ALIAS Directive ... 14-5
ATTRIBUTES Directive ... 14-5

ATTRIBUTES ALIAS .. 14-8
ATTRIBUTES ALIGN.. 14-9
ATTRIBUTES ALLOCATABLE.. 14-9
ATTRIBUTES ALLOW_NULL... 14-9
ATTRIBUTES ARRAY_VISUALIZER (W*32 only)........................ 14-10
ATTRIBUTES C and STDCALL.. 14-10
xix

Intel Fortran Language Reference
ATTRIBUTES DECORATE... 14-12
ATTRIBUTES DEFAULT... 14-12
ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64) 14-13
ATTRIBUTES EXTERN.. 14-13
ATTRIBUTES IGNORE_LOC... 14-13
ATTRIBUTES INLINE, NOINLINE, and FORCEDINLINE............ 14-14
ATTRIBUTES NO_ARG_CHECK .. 14-14
ATTRIBUTES NOMIXED_STR_LEN_ARG 14-15
ATTRIBUTES REFERENCE and VALUE..................................... 14-15
ATTRIBUTES VARYING... 14-16

DECLARE and NODECLARE Directives.. 14-16
DEFINE and UNDEFINE Directives.. 14-17
DISTRIBUTE POINT Directive.. 14-18
FIXEDFORMLINESIZE Directive.. 14-19
FREEFORM and NOFREEFORM Directives 14-20
IDENT Directive .. 14-20
IF and IF DEFINED Directives .. 14-20
INTEGER Directive ... 14-22
IVDEP Directive .. 14-23
LOOP COUNT Directive ... 14-25
MESSAGE Directive ... 14-26
OBJCOMMENT Directive ... 14-26
OPTIONS Directive... 14-27
PACK Directive.. 14-30
PARALLEL and NOPARALLEL Directives .. 14-31
PREFETCH and NOPREFETCH Directives 14-32
PSECT Directive ... 14-33
REAL Directive.. 14-35
STRICT and NOSTRICT Directives... 14-36
SWP and NOSWP Directives (i64 only).. 14-37
TITLE and SUBTITLE Directives .. 14-38
UNROLL and NOUNROLL Directives... 14-39
VECTOR ALIGNED and VECTOR UNALIGNED Directives (i32 only)

14-39
xx

Contents
VECTOR ALWAYS and NOVECTOR Directives (i32 only)................ 14-40
VECTOR NONTEMPORAL Directive (i32 only)................................ 14-41

OpenMP* Fortran Compiler Directives... 14-42
Data Scope Attribute Clauses ... 14-44

COPYIN Clause ... 14-44
COPYPRIVATE Clause .. 14-44
DEFAULT Clause.. 14-45
FIRSTPRIVATE Clause .. 14-46
LASTPRIVATE Clause.. 14-46
PRIVATE Clause... 14-46
REDUCTION Clause.. 14-47
SHARED Clause .. 14-49

Conditional Compilation Rules .. 14-49
Nesting and Binding Rules... 14-50
ATOMIC Directive.. 14-52
BARRIER Directive ... 14-53
CRITICAL Directive... 14-54
DO Directive.. 14-55
FLUSH Directive ... 14-59
MASTER Directive .. 14-60
ORDERED Directive ... 14-61
PARALLEL Directive ... 14-62
PARALLEL DO Directive .. 14-64
PARALLEL SECTIONS Directive ... 14-66
SECTIONS Directive.. 14-67
SINGLE Directive ... 14-68
THREADPRIVATE Directive... 14-69

Chapter 15 Scope and Association
Scope... 15-1
Unambiguous Generic Procedure References .. 15-4
Resolving Procedure References .. 15-5

References to Generic Names.. 15-5
References to Specific Names.. 15-7
xxi

Intel Fortran Language Reference
References to Nonestablished Names ... 15-8
Association .. 15-9

Name Association... 15-10
Argument Association .. 15-10
Use and Host Association .. 15-11

Pointer Association ... 15-12
Storage Association.. 15-13

Storage Units and Storage Sequence.. 15-13
Array Association ... 15-15

Appendix A Deleted and O bsolescent Language Features
Deleted Language Features in Fortran 95... A-1
Obsolescent Language Features in Fortran 95 ... A-2
Obsolescent Language Features in Fortran 90 ... A-3

Appendix B Additiona l Language Features
DEFINE FILE Statement ... B-1
ENCODE and DECODE Statements... B-3
FIND Statement... B-5
INTERFACE TO Statement ... B-5
FORTRAN-66 Interpretation of the EXTERNAL Statement B-6
Alternative Syntax for the PARAMETER Statement B-8
VIRTUAL Statement .. B-9
Alternative Syntax for Octal and Hexadecimal Constants B-10
Alternative Syntax for a Record Specifier .. B-10
Alternative Syntax for the DELETE Statement .. B-10
Alternative Form for Namelist External Records B-11
Integer POINTER Statement .. B-12
Record Structures.. B-13

Structure Declarations .. B-14
Type Declarations... B-18
Substructure Declarations... B-18
Union Declarations... B-19

RECORD Statement... B-21
xxii

Contents
References to Record Fields.. B-22
Aggregate Assignment... B-24

Appendix C The ASCII Character Set for Linux Systems
The ASCII Character Set (L*X) ... C-1

Appendix D Data Representation Models
Model for Integer Data .. D-2
Model for Real Data .. D-3
Model for Bit Data ... D-4

Appendix E Run-Time Library Routines
Module Routines... E-1

Portability Routines .. E-2
National Language Support Routines (W*32, W*64) E-8
POSIX* Routines.. E-10
QuickWin Routines (W*32, W*64).. E-14
Graphics Routines (W*32, W*64)... E-16
Dialog Routines (W*32).. E-20
Miscellaneous Run-Time Routines .. E-22
COM Routines (W*32) ... E-23
AUTO Routines (W*32) .. E-24

OpenMP* Fortran Routines .. E-25

Appendix F Summary of Language Extensions
Source Forms .. F-1
Names ... F-1
Character Sets... F-1
Intrinsic Data Types ... F-2
Constants... F-2
Expressions and Assignment .. F-2
Specification Statements ... F-2
Execution Control... F-3
Compilation Control Statements .. F-3
Built-In Functions ... F-3
xxiii

Intel Fortran Language Reference
I/O Statements... F-3
I/O Formatting.. F-3
File Operation Statements... F-4
Compiler Directives ... F-5
Intrinsic Procedures... F-7
Additional Language Features... F-9
Run-Time Library Routines.. F-10

Glossary

Index
xxiv

About This Manual

This manual contains the complete description of the Intel® Fortran programming language,
which includes Fortran 95, Fortran 90, and some Fortran 2000 language features. It contains
information on language syntax and semantics, on adherence to various Fortran standards, and on
extensions to those standards.
It applies to the following:
• Intel Fortran for Linux* on IA-32 systems
• Intel Fortran for Linux on Intel® Itanium® systems
• Intel Visual Fortran on IA-32 and Intel Itanium systems
For details on the features of the compilers and how to improve the run-time performance of
Fortran programs, see your user’s guide.
This manual is intended for experienced applications programmers who have a basic
understanding of Fortran concepts and the Fortran 95/90 language, and are using Intel Fortran in
either a single-platform or multiplatform environment.
Some familiarity with parallel programming concepts and your operating system is helpful. This
manual is not a Fortran or programming tutorial.
This manual is organized as follows:
• Chapter 1, “Overview,” describes language standards, language compatibility, and Fortran

95/90 features.
• Chapter 2, “Program Structure, Characters, and Source Forms,” describes program structure,

the Fortran 95/90 character set, and source forms.
• Chapter 3, “Data Types, Constants, and Variables,” describes intrinsic and derived data types,

constants, variables (scalars and arrays), and substrings.
• Chapter 4, “Expressions and Assignment Statements,” describes Fortran expressions and

assignment statements, which are used to define or redefine variables.
• Chapter 5, “Specification Statements,” describes specification statements, which are used to

declare the attributes of data objects.
xxv

Intel Fortran Language Reference
• Chapter 6, “Dynamic Allocation,” describes statements used in dynamic allocation.
• Chapter 7, “Execution Control,” describes constructs and statements that can transfer control

within a program.
• Chapter 8, “Program Units and Procedures,” describes program units (including modules),

subroutines and functions, and procedure interfaces.
• Chapter 9, “Intrinsic Procedures,” summarizes all intrinsic procedures.
• Chapter 10, “Data Transfer I/O Statements,”describes data transfer input/output (I/O)

statements.
• Chapter 11, “I/O Formatting,” describes the rules for I/O formatting.
• Chapter 12, “File Operation I/O Statements,” describes auxiliary I/O statements you can use

to perform file operations.
• Chapter 13, “Compilation Control Statements,” describes compilation control statements.
• Chapter 14, “Directive Enhanced Compilation,” describes general and parallel compiler

directives.
• Chapter 15, “Scope and Association,” describes scope and association.
• Appendix A, “Deleted and Obsolescent Language Features,” describes deleted features in

Fortran 95 and obsolescent language features in Fortran 95 and Fortran 90.
• Appendix B, “Additional Language Features,” describes some statements and language

features supported for programs written in older versions of Fortran.
• Appendix C, “The ASCII Character Set for Linux Systems,” describes the ASCII character

set available on Linux* systems. For information on character sets available on Windows*
systems, see the online documentation for those systems.

• Appendix D, “Data Representation Models,” describes data representation models for
numeric intrinsic functions.

• Appendix E, “Run-Time Library Routines,” summarizes the many run-time library routines.
• Appendix F, “Summary of Language Extensions,” summarizes Intel Fortran extensions to the

Fortran 95 Standard.
• The Glossary contains abbreviated definitions of some commonly used terms in this manual.

Product Website and Support
Intel® Fortran provides a product web site that offers timely and comprehensive product
information, including product features, white papers, and technical articles. For the latest
information, visit:

http://developer.intel.com/software/products/
xxvi

http://developer.intel.com/software/products/

About This Manual
Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more.
Registering your product entitles you to one year of technical support and product updates through
Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:
• Submit issues and review their status.
• Download product updates anytime of the day.
To register your product, contact Intel, or seek product support, please visit:

http://www.intel.com/software/products/support

Related Publications
The following is an alphabetical list of some commercially published documents that provide
reference or tutorial information on Fortran 95 and Fortran 90:
• Compaq Visual Fortran by N. Lawrence; published by Digital Press*

(Butterworth-Heinemann), ISBN: 1-55558-249-4.
• Digital Visual Fortran Programmer’s Guide by M. Etzel and K. Dickinson; published by

Digital Press* (Butterworth-Heinemann), ISBN: 1-55558-218-4.
• Fortran 90 Explained by M. Metcalf and J. Reid; published by Oxford University Press,

ISBN 0-19-853772-7.
• Fortran 90/95 Explained by M. Metcalf and J. Reid; published by Oxford University Press,

ISBN 0-19-851888-9.
• Fortran 90/95 for Scientists and Engineers by S. Chapman; published by McGraw-Hill,

ISBN 0-07-011938-4.
• Fortran 90 Handbook by J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener;

published by Intertext Publications (McGraw-Hill), ISBN 0-07-000406-4.
• Fortran 90 Programming by T. Ellis, I. Philips, and T. Lahey; published by Addison-Wesley,

ISBN 0201-54446-6.
• Introduction to Fortran 90/95 by Stephen J. Chapman; published by WCB McGraw-Hill,

ISBN 0-07-011969-4.
• Programmer’s Guide to Fortran 90, Second Edition by W. Brainerd, C. Goldberg, and J.

Adams; published by Unicomp, ISBN 0-07-000248-7.
Intel® does not endorse these books or recommend them over other books on the same subjects.
The following copyrighted standard and specification documents contain precise descriptions of
many of the features found in Intel® Fortran:
xxvii

http://www.intel.com/software/products/support

Intel Fortran Language Reference
• American National Standard Programming Language FORTRAN, ANSI X3.9-1978
• American National Standard Programming Language Fortran 90, ANSI X3.198-1992

This Standard is equivalent to: International Standards Organization Programming Language
Fortran, ISO/IEC 1539:1991 (E).

• American National Standard Programming Language Fortran 95, ANSI X3J3/96-007
This Standard is equivalent to: International Standards Organization Programming Language
Fortran, ISO/IEC 1539-1:1997 (E).

• High Performance Fortran Language Specification, Version 1.1, Technical Report
CRPC-TR-92225

• OpenMP Fortran Application Program Interface, Version 1.1, November 1999
• OpenMP Fortran Application Program Interface, Version 2.0, November 2000
Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at:

http://www.intel.com
Some helpful titles are:
• Intel® Fortran Language Reference
• Intel® Fortran Libraries Reference
• Intel® Fortran Compiler Installing and Getting Started
• Intel® Array Visualizer online help reference
• Intel® Array Viewer online help reference
• Using the Intel® License Manager for FLEXlm*
• Intel® C++ Compiler User's Guide
• VTune™ Performance Analyzer online help
• Enhanced Debugger online help
• Intel® Architecture Software Developer's Manual

— Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190
— Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191
— Vol. 3: System Programming, Intel Corporation, doc. number 243192

• Pentium® Processor Family Developer's Manual
• Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc. number

241618
• Intel® Itanium® Architecture Manuals
• Intel® Itanium® Architecture Software Conventions & Runtime Architecture Guide
• Intel® Itanium® Assembler User's Guide
• Intel® Itanium® Architecture Assembly Language Reference Guide
xxviii

http://www.intel.com

About This Manual
For more developer's manuals on Intel processors, refer to the Intel's Literature Center.
The following sources might be useful in helping you understand basic optimization and
vectorization terminology and technology:
• Intel® Architecture Optimization Reference Manual
• Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for

Restructuring Compilers). Kluwer Academic Publishers. 1997.
• The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley and

Sons, New York, 1978.
• Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A

Book Series on Loop Transformations for Restructuring Compilers). Kluwer Academic
Publishers. 1993.

• Loop parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994.

• High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,
Redwood City. 1996.

• Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York, 1990.
• An Auto-vectorizing Compiler for the Intel® Architecture, Aart Bik, Paul Grey, Milind

Girkar, and Xinmin Tian. Submitted for publication
• Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based

Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

Conventions
The following table describes the typographic and terminology conventions used in this manual:

Typographic Conventions

Extensions to Fortran 95 This color indicates extensions to the Fortran 95 Standard. These
extensions may or may not be implemented by other compilers that
conform to the language standard.

AUTOMATIC, INTRINSIC, WRITE Uppercase letters indicate Fortran95/90 statements, data types,
directives, and other syntax keywords. Examples of statement
keywords are WRITE, INTEGER, DO, and OPEN.

option, option This italic type indicates an keyword arguments in syntax, new terms,
emphasized text, or a book title. Most new terms are defined in the
Glossary of the Language Reference.

CALL CPU_TIME This courier type indicates a code example, a derived type name, or a
pathname.
xxix

Intel Fortran Language Reference
CTRL Small capital letters indicate the names of keys and key sequences,
such as CTRL+C.
A plus indicates a combination of keys. For example, CTRL+E means to
hold down the CTRL key while pressing the E key.

{choice1 | choice2} Braces and vertical bars indicate a choice of items. You can usually
only choose one of the items in the braces.

[optional item] In syntax, single square brackets indicate items that are optional. In
code examples, they are used to show arrays.

s[, s]… A horizontal ellipsis (three dots in a row) following an item indicates that
the item preceding the ellipsis can be repeated. In code examples, a
horizontal ellipsis means that not all of the statements are shown.

Adobe Acrobat* An asterisk at the end of a word or name indicates it is a third-party
product trademark.

Terminology Conventions

compiler option This term refers to Linux* options and Windows* options that can be
used on the compiler command line.

cat(1) This format refers to an online reference page; the section number of
the page is shown in parentheses. For example, a reference to
cat(1) indicates that you can find the material on the cat command
in Section 1 of the reference pages. To read online reference pages, use
the man command. Your operating system documentation also includes
reference page descriptions.

Intel Fortran This term refers to the name of the common compiler language
supported by the Intel® Visual Fortran Compiler for Windows* and
Intel® Fortran Compiler for Linux* products. For more information on
these compilers, see http://developer.intel.com/software/products/.

Fortran This term refers to language information that is common to ANSI
FORTRAN 77, ANSI/ISO Fortran 95/90, and Intel Fortran.

Fortran 95/90 This term refers to language information that is common to ANSI/ISO
Fortran 95 and ANSI/ISO Fortran 90.

Fortran 95 This term refers to language features of ANSI/ISO Fortran 95.

Fortran 90 This term refers to language features of ANSI/ISO Fortran 90.

Windows systems This term refers to all supported Microsoft* Windows operating systems.
(See also “Platform Labels”.)

Linux systems This term refers to all supported Linux operating systems. (See also
“Platform Labels”.)

integer This term refers to the INTEGER(KIND=1), INTEGER(KIND=2),
INTEGER (INTEGER(KIND=4)), and INTEGER(KIND=8) data types as
a group.
xxx

http://developer.intel.com/software/products/

About This Manual
The following example shows how this manual's typographic conventions are used to indicate the
syntax of the PARAMETER statement:

PARAMETER [(] c = expr [, c = expr]...[)]
This syntax shows that when you use this statement, you must specify the following:
• The keyword PARAMETER.
• An optional left parenthesis.
• One or more c = expr items, where c is a named constant and expr is a value.

If you want to specify more than one c = expr item, a comma must separate the items.
The three dots following the syntax mean you can enter as many of these sequences (a
comma, followed by c = expr) as you like.

• An optional terminating right parenthesis. If you used the optional left parenthesis, you must
use the terminating right parenthesis.

The colored brackets ([]) indicate that the parentheses are optional only as an extension to
standard Fortran 95.

Platform Labels

A platform is a combination of operating system and central processing unit (CPU) that provides a
distinct environment in which to use a product (in this case, a language). This manual contains
information for the following language platforms:

real This term refers to the REAL (REAL(KIND=4)), DOUBLE PRECISION
(REAL(KIND=8)), and REAL(KIND=16) data types as a group.

REAL This term refers to the default data type of objects declared to be REAL.
REAL is equivalent to REAL(KIND=4), unless a compiler option
specifies otherwise.

complex This term refers to the COMPLEX (COMPLEX(KIND=4)), DOUBLE
COMPLEX (COMPLEX(KIND=8)), and COMPLEX(KIND=16) data
types as a group.

logical This term refers to the LOGICAL(KIND=1), LOGICAL(KIND=2),
LOGICAL (LOGICAL(KIND=4)), and LOGICAL(KIND=8) data types as
a group.

<Tab> This symbol indicates a nonprinting tab character.

This symbol indicates a nonprinting blank character.

Platform 1

Language Operating System CPU

Intel® Fortran Linux IA-32

∆

xxxi

Intel Fortran Language Reference
Information in this manual applies to all supported platforms unless it is otherwise labeled for a
specific platform (or platforms), as follows:

For example, the IOFOCUS specifier (for an OPEN statement) is labeled "(W*32, W*64)", so this
specifier is valid only on Windows operating systems.

Linux Intel® Itanium®

Microsoft* Windows* 2000 IA-32

Microsoft Windows NT* 4.0 IA-32

Microsoft Windows XP* IA-32

Microsoft Windows XP Intel Itanium

1. For the latest information on the current language platforms, see the online Release Notes.

L*X Applies to Linux* on Intel® IA-32 processors and Intel® Itanium® processors.

L*X32 Applies to Linux on Intel IA-32 processors.

L*X64 Applies to Linux on Intel Itanium processors.

W*32 Applies to Microsoft Windows* 2000, Windows XP, and Windows NT* 4.0 on Intel
IA-32 processors.

W*64 Applies to Microsoft Windows XP operating systems on Intel Itanium processors.

i32 Applies to 32-bit operating systems on Intel IA-32 processors.

i64 Applies to 64-bit operating systems on Intel Itanium processors.

Platform 1

Language Operating System CPU
xxxii

Overview
 1

This chapter discusses Intel® Fortran standards conformance and language compatibility, and
provides an overview of Fortran 95, Fortran 90, and proposed Fortran 2003 features.

Fortran 95 includes Fortran 90 and most features of FORTRAN 77. Fortran 90 is a superset that
includes FORTRAN 77. Intel Fortran fully supports the Fortran 95, Fortran 90, and FORTRAN 77
Standards.

Figure 1-1 Graphic Representation of Intel Fortran

Fortran 95

Fortran
Extensions

Fortran 90

FORTRAN 77
1-1

1 Intel Fortran Language Reference
Language Standards Conformance
Intel Fortran conforms to American National Standard Fortran 95 (ANSI X3J3/96-007)1,
American National Standard Fortran 90 (ANSI X3.198-1992)2, and includes support for some
features in proposed standard Fortran 2003.
The ANSI committee X3J3 is currently answering questions of interpretation of Fortran 95 and
Fortran 90 language features. Any answers given by the ANSI committee that are related to
features implemented in Intel Fortran may result in changes in future releases of the Intel Fortran
compiler, even if the changes produce incompatibilities with earlier releases of Intel Fortran.
Intel Fortran provides a number of extensions to the Fortran 95 Standard. In the language
reference manual, extensions are displayed in this color.
Intel Fortran also includes support for programs that conform to the previous Fortran standards
(ANSI X3.9-1978 and ANSI X3.0-1966), the International Standards Organization standard ISO
1539-1980 (E), the Federal Information Processing Institute standard FIPS 69-1, and the Military
Standard 1753 Language Specification.

See Also

Appendix F, “Summary of Language Extensions”, for a summary of Intel Fortran language
extensions

Language Compatibility
Intel Fortran is highly compatible with Compaq* Fortran and Compaq Fortran 77 on supported
platforms, and it is substantially compatible with PDP-11* and VAX* FORTRAN 77.

See Also

Your user’s guide for specific details on language compatibility, compiler options, and program
conversion considerations

Fortran 2003 Features
This section briefly describes the Fortran 2003 features that have been implemented in Intel®
Fortran.

1. This is the same as International Standards Organization standard ISO/IEC 1539-1:1997 (E).
2. This is the same as International Standards Organization standard ISO/IEC 1539:1991 (E).
1-2

Overview 1

Improved Features

The following Fortran 2003 features improve previous Fortran features:
• Enhancement to derived-type components, function results, and dummy arguments

Components of derived types can now be allocatable and function results and dummy
arguments can now be allocatable.
For more information, see “Derived-Type Definition”, “Functions”, and “Array Arguments”.

Fortran 95 Features
This section briefly describes the Fortran 95 language features that have been implemented in Intel
Fortran. Some features are new, while others are improvements to previous Fortran features.

New Features

The following Fortran 95 features are new to Fortran:
• The FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using array constructors
and the RESHAPE and SPREAD intrinsics. The Fortran 95 FORALL statement and construct
offer an alternative method.
FORALL allows array elements, array sections, character substrings, or pointer targets to be
explicitly specified as a function of the element subscripts. A FORALL construct allows
several array assignments to share the same element subscript control.
FORALL is a generalization of WHERE. They both allow masked array assignment, but
FORALL uses element subscripts, while WHERE uses the whole array.
For more information, see “FORALL Statement and Construct”.

• PURE user-defined procedures
Pure user-defined procedures do not have side effects, such as changing the value of a
variable in a common block. To specify a pure procedure, use the PURE prefix in the function
or subroutine statement. Pure functions are allowed in specification statements.
For more information, see “Pure Procedures”.

• ELEMENTAL user-defined procedures
An elemental user-defined procedure is a restricted form of pure procedure. An elemental
procedure can be passed an array, which is acted upon one element at a time. To specify an
elemental procedure, use the ELEMENTAL prefix in the function or subroutine statement.
For more information, see “Functions” and “Subroutines”.
1-3

1 Intel Fortran Language Reference
• CPU_TIME intrinsic subroutine
This new intrinsic subroutine returns a processor-dependent approximation of processor time.
For more information, see “CPU_TIME”.

• NULL intrinsic function
In Fortran 90, there was no way to assign a null value to the pointer by using a pointer
assignment operation. A Fortran 90 pointer had to be explicitly allocated, nullified, or
associated with a target during execution before association status could be determined.
Fortran 95 provides the NULL intrinsic function that can be used to nullify a pointer.
For more information, see “NULL”.

• New obsolescent features
Fortran 95 deletes several language features that were obsolescent in Fortran 90, and
identifies new obsolescent features.
Intel Fortran fully supports features deleted in Fortran 95.
For more information, see Appendix A, “Deleted and Obsolescent Language Features”.

Improved Features

The following Fortran 95 features improve previous Fortran features:
• Derived-type structure default initialization

In derived-type definitions, you can now specify default initial values for derived-type
components.
For more information, see “Default Initialization”.

• Pointer initialization
In Fortran 90, there was no way to define the initial value of a pointer. You can now specify
default initialization for a pointer.
For more information, see “Derived-Type Definition” and “Default Initialization”.

• Automatic deallocation of allocatable arrays
Allocatable arrays whose status is allocated upon routine exit are now automatically
deallocated.
For more information, see “Allocation of Allocatable Arrays”.

• Enhanced CEILING and FLOOR intrinsic functions
KIND can now be specified for these intrinsic functions.
For more information, see “CEILING” and “FLOOR”.

• Enhanced MAXLOC and MINLOC intrinsic functions
DIM can now be specified for these intrinsic functions.
For more information, see “MAXLOC” and “MINLOC”.
1-4

Overview 1

• Enhanced SIGN intrinsic function

When a specific compiler option is specified, the SIGN function can now distinguish between
positive and negative zero if the processor is capable of doing so.
For more information, see “SIGN”.

• Printing of –0.0
 When a specific compiler option is specified, a floating-point value of minus zero (–0.0) can
now be printed if the processor can represent it.

• Enhanced WHERE construct
The WHERE construct has been improved to allow nested WHERE constructs and a masked
ELSEWHERE statement. WHERE constructs can now be named.
For more information, see “WHERE Statement and Construct”.

• Generic identifier allowed in END INTERFACE statement
The END INTERFACE statement of an interface block defining a generic routine now can
specify a generic identifier.
For more information, see “Defining Explicit Interfaces”.

• Zero-length formats
On output, when using I, B, O, Z, and F edit descriptors, the specified value of the field width
can be zero. In such cases, the compiler selects the smallest possible positive actual field
width that does not result in the field being filled with asterisks (*).

• Comments allowed in namelist input
Fortran 95 allows comments (beginning with !) in namelist input data.

Fortran 90 Features
This section briefly describes the Fortran 90 language features that have been implemented in Intel
Fortran. Some features are new, while others are improvements to previous Fortran features.

New Features

The following Fortran 90 features are new to Fortran:
• Free source form

Fortran 90 provides a new free source form where line positions have no special meaning.
There are no reserved columns, trailing comments can appear, and blanks have significance
under certain circumstances (for example, P R O G R A M is not allowed as an alternative for
PROGRAM).
For more information, see “Free Source Form”.
1-5

1 Intel Fortran Language Reference
• Modules
Fortran 90 provides a new form of program unit called a module, which is more powerful
than (and overcomes limitations of) FORTRAN 77 block data program units.
A module is a set of declarations that are grouped together under a single, global name.
Modules let you encapsulate a set of related items such as data, procedures, and procedure
interfaces, and make them available to another program unit.
Module items can be made private to limit accessibility, provide data abstraction, and to
create more secure and portable programs.
For more information, see “Modules and Module Procedures”.

• User-defined (derived) data types and operators
Fortran 90 lets you define new data types derived from any combination of the intrinsic data
types and derived types. The derived-type object can be accessed as a whole, or its individual
components can be accessed directly.
You can extend the intrinsic operators (such as + and *) to user-defined data types, and also
define new operators for operands of any type.
For more information, see “Derived Data Types” and “Defining Generic Operators”.

• Array operations and features
In Fortran 90, intrinsic operators and intrinsic functions can operate on array-valued operands
(whole arrays or array sections).
New features for arrays include whole, partial, and masked array assignment (including the
WHERE statement for selective assignment), and array-valued constants and expressions.
You can create user-defined array-valued functions, use array constructors to specify values
of a one-dimensional array, and allocate arrays dynamically (using ALLOCATABLE and
POINTER attributes).
New intrinsic procedures create multidimensional arrays, manipulate arrays, perform
operations on arrays, and support computations involving arrays (for example, SUM sums the
elements of an array).
For more information, see “Arrays” and Chapter 9, “Intrinsic Procedures”.

• Generic user-defined procedures
In Fortran 90, user-defined procedures can be placed in generic interface blocks. This allows
the procedures to be referenced using the generic name of the block.
Selection of a specific procedure within the block is based on the properties of the argument,
the same way as specific intrinsic functions are selected based on the properties of the
argument when generic intrinsic function names are used.
For more information, see “Defining Generic Names for Procedures”.
1-6

Overview 1

• Pointers

Fortran 90 pointers are mechanisms that allow dynamic access and processing of data. They
allow arrays to be sized dynamically and they allow structures to be linked together.
A pointer can be of any intrinsic or derived type. When a pointer is associated with a target, it
can appear in most expressions and assignments.
For more information, see “POINTER Attribute and Statement” and “Pointer Assignments”.

• Recursion
Fortran 90 procedures can be recursive if the keyword RECURSIVE is specified on the
FUNCTION or SUBROUTINE statement line.
For more information, see Chapter 8, “Program Units and Procedures”.

• Interface blocks
A Fortran 90 procedure can contain an interface block. Interface blocks can be used to do the
following:
— Describe the characteristics of an external or dummy procedure
— Define a generic name for a procedure
— Define a new operator (or extend an intrinsic operator)
— Define a new form of assignment
For more information, see “Procedure Interfaces”.

• Extensibility and redundancy
By using user-defined data types, operators, and meanings, you can extend Fortran to suit
your needs. These new data types and their operations can be packaged in modules, which can
be used by one or more program units to provide data abstraction.
With the addition of new features and capabilities, some old features become redundant and
may eventually be removed from the language. For example, the functionality of the ASSIGN
and assigned GO TO statements can be replaced more effectively by internal procedures. The
use of certain old features of Fortran can result in less than optimal performance on newer
hardware architectures.
For more information, see your user’s guide. For a list of obsolescent features, see
Appendix A, “Deleted and Obsolescent Language Features”.

Improved Features

The following Fortran 90 features improve previous Fortran features:
1-7

1 Intel Fortran Language Reference
• Additional features for source text
Lowercase characters are now allowed in source text. A semicolon can be used to separate
multiple statements on a single source line. Additional characters have been added to the
Fortran character set, and names can have up to 31 characters (including underscores).
For more information, see Chapter 2, “Program Structure, Characters, and Source Forms”.

• Improved facilities for numerical computation
Intrinsic data types can be specified in a portable way by using a kind type parameter
indicating the precision or accuracy required. There are also new intrinsic functions that allow
you to specify numeric precision and inquire about precision characteristics available on a
processor.
For more information, see Chapter 3, “Data Types, Constants, and Variables” and Chapter 9,
“Intrinsic Procedures”.

• Additional input/output features
Fortran 90 provides additional keywords for the OPEN and INQUIRE statements. It also
permits namelist formatting, and nonadvancing (stream) character-oriented input and output.
For more information on formatting, see Chapter 10, “Data Transfer I/O Statements”; on
OPEN and INQUIRE, see Chapter 12, “File Operation I/O Statements”.

• Additional control constructs
Fortran 90 provides a new control construct (CASE) and improves the DO construct. The DO
construct can now use CYCLE and EXIT statements, and can have additional (or no) control
clauses (for example, WHILE). All control constructs (CASE, DO, and IF) can now be
named.
For more information, see Chapter 7, “Execution Control”.

• Additional intrinsic procedures
Fortran 90 provides many more intrinsic procedures than existed in FORTRAN 77. Many of
these new intrinsics support mathematical operations on arrays, including the construction
and transformation of arrays. New bit manipulation and numerical accuracy intrinsics have
been added.
For more information, see Chapter 9, “Intrinsic Procedures”.

• Additional specification statements
The following specification statements are new in Fortran 90:
— The INTENT statement (“INTENT Attribute and Statement”)
— The OPTIONAL statement (“OPTIONAL Attribute and Statement”)
— The Fortran 90 POINTER statement (“POINTER Attribute and Statement”)
— The PUBLIC and PRIVATE statements (“PRIVATE and PUBLIC Attributes and

Statements”)
1-8

Overview 1

• Additional way to specify attributes

Fortran 90 lets you specify attributes (such as PARAMETER, SAVE, and INTRINSIC) in
type declaration statements, as well as in specification statements.
For more information, see “Type Declaration Statements”.

• Scope and Association
These concepts were implicit in FORTRAN 77, but they are explicitly defined in Fortran 90.
In FORTRAN 77, the term scoping unit applies to a program unit, but Fortran 90 expands the
term to include internal procedures, interface blocks, and derived-type definitions.
For more information, see Chapter 15, “Scope and Association”.
1-9

1 Intel Fortran Language Reference
1-10

Program Structure,
Characters, and Source
Forms
 2
This chapter contains information on the following topics:
• An overview of program structure, including general information on statements and names

(see “Program Structure”)
• “Character Sets”
• “Source Forms”

Program Structure
A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.
A program unit can be either a main program, an external subprogram, a module, or a block data
program unit. An executable program contains one main program, and, optionally, any number of
the other kinds of program units. Program units can be separately compiled.
An external subprogram is a function or subroutine that is not contained within a main program, a
module, or another subprogram. It defines a procedure to be performed and can be invoked from
other program units of the Fortran program. Modules and block data program units are not
executable, so they are not considered to be procedures. (Modules can contain module procedures,
though, which are executable.)
Modules contain definitions that can be made accessible to other program units: data and type
definitions, definitions of procedures (called module subprograms), and procedure interfaces.
Module subprograms can be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.
A block data program unit specifies initial values for data objects in named common blocks. In
Fortran 95/90, this type of program unit can be replaced by a module program unit.
2-1

2 Intel Fortran Language Reference
Main programs, external subprograms, and module subprograms can contain internal
subprograms. The entity that contains the internal subprogram is its host. Internal subprograms
can be invoked only by their host or by other internal subprograms in the same host. Internal
subprograms must not contain internal subprograms.

See Also

Chapter 8, “Program Units and Procedures”, for details on program units and procedures

Statements

Program statements are grouped into two general classes: executable and nonexecutable. An
executable statement specifies an action to be performed. A nonexecutable statement describes
program attributes, such as the arrangement and characteristics of data, as well as editing and
data-conversion information.

Order of Statements in a Program Unit

Figure 2-1 shows the required order of statements in a Fortran program unit. In this figure, vertical
lines separate statement types that can be interspersed. For example, you can intersperse DATA
statements with executable constructs.
Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot
intersperse DATA statements with CONTAINS statements.
2-2

Program Structure, Characters, and Source Forms 2
Note that in this figure, INCLUDE statements, directives, OPTIONS statements, and the order of
NAMELIST statements are language extensions.
PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. In Fortran
95/90, NAMELIST statements can appear only among specification statements. However, Intel®
Fortran allows them to also appear among executable statements.

Figure 2-1 Required Order of Statements

ZK−6516A−GE

Statements,
 and

USE Statements

Directives

IMPLICIT NONE Statements

OPTIONS Statements

PROGRAM, FUNCTION. SUBROUTINE,
MODULE, or BLOCK DATA Statement

PARAMETER
Statements

IMPLICIT
Statements

NAMELIST,
FORMAT,

and
ENTRY

Statements

Derived−Type Definitions,
Interface Blocks,

Type Declaration Statements,
Statement Function Statements,

and Specification Statements

DATA
Statements

Executable
Statements

CONTAINS Statement

END Statement

Internal Subprograms
or Module Subprograms

PARAMETER
and DATA
Statements

Comment
Lines,

INCLUDE
2-3

2 Intel Fortran Language Reference
Table 2-1 shows other statements restricted from different types of scoping units.

See Also

“Scope” for details on scoping units

Names

Names identify entities within a Fortran program unit (such as variables, function results, common
blocks, named constants, procedures, program units, namelist groups, and dummy arguments). In
FORTRAN 77, names were called "symbolic names".
A name can contain letters, digits, underscores (_), and the dollar sign ($) special character. The
first character must be a letter or a dollar sign.
In Fortran 95/90, a name can contain up to 31 characters. Intel® Fortran allows names up to 63
characters.
The length of a module name (in MODULE and USE statements) may be restricted by your file
system.

In an executable program, the names of the following entities are global and must be unique in the
entire program:

Table 2-1 Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY and RETURN statements

Module1

1. The scoping unit of a module does not include any module subprograms that the module contains.

ENTRY, FORMAT, OPTIONAL, and INTENT statements,
statement functions, and executable statements

Block data program unit CONTAINS, ENTRY, and FORMAT statements, interface
blocks, statement functions, and executable statements

Internal subprogram CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT
statements, statement functions, and executable
statements

NOTE. Be careful when defining names that contain dollar signs. On Linux*
and Windows* systems, a dollar sign can be a symbol for command or symbol
substitution in various shell and utility commands.
2-4

Program Structure, Characters, and Source Forms 2

• Program units
• External procedures
• Common blocks
• Modules

Examples

The following examples show valid and invalid names:

See Also

“Scope” for details on the scope of names

Character Sets
Intel Fortran supports the following characters:
• The Fortran 95/90 character set which consists of the following:

— All uppercase and lowercase letters (A through Z and a through z)
— The numerals 0 through 9
— The underscore (_)
— The following special characters:

Valid

NUMBER

FIND_IT

X

Invalid Explanation

5Q Begins with a numeral.

B.4 Contains a special character other than _ or $.

_WRONG Begins with an underscore.

Character Name Character Name

 or <Tab> Blank (space) or tab : Colon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark

– Minus sign % Percent sign

* Asterisk & Ampersand

∆

2-5

2 Intel Fortran Language Reference
• Other printable characters
Printable characters include the tab character (09 hex) and ASCII characters with codes in the
range 20(hex) through 7E(hex). Printable characters that are not in the Fortran 95/90
character set can only appear in comments, character constants, Hollerith constants, character
string edit descriptors, and input/output records.

Uppercase and lowercase letters are treated as equivalent when used to specify program behavior
(except in character constants and Hollerith constants).

See Also
• Appendix C, “The ASCII Character Set for Linux Systems”, for details on the ASCII

character set for Linux systems
• The online documentation for Windows* systems for details on other character sets available

for those systems

Source Forms
Within a program, source code can be in free, fixed, or tab form. Fixed or tab forms must not be
mixed with free form in the same source program, but different source forms can be used in
different source programs.
All source forms allow lowercase characters to be used as an alternative to uppercase characters.
Several characters are indicators in source code (unless they appear within a comment or a
Hollerith or character constant). The following are rules for indicators in all source forms:

/ Slash ; Semicolon

(Left parenthesis < Less than

) Right parenthesis > Greater than

, Comma ? Question mark

. Period (decimal point) $ Dollar sign (currency symbol)

’ Apostrophe

Character Name Character Name
2-6

Program Structure, Characters, and Source Forms 2

• Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere
within a program unit. If the comment indicator appears within a source line, the comment
extends to the end of the line.
An all blank line is also a comment line.
Comments have no effect on the interpretation of the program unit.
For more information on comment indicators in free source form, see “Free Source Form”; in
fixed and tab source forms, see “Fixed and Tab Source Forms”.

• Statement separator
More than one statement (or partial statement) can appear on a single source line if a
statement separator is placed between the statements. The statement separator is a semicolon
character (;).
Consecutive semicolons (with or without intervening blanks) are considered to be one
semicolon.
If a semicolon is the last character on a line, or the last character before a comment, it is
ignored.

• Continuation indicator
A statement can be continued for more than one line by placing a continuation indicator on
the line. Intel Fortran allows up to 511 continuation lines in a source program.
Comments can occur within a continued statement, but comment lines cannot be continued.
Within a program unit, the END statement cannot be continued, and no other statement in the
program unit can have an initial line that appears to be the program unit END statement.
For more information on continuation indicators in free source form, see “Free Source Form”;
in fixed and tab source forms, see “Fixed and Tab Source Forms”.

Table 2-2 summarizes characters used as indicators in source forms:

Table 2-2 Indicators in Source Forms

Source Item Indicator 1 Source Form Position

Comment ! All forms Anywhere in source code

Comment line ! Free At the beginning of the
source line

!, C, or * Fixed In column 1

Tab In column 1
2-7

2 Intel Fortran Language Reference
Source code can be written so that it is useable for all source forms (see “Source Code Useable for
All Source Forms”).

Statement Labels

A statement label (or statement number) identifies a statement so that other statements can refer to
it, either to get information or to transfer control. A label can precede any statement that is not part
of another statement.
A statement label must be one to five decimal digits long; blanks and leading zeros are ignored.
An all-zero statement label is invalid, and a blank statement cannot be labeled.
Labeled FORMAT and labeled executable statements are the only statements that can be referred
to by other statements. FORMAT statements are referred to only in the format specifier of an I/O
statement or in an ASSIGN statement. Two statements within a scoping unit cannot have the same
label.
See Also
• “Free Source Form” for details on labels in free source form
• “Fixed and Tab Source Forms” for details on labels in fixed and tab source forms

Continuation line2 & Free At the end of the source line

Any character except
zero or blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms Between statements on the
same line

Statement label 1 to 5 decimal digits Free Before a statement

Fixed In columns 1 through 5

Tab Before the first tab

A debugging statement3 D Fixed In column 1

Tab In column 1

1. If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.

2. For all forms, up to 511 continuation lines are allowed.

3. Fixed and tab forms only.

Table 2-2 Indicators in Source Forms

Source Item Indicator 1 Source Form Position
2-8

Program Structure, Characters, and Source Forms 2

Free Source Form

In free source form, statements are not limited to specific positions on a source line. In Fortran
95/90, a free form source line can contain from 0 to 132 characters. Intel Fortran allows the line to
be of any length.
Blank characters are significant in free source form. The following are rules for blank characters:
• Blank characters must not appear in lexical tokens, except within a character context. For

example, there can be no blanks between the exponentiation operator **. Blank characters
can be used freely between lexical tokens to improve legibility.

• Blank characters must be used to separate names, constants, or labels from adjacent
keywords, names, constants, or labels. For example, consider the following statements:
INTEGER NUM

GO TO 40

20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.
• Some adjacent keywords must have one or more blank characters between them. Others do

not require any; for example, BLOCK DATA can also be spelled BLOCKDATA. The
following list shows which keywords have optional or required blanks:

Optional Blanks Required Blanks

BLOCK DATA CASE DEFAULT

DOUBLE COMPLEX DO WHILE

DOUBLE PRECISION IMPLICIT type-specifier

ELSE IF IMPLICIT NONE

ELSE WHERE INTERFACE ASSIGNMENT

END BLOCK DATA INTERFACE OPERATOR

END DO MODULE PROCEDURE

END FILE RECURSIVE FUNCTION

END FORALL RECURSIVE SUBROUTINE

END FUNCTION RECURSIVE type-specifier FUNCTION

END IF type-specifier FUNCTION

END INTERFACE type-specifier RECURSIVE FUNCTION

END MODULE

END PROGRAM

END SELECT

END SUBROUTINE
2-9

2 Intel Fortran Language Reference
For information on statement separators (;) in all forms, see “Source Code Useable for All Source
Forms”.

Comment Indicator

In free source form, the exclamation point character (!) indicates a comment if it is within a source
line, or a comment line if it is the first character in a source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line (unless it appears in
a Hollerith or character constant, or within a comment). The continuation line is the first
noncomment line following the ampersand. Although Fortran 95/90 permits up to 39 continuation
lines in free-form programs, Intel Fortran allows up to 511 continuation lines.
The following shows a continued statement:
TCOSH(Y) = EXP(Y) + & ! The initial statement line

 EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand, the statement
continues at the character following the ampersand. For example, the preceding example can be
written as follows:
TCOSH(Y) = EXP(Y) + &

 & EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next noncomment line
must be an ampersand followed immediately by the rest of the token. For example:
TCOSH(Y) = EXP(Y) + EX&

 &P(-Y)

If you continue a character constant, an ampersand must be the first non-blank character of the
continued line; the statement continues with the next character following the ampersand. For
example:
ADVERTISER = "Davis, O’Brien, Chalmers & Peter&

 &son"

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

Optional Blanks Required Blanks
2-10

Program Structure, Characters, and Source Forms 2

ARCHITECT = "O’Connor, Emerson, and Davis&

 & Associates"

If the ampersand is omitted on the continued line, the statement continues with the first non-blank
character in the continued line. So, in the preceding example, the whitespace before "Associates"
would be included.
The ampersand cannot be the only nonblank character in a line, or the only nonblank character
before a comment; an ampersand in a comment is ignored.

See Also

“Source Code Useable for All Source Forms” for details on the general rules for all source forms

Fixed and Tab Source Forms

In Fortran 95, fixed source form is identified as obsolescent.
In fixed and tab source forms, there are restrictions on where a statement can appear within a line.
By default, a statement can extend to character position 72. In this case, any text following
position 72 is ignored and no warning message is printed. You can specify a compiler option to
extend source lines to character position 132.
Except in a character context, blanks are not significant and can be used freely throughout the
program for maximum legibility.
Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default, Intel
Fortran does not. If portability is a concern, you can use the concatenation operator to prevent
source lines from being padded by other Fortran compilers (see the example in "Continuation
Indicator" below) or you can force short source lines to be padded by using a compiler option.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates a comment if it is
within a source line. (It must not appear in column 6 of a fixed form line; that column is reserved
for a continuation indicator.)
The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a comment line when it
appears in column 1 of a source line.

Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the following:
• For fixed form: Any character (except a zero or blank) in column 6 of a source line
• For tab form: Any digit (except zero) after the first tab
2-11

2 Intel Fortran Language Reference
The compiler considers the characters following the continuation indicator to be part of the
previous line. Although Fortran 95/90 permits up to 19 continuation lines in a fixed-form program,
Intel Fortran allows up to 511 continuation lines.
If a zero or blank is used as a continuation indicator, the compiler considers the line to be an initial
line of a Fortran statement.
The statement label field of a continuation line must be blank (except in the case of a debugging
statement).
When long character or Hollerith constants are continued across lines, portability problems can
occur. Use the concatenation operator to avoid such problems. For example:
 PRINT *, ’This is a very long character constant ’//

 + ’which is safely continued across lines’

Use this same method when initializing data with long character or Hollerith constants. For
example:
 CHARACTER*(*) LONG_CONST

 PARAMETER (LONG_CONST = ’This is a very long ’//

 + ’character constant which is safely continued ’//

 + ’across lines’)

 CHARACTER*100 LONG_VAL

 DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation
method of line continuation.

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement label, a comment
indicator, or a debugging statement indicator.
The letter D indicates a debugging statement when it appears in column 1 of a source line. The
initial line of the debugging statement can contain a statement label in the remaining columns of
the statement label field.
If a debugging statement is continued onto more than one line, every continuation line must begin
with a D and a continuation indicator.
By default, the compiler treats debugging statements as comments. However, you can specify a
compiler option to force the compiler to treat debugging statements as source text to be compiled.

See Also
• “OPTIONS Statement”
2-12

Program Structure, Characters, and Source Forms 2

• “Source Forms” for details on the general rules for all source forms, statement separators (;)

in all forms, and statement labels
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 95
• Your user’s guide for details on compiler options

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement labels,
continuation indicators, statement text, and sequence numbers. Each column represents a single
character.
The column positions for each field follow:

By default, a sequence number or other identifying information can appear in columns 73 through
80 of any fixed-format line in an Intel Fortran program. The compiler ignores the characters in this
field.
If you extend the statement field to position 132, the sequence number field does not exist.

See Also
• “Source Forms” for details on the general rules for all source forms
• “Fixed and Tab Source Forms” for details on the general rules for fixed and tab source forms

Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and a
statement field, but not a sequence number field.
Figure 2-2 shows equivalent source lines coded with tab and fixed source form.

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72 (or 132 with a compiler option)

Sequence number 73 through 80

NOTE. If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as part of the
statement field in your program.
2-13

2 Intel Fortran Language Reference
The statement label field precedes the first tab character. The continuation indicator field and
statement field follow the first tab character.
The continuation indicator is any nonzero digit. The statement field can contain any Fortran
statement. A Fortran statement cannot start with a digit.
If a statement is continued, a continuation indicator must be the first character (following the first
tab) on the continuation line.
Many text editors and terminals advance the terminal print carriage to a predefined print position
when you press the <Tab> key. However, the Intel Fortran compiler does not interpret the tab
character in this way. It treats the tab character in a statement field the same way it treats a blank
character. In the source listing that the compiler produces, the tab causes the character that follows
to be printed at the next tab stop (usually located at columns 9, 17, 25, 33, and so on).

Figure 2-2 Line Formatting Example

NOTE. If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as part of the
statement field in your program.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C F I R S T V A L U E

1 0 I = J + 5 * K +

1 L * M

I L IV A = + 2

ZK−0614−GE

TAB

TAB

TABC FIRST VALUE

TAB10 I = J + 5*K +

1 L*M

IVAL = I+2

Character−per−Column FormatFormat using TAB Character
2-14

Program Structure, Characters, and Source Forms 2

See Also
• “Source Forms” for details on the general rules for all source forms
• “Fixed and Tab Source Forms” for details on the general rules for fixed and tab source forms

Source Code Useable for All Source Forms

To write source code that is useable for all source forms (free, fixed, or tab), follow these rules:

The following example is valid for all source forms:
Column:

12345678... 73

__

! Define the user function MY_SIN

 DOUBLE PRECISION FUNCTION MY_SIN(X)

 MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

 & - X**7/FACTOR(7)

 CONTAINS

 INTEGER FUNCTION FACTOR(N)

 FACTOR = 1

 DO 10 I = N, 1, -1

 10 FACTOR = FACTOR * I

 END FUNCTION FACTOR

 END FUNCTION MY_SIN

Blanks Treat as significant (see “Free Source Form”).

Statement labels Place in column positions 1 through 5 (or before the first tab character).

Statements Start in column 7 (or after the first tab character).

Comment indicator Use only !. Place anywhere except in column position 6 (or immediately
after the first tab character).

Continuation indicator Use only &. Place in column position 73 of the initial line and each
continuation line, and in column 6 of each continuation line (no tab
character can precede the ampersand in column 6).
2-15

2 Intel Fortran Language Reference
2-16

Data Types, Constants, and
Variables
 3
Each constant, variable, array, expression, or function reference in a Fortran statement has a data
type. The data type of these items can be inherent in their construction, implied by convention, or
explicitly declared.
Each data type has the following properties:
• A name

The names of the intrinsic data types are predefined, while the names of derived types are
defined in derived-type definitions. Data objects (constants, variables, or parts of constants or
variables) are declared using the name of the data type.

• A set of associated values
Each data type has a set of valid values. Integer and real data types have a range of valid
values. Complex and derived types have sets of values that are combinations of the values of
their individual components.

• A way to represent constant values for the data type
A constant is a data object with a fixed value that cannot be changed during program
execution. The value of a constant can be a numeric value, a logical value, or a character
string.
A constant that does not have a name is a literal constant. A literal constant must be of
intrinsic type and it cannot be array-valued.
A constant that has a name is a named constant. A named constant can be of any type,
including derived type, and it can be array-valued. A named constant has the PARAMETER
attribute and is specified in a type declaration statement or PARAMETER statement.

• A set of operations to manipulate and interpret these values
The data type of a variable determines the operations that can be used to manipulate it.
Besides intrinsic operators and operations, you can also define operators and operations.

This chapter contains information on the following topics:
• “Intrinsic Data Types” (This topic also discusses the forms for constants.)
3-1

3 Intel Fortran Language Reference
• “Derived Data Types”
• “Binary, Octal, Hexadecimal, and Hollerith Constants”
• “Variables”

See Also
• “Type Declaration Statements”
• “Defined Operations”
• “Expressions” for details on valid operations for data types
• “PARAMETER Attribute and Statement” for details on named constants and the

PARAMETER attribute
• Your user’s guide for details on ranges for numeric literal constants

Intrinsic Data Types
Intel® Fortran provides the following intrinsic data types:
• INTEGER (see “Integer Data Types”)

There are four kind parameters for data of type integer:
— INTEGER([KIND=]1) or INTEGER*1
— INTEGER([KIND=]2) or INTEGER*2
— INTEGER([KIND=]4) or INTEGER*4
— INTEGER([KIND=]8) or INTEGER*8

• REAL (see “Real Data Types”)
There are three kind parameters for data of type real:
— REAL([KIND=]4) or REAL*4
— REAL([KIND=]8) or REAL*8
— REAL([KIND=]16) or REAL*16

• DOUBLE PRECISION (see “Real Data Types”)
No kind parameter is permitted for data declared with type DOUBLE PRECISION. This data
type is the same as REAL([KIND=]8).

• COMPLEX (see “Complex Data Types”)
There are three kind parameters for data of type complex:
— COMPLEX([KIND=]4) or COMPLEX*8
— COMPLEX([KIND=]8) or COMPLEX*16
— COMPLEX([KIND=]16) or COMPLEX*32
3-2

Data Types, Constants, and Variables 3

• DOUBLE COMPLEX (see “Complex Data Types”)

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data
type is the same as COMPLEX([KIND=]8).

• LOGICAL (see “Logical Data Types”)
There are four kind parameters for data of type logical:
— LOGICAL([KIND=]1) or LOGICAL*1
— LOGICAL([KIND=]2) or LOGICAL*2
— LOGICAL([KIND=]4) or LOGICAL*4
— LOGICAL([KIND=]8) or LOGICAL*8

• CHARACTER (see “Character Data Type”)
There is one kind parameter for data of type character: CHARACTER([KIND=]1).

• BYTE
This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

The intrinsic function KIND can be used to determine the kind type parameter of a representation
method.
For more portable programs, you should not use the forms INTEGER([KIND=]n) or
REAL([KIND=]n). You should instead define a PARAMETER constant using the
SELECTED_INT_KIND or SELECTED_REAL_KIND function, whichever is appropriate. For
example, the following statements define a PARAMETER constant for an INTEGER kind that has
9 digits:
INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)

...

INTEGER(MY_INT_KIND) :: J

...

Note that syntax separator :: is used in type declaration statements.
The following sections describe the intrinsic data types and forms for literal constants for each
type.

See Also
• “Type Declaration Statements”
• “KIND”
• “Declaration Statements for Noncharacter Types” and “Declaration Statements for Character

Types” for details on declaration statements for intrinsic data types
• “Expressions” for details on operations for intrinsic data types
• Table 15-2 for details on storage requirements for intrinsic data types
3-3

3 Intel Fortran Language Reference
Integer Data Types

Integer data types can be specified as follows:
INTEGER
INTEGER([KIND=]n)
INTEGER*n

n
Is kind 1, 2, 4, or 8.
If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not
specified, integer constants are interpreted as follows:
• If the integer constant is within the default integer kind range, the kind is default integer.

Default integer is INTEGER(4). You can change the default behavior by specifying the
compiler option that controls the default integer kind.

• If the integer constant is outside the default integer kind range, the kind of the integer constant
is the smallest integer kind which holds the constant.

Integer Constants

An integer constant is a whole number with no decimal point. It can have a leading sign and is
interpreted as a decimal number.
Integer constants take the following form:

[s]n[n...][_k]
s
Is a sign; required if negative (–), optional if positive (+).
n
Is a decimal digit (0 through 9). Any leading zeros are ignored.
k
Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for INTEGER(4), or 8
for INTEGER(8). It must be preceded by an underscore (_).
An unsigned constant is assumed to be nonnegative.
Integers are expressed in decimal values (base 10) by default. To specify a constant that is not in
base 10, use the following syntax:

[s][[base] #]nnn...
s
Is an optional plus (+) or minus (–) sign.
3-4

Data Types, Constants, and Variables 3

base
Is any constant from 2 through 36.
If base is omitted but # is specified, the integer is interpreted in base 16. If both base and # are
omitted, the integer is interpreted in base 10.
For bases 11 through 36, the letters A through Z represent numbers greater than 9. For example,
for base 36, A represents 10, B represents 11, C represents 12, and so on, through Z, which
represents 35. The case of the letters is not significant.

Examples

The following examples show valid and invalid integer (base 10) constants:

The following integers (most of which are not base 10) are all assigned a value equal to 3,994,575
decimal:
I = 2#1111001111001111001111

m = 7#45644664

J = +8#17171717

K = #3CF3CF

n = +17#2DE110

L = 3994575

index = 36#2DM8F

You can use integer constants to assign values to data. The following table shows assignments to
different data and lists the integer and hexadecimal values in the data:

Valid

0

-127

+32123

47_2

Invalid Explanation

9999999999999999999 Number too large.

3.14 Decimal point not allowed; this is a valid REAL constant.

32,767 Comma not allowed.

33_3 3 is not a valid kind for integers.
3-5

3 Intel Fortran Language Reference

See Also
• “Numeric Expressions” for details on integer constants used in expressions
• Your user’s guide for details on the ranges for integer types and kinds

Real Data Types

Real data types can be specified as follows:
REAL
REAL([KIND=]n)
REAL*n
DOUBLE PRECISION

n
Is kind 4, 8, or 16.
If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not
specified, the kind is default real. Default real is REAL(4). You can change the default behavior
by specifying the compiler option that controls the default real kind.
DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data declared with type
DOUBLE PRECISION.

Fortran Assignment
Integer Value in
the Data

Hexadecimal Value in
the Data

LOGICAL(1)X

INTEGER(1)X

X = –128 –128 Z'80'

X = 127 127 Z'7F'

X = 255 –1 Z'FF'

LOGICAL(2)X

INTEGER(2)X

X = 255 255 Z'FF'

X = –32768 –32768 Z'8000'

X = 32767 32767 Z'7FFF'

X = 65535 –1 Z'FFFF'
3-6

Data Types, Constants, and Variables 3

General Rules for Real Constants

A real constant approximates the value of a mathematical real number. The value of the constant
can be positive, zero, or negative.
The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]
A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]
[s]n[n...]D[s]nn...
[s]n[n...]Q[s]nn...

s
Is a sign; required if negative (–), optional if positive (+).
n
Is a decimal digit (0 through 9). A decimal point must appear if the real constant has no exponent
part.
k
Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for REAL(16). It must be
preceded by an underscore (_).

Rules and Behavior

Leading zeros (zeros to the left of the first nonzero digit) are ignored in counting significant digits.
For example, in the constant 0.00001234567, all of the nonzero digits, and none of the zeros, are
significant. (See the following sections for the number of significant digits each kind type
parameter typically has).
The exponent represents a power of 10 by which the preceding real or integer constant is to be
multiplied (for example, 1.0E6 represents the value 1.0 * 10**6).
A real constant with no exponent part and no kind type parameter is (by default) a single-precision
(REAL(4)) constant. You can change the default behavior by specifying the compiler option that
controls the default real kind.
If the real constant has no exponent part, a decimal point must appear in the string (anywhere
before the optional kind parameter). If there is an exponent part, a decimal point is optional in the
string preceding the exponent part; the exponent part must not contain a decimal point.
The exponent letter E denotes a single-precision real (REAL(4)) constant, unless the optional kind
parameter specifies otherwise. For example, –9.E2_8 is a double-precision constant (which can
also be written as –9.D2).
The exponent letter D denotes a double-precision real (REAL(8)) constant.
3-7

3 Intel Fortran Language Reference
The exponent letter Q denotes a quad-precision real (REAL(16)) constant.
A minus sign must appear before a negative real constant; a plus sign is optional before a positive
constant. Similarly, a minus sign must appear between the exponent letter (E, D, or Q) and a
negative exponent, whereas a plus sign is optional between the exponent letter and a positive
exponent.
If the real constant includes an exponent letter, the exponent field cannot be omitted, but it can be
zero.
To specify a real constant using both an exponent letter and a kind parameter, the exponent letter
must be E, and the kind parameter must follow the exponent part.

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digits is
unlimited, but typically only the leftmost seven digits are significant.
IEEE* S_floating format is used.

Examples

The following examples show valid and invalid REAL(4) constants:

See Also
• “General Rules for Real Constants”

Valid

3.14159

3.14159_4

621712._4

–.00127

+5.0E3

2E–3_4

Invalid Explanation

1,234,567. Commas not allowed.

325E–47 Too small for REAL; this is a valid DOUBLE PRECISION constant.

–47.E47 Too large for REAL; this is a valid DOUBLE PRECISION constant.

625._6 6 is not a valid kind for reals.

100 Decimal point missing; this is a valid integer constant.

$25.00 Special character not allowed.
3-8

Data Types, Constants, and Variables 3

• Your user’s guide for details on the format and range of REAL(4) data
• Your user’s guide for details on compiler options affecting Real data

REAL(8) or DOUBLE PRECISION Constants

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4)
number, and greater range.
A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are
significant.
IEEE T_floating format is used.

Examples

The following examples show valid and invalid REAL(8) or DOUBLE PRECISION constants:

See Also
• “General Rules for Real Constants”
• Your user’s guide for details on the format and range of DOUBLE PRECISION (REAL(8))

data
• Your user’s guide for details on compiler options affecting DOUBLE PRECISION data

Valid

123456789D+5

123456789E+5_8

+2.7843D00

–.522D–12

2E200_8

2.3_8

3.4E7_8

Invalid Explanation

–.25D0_2 2 is not a valid kind for reals.

+2.7182812846182 No D exponent designator is present; this is a valid single-precision
constant.

123456789.D400 Too large for any double-precision format.

123456789.D–400 Too small for any double-precision format.
3-9

3 Intel Fortran Language Reference
REAL(16) Constants

A REAL(16) constant has more than four times the accuracy of a REAL(4) number, and a greater
range.
A REAL(16) constant occupies 16 bytes of memory. The number of digits that precede the
exponent is unlimited, but typically only the leftmost 33 digits are significant.
IEEE X_floating format is used.

Examples

The following examples show valid and invalid REAL(16) constants:

See Also
• “General Rules for Real Constants”
• Your user’s guide for details on the format and range of REAL(16) data

Complex Data Types

Complex data types can be specified as follows:
COMPLEX
COMPLEX([KIND=]n)
COMPLEX*s
DOUBLE COMPLEX

n
Is kind 4, 8, or 16.
s
Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8) is specified as
COMPLEX*16; COMPLEX(16) is specified as COMPLEX*32.

Valid

123456789Q4000

–1.23Q–400

+2.72Q0

1.88_16

Invalid Explanation

1.Q5000 Too large.

1.Q–5000 Too small.
3-10

Data Types, Constants, and Variables 3

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter
is specified, the kind of both parts is default real, and the constant is of type default complex.
Default complex is COMPLEX(4). You can change the default behavior by specifying the
compiler option that controls the default real kind.
DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with
type DOUBLE COMPLEX.

General Rules for Complex Constants

A complex constant approximates the value of a mathematical complex number. The constant is a
pair of real or integer values, separated by a comma, and enclosed in parentheses. The first
constant represents the real part of that number; the second constant represents the imaginary part.
The following is the general form of a complex constant:

 (c,c)
c
Is as follows:
• For COMPLEX(4) constants, c is an integer or REAL(4) constant.
• For COMPLEX(8) constants, c is an integer, REAL(4) constant, or DOUBLE PRECISION

(REAL(8)) constant. At least one of the pair must be DOUBLE PRECISION.
• For COMPLEX(16) constants, c is an integer, REAL(4) constant, REAL(8) constant, or

REAL(16) constant. At least one of the pair must be a REAL(16) constant.
Note that the comma and parentheses are required.

COMPLEX(4) Constants

A COMPLEX(4) constant is a pair of integer or single-precision real constants that represent a
complex number.
A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a complex
number.
If the real and imaginary part of a complex literal constant are both real, the kind parameter value
is that of the part with the greater decimal precision.
The rules for REAL(4) constants apply to REAL(4) constants used in COMPLEX constants. (See
“General Rules for Real Constants” and “REAL(4) Constants” for the rules on forming REAL(4)
constants.)
The REAL(4) constants in a COMPLEX constant have IEEE S_floating format.

Examples

The following examples show valid and invalid COMPLEX(4) constants:
3-11

3 Intel Fortran Language Reference

See Also
• “General Rules for Complex Constants”
• Your user’s guide for details on the format and range of COMPLEX (COMPLEX(4)) data
• Your user’s guide for details on compiler options affecting REAL data

COMPLEX(8) or DOUBLE COMPLEX Constants

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a
complex number. One of the pair must be a double-precision real constant, the other can be an
integer, single-precision real, or double-precision real constant.
A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is
interpreted as a complex number.
The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision
portion of COMPLEX(8) or DOUBLE COMPLEX constants. (See “General Rules for Real
Constants” and “REAL(8) or DOUBLE PRECISION Constants” for the rules on forming
DOUBLE PRECISION constants.)
The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have
IEEE T_floating format.

Examples

The following examples show valid and invalid COMPLEX(8) or DOUBLE COMPLEX
constants:

Valid

(1.7039,–1.70391)

(44.36_4,–12.2E16_4)

(+12739E3,0.)

(1,2)

Invalid Explanation

(–1.23,) Missing second integer or single-precision real constant.

(1.0, 2H12) Hollerith constant not allowed.

Valid

(1.7039,–1.7039D0)

(547.3E0_8,–1.44_8)
3-12

Data Types, Constants, and Variables 3
See Also
• “General Rules for Complex Constants”
• Your user’s guide for details on the format and range of DOUBLE COMPLEX data
• Your user’s guide for details on compiler options affecting DOUBLE PRECISION data

COMPLEX(16) Constants

A COMPLEX(16) constant is a pair of constants that represents a complex number. One of the
pair must be a REAL(16) constant, the other can be an integer, single-precision real,
double-precision real, or REAL(16) constant.
A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a complex number.
The rules for REAL(16) constants apply to REAL(16) constants used in COMPLEX constants.
(See “General Rules for Real Constants” and “REAL(16) Constants” for the rules on forming
REAL(16) constants.)
The REAL(16) constants in a COMPLEX constant have IEEE X_floating format.

Examples

The following examples show valid and invalid COMPLEX(16) constants:

(1.7039E0,–1.7039D0)

(+12739D3,0.D0)

Invalid Explanation

(1.23D0,) Missing second constant.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a valid
single-precision constant.

Valid

(1.7039,–1.7039Q2)

(547.3E0_16,–1.44)

(+12739Q3,0.Q0)

Invalid Explanation

(1.23Q0,) Missing second constant.

(1D1,2H12) Hollerith constants not allowed.

(1.7039,–1.7039D0) Neither constant is REAL(16); this is a valid double-precision constant.
3-13

3 Intel Fortran Language Reference
See Also
• “General Rules for Complex Constants”
• Your user’s guide for details on the format and range of COMPLEX(16) data
• Your user’s guide for details on compiler options affecting REAL data

Logical Data Types

Logical data types can be specified as follows:
LOGICAL
LOGICAL([KIND=]n)
LOGICAL*n

n
Is kind 1, 2, 4, or 8.
If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter is
specified, the kind of the constant is default logical.

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following
forms:

.TRUE.[_k]

.FALSE.[_k]
k
Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for LOGICAL(4), or 8
for LOGICAL(8). It must be preceded by an underscore (_).
Logical data type ranges correspond to their comparable integer data type ranges. For example, the
LOGICAL(2) range is the same as the INTEGER(2) range.

See Also

Your user’s guide for details on integer data type ranges

Character Data Type

The character data type can be specified as follows:
3-14

Data Types, Constants, and Variables 3

CHARACTER
CHARACTER([KIND=]n)
CHARACTER([LEN=]len)
CHARACTER([LEN=]len [,[KIND=]n])
CHARACTER(KIND=n [,LEN=len])
CHARACTER*len[,]

n
Is kind 1.
len
Is a string length (not a kind). For more information, see “Declaration Statements for Character
Types”.
If no kind type parameter is specified, the kind of the constant is default character.

Character Constants

A character constant is a character string enclosed in delimiters (apostrophes or quotation marks).
It takes one of the following forms:

[k_]'[ch...]' [C]
[k_]"[ch...]" [C]

k
Is the optional kind parameter: 1 (the default). It must be followed by an underscore (_). Note
that in character constants, the kind must precede the constant.
ch
Is an ASCII character.
C
Is a C string specifier. C strings can be used to define strings with nonprintable characters. For
more information, see “C Strings in Character Constants”.

Rules and Behavior

The value of a character constant is the string of characters between the delimiters. The value does
not include the delimiters, but does include all blanks or tabs within the delimiters.
If a character constant is delimited by apostrophes, use two consecutive apostrophes ('') to place an
apostrophe character in the character constant.
Similarly, if a character constant is delimited by quotation marks, use two consecutive quotation
marks ("") to place a quotation mark character in the character constant.
3-15

3 Intel Fortran Language Reference
The length of the character constant is the number of characters between the delimiters, but two
consecutive delimiters are counted as one character.
The length of a character constant must be in the range of 0 to 2000. Each character occupies one
byte of memory.
If a character constant appears in a numeric context (such as an expression on the right side of an
arithmetic assignment statement), it is considered a Hollerith constant.
A zero-length character constant is represented by two consecutive apostrophes or quotation
marks.

Examples

The following examples show valid and invalid character constants:

See Also

“Declaration Statements for Character Types”

C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0)) and can contain
nonprintable characters (such as backspace).
Nonprintable characters are specified by escape sequences. An escape sequence is denoted by
using the backslash (\) as an escape character, followed by a single character indicating the
nonprintable character desired.
This type of string is specified by using a standard string constant followed by the character C.
The standard string constant is then interpreted as a C-language constant. Backslashes are treated
as escapes, and a null character is automatically appended to the end of the string (even if the
string already ends in a null character).

Valid

"WHAT KIND TYPE? "

'TODAY''S DATE IS: '

"The average is: "

' '

Invalid Explanation

'HEADINGS No trailing apostrophe.

'Map Number: " Beginning delimiter does not match ending delimiter.
3-16

Data Types, Constants, and Variables 3

Table 3-1 shows the escape sequences that are allowed in character constants.

If a string contains an escape sequence that isn't in this table, the backslash is ignored.
A C string must also be a valid Fortran string. If the string is delimited by apostrophes,
apostrophes in the string itself must be represented by two consecutive apostrophes ('').
For example, the escape sequence \'string causes a compiler error because Fortran interprets the
apostrophe as the end of the string. The correct form is \''string.
If the string is delimited by quotation marks, quotation marks in the string itself must be
represented by two consecutive quotation marks ("").
The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit octal
or a one- to two-digit hexadecimal character code. Each octal digit must be in the range 0 to 7, and
each hexadecimal digit must be in the range 0 to F. For example, the C strings '\010'C and '\x08'C
both represent a backspace character followed by a null character.
The C string '\\abcd'C is equivalent to the string '\abcd' with a null character appended. The
string ''C represents the ASCII null character.

 Character Substrings

A character substring is a contiguous segment of a character string. It takes one of the following
forms:

v ([e1]:[e2])
a (s [,s] . . .) ([e1]:[e2])

Table 3-1 C-Style Escape Sequences

Escape Sequence Represents

\a or \A A bell

\b or \B A backspace

\f or \F A formfeed

\n or \N A new line

\r or \R A carriage return

\t or \T A horizontal tab

\v or \V A vertical tab

\xhh or \Xhh A hexadecimal bit pattern

\ooo An octal bit pattern

\0 A null character

\\ A backslash (\)
3-17

3 Intel Fortran Language Reference
v
Is a character scalar constant, or the name of a character scalar variable or character structure
component.
e1
Is a scalar integer (or other numeric) expression specifying the leftmost character position of the
substring; the starting point.
e2
Is a scalar integer (or other numeric) expression specifying the rightmost character position of the
substring; the ending point.
a
Is the name of a character array.
s
Is a subscript expression.
Both e1 and e2 must be within the range 1,2, ..., len, where len is the length of the parent character
string. If e1 exceeds e2, the substring has length zero.

Rules and Behavior

Character positions within the parent character string are numbered from left to right, beginning at
1.
If the value of the numeric expression e1 or e2 is not of type integer, it is converted to integer
before use (any fractional parts are truncated).
If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For example, NAMES(1,3)(:7)
specifies the substring starting with the first character position and ending with the seventh
character position of the character array element NAMES(1,3).

Examples

Consider the following example:
CHARACTER*8 C, LABEL

LABEL = ‘XVERSUSY'
C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position and ending with
the seventh character position of the character variable assigned to LABEL, so C has the value
'VERSUS'.

Consider the following example:
3-18

Data Types, Constants, and Variables 3

TYPE ORGANIZATION

 INTEGER ID

 CHARACTER*35 NAME

END TYPE ORGANIZATION

TYPE(ORGANIZATION) DIRECTOR

CHARACTER*25 BRANCH, STATE(50)

The following are valid substrings based on the above example:
BRANCH(3:15) ! parent string is a scalar variable

STATE(20) (1:3) ! parent string is an array element

DIRECTOR%NAME ! parent string is a structure component

Consider the following example:
CHARACTER(*), PARAMETER :: MY_BRANCH = "CHAPTER 204"

CHARACTER(3) BRANCH_CHAP

BRANCH_CHAP = MY_BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is a character string of length 3 that has the value '204'.

See Also
• “Arrays”
• “Array Elements”
• “Structure Components”

Derived Data Types
You can create derived data types from intrinsic data types or previously defined derived types.
A derived type is resolved into "ultimate" components that are either of intrinsic type or are
pointers.
The set of values for a specific derived type consists of all possible sequences of component
values permitted by the definition of that derived type. Structure constructors are used to specify
values of derived types.
Nonintrinsic assignment for derived-type entities must be defined by a subroutine with an
ASSIGNMENT interface. Any operation on derived-type entities must be defined by a function
with an OPERATOR interface. Arguments and function values can be of any intrinsic or derived
type.

See Also
• “Structure Components”
3-19

3 Intel Fortran Language Reference
• “Structure Constructors”
• “Derived-Type Assignment Statements”
• “Record Structures”
• “Defining Generic Operators” for details on OPERATOR interfaces
• “Defining Generic Assignment” for details on ASSIGNMENT interfaces

Derived-Type Definition

A derived-type definition specifies the name of a user-defined type and the types of its
components. It takes the following form:

TYPE [[, access] ::] name
component-definition
[component-definition] . . .

END TYPE [name]
access
Is the PRIVATE or PUBLIC keyword. The keyword can only be specified if the derived-type
definition is in the specification part of a module.
name
Is the name of the derived type. It must not be the same as the name of any intrinsic type, or the
same as the name of a derived type that can be accessed from a module.
component-definition
Is one or more type declaration statements defining the component of derived type.
The first component definition can be preceded by an optional PRIVATE or SEQUENCE
statement. (Only one PRIVATE or SEQUENCE statement can appear in a given derived-type
definition.)
PRIVATE specifies that the components are accessible only within the defining module, even if
the derived type itself is public.
SEQUENCE cause the components of the derived type to be stored in the same sequence they are
listed in the type definition. If SEQUENCE is specified, all derived types specified in component
definitions must be sequence types.
A component definition takes the following form:

type [[, attr] ::] component [(a-spec)] [*char-len] [init-ex]
3-20

Data Types, Constants, and Variables 3

type
Is a type specifier. It can be an intrinsic type or a previously defined derived type. (If the
POINTER attribute follows this specifier, the type can also be any accessible derived type,
including the type being defined.)
attr
Is an optional POINTER attribute for a pointer component, or an optional DIMENSION or
ALLOCATABLE attribute for an array component. You cannot specify both the ALLOCATABLE
and POINTER attribute. If DIMENSION is specified, it can be followed by an array specification.
Each attribute can only appear once in a given component-definition.
component
Is the name of the component being defined.
a-spec
Is an optional array specification, enclosed in parentheses. If POINTER or ALLOCATABLE is
specified, the array is deferred shape; otherwise, it is explicit shape. In an explicit-shape
specification, each bound must be a constant scalar integer expression. For more information on
array specifications, see “Declaration Statements for Arrays”.
If the array bounds are not specified here, they must be specified following the DIMENSION
attribute.
char-len
Is an optional scalar integer literal constant; it must be preceded by an asterisk (*). This parameter
can only be specified if the component is of type CHARACTER.
init-ex
Is an initialization expression or, for pointer components, =>NULL(). This is a Fortran 95
feature.
If init-ex is specified, a double colon must appear in the component definition. The equals
assignment symbol (=) can only be specified for nonpointer components.
The initialization expression is evaluated in the scoping unit of the type definition.

Rules and Behavior

If a name is specified following the END TYPE statement, it must be the same name that follows
TYPE in the derived type statement.
A derived type can be defined only once in a scoping unit. If the same derived-type name appears
in a derived-type definition in another scoping unit, it is treated independently.
A component name has the scope of the derived-type definition only. Therefore, the same name
can be used in another derived-type definition in the same scoping unit.
3-21

3 Intel Fortran Language Reference
Two data entities have the same type if they are both declared to be of the same derived type (the
derived-type definition can be accessed from a module or a host scoping unit).
If the entities are in different scoping units, they can also have the same derived type if they are
declared with reference to different derived-type definitions, and if both derived-type definitions
have all of the following:
• The same name
• A SEQUENCE statement (they both have sequence type)
• Components that agree in name, order, and attributes; components cannot be private

See Also
• “Intrinsic Data Types”
• “Arrays”
• “Structure Components”
• “Declaration Statements for Derived Types” for details on how to declare variables of derived

type
• “POINTER Attribute and Statement” for details on pointers
• “Default Initialization”for details on default initialization for derived-type components
• Your user’s guide for details on alignment of derived-type data components

Default Initialization

Default initialization occurs if initialization appears in a derived-type component definition. (This
is a Fortran 95 feature.)
The specified initialization of the component will apply even if the definition is PRIVATE.
Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the
derived-type component has the SAVE attribute.
Explicit initialization in a type declaration statement overrides default initialization.
To specify default initialization of an array component, use a constant expression that includes one
of the following:
• An array constructor
• A single scalar that becomes the value of each array element
Pointers can have an association status of associated, disassociated, or undefined. If no default
initialization status is specified, the status of the pointer is undefined. To specify disassociated
status for a pointer component, use =>NULL().
3-22

Data Types, Constants, and Variables 3

Examples

You do not have to specify initialization for each component of a derived type. For example:
TYPE REPORT

 CHARACTER (LEN=20) REPORT_NAME

 INTEGER DAY

 CHARACTER (LEN=3) MONTH

 INTEGER :: YEAR = 1995 ! Only component with default

END TYPE REPORT ! initialization

Consider the following:
TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV",1996)

In this case, the explicit initialization in the type declaration statement overrides the YEAR
component of NOV_REPORT.
The default initial value of a component can also be overridden by default initialization specified
in the type definition. For example:
TYPE MGR_REPORT

 TYPE (REPORT) :: STATUS = NOV_REPORT

 INTEGER NUM

END TYPE MGR_REPORT

TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from NOV_REPORT,
overriding the initialization for the YEAR component.

Structure Components

A reference to a component of a derived-type structure takes the following form:
parent [%component [(s-list)]]... %component [(s-list)]

parent
Is the name of a scalar or array of derived type. The percent sign (%) is called a component
selector.
component
Is the name of a component of the immediately preceding parent or component.
s-list
Is a list of one or more subscripts. If the list contains subscript triplets or vector subscripts, the
reference is to an array section.
3-23

3 Intel Fortran Language Reference
Each subscript must be a scalar integer (or other numeric) expression with a value that is within
the bounds of its dimension.
The number of subscripts in any s-list must equal the rank of the immediately preceding parent or
component.

Rules and Behavior

Each parent or component (except the rightmost) must be of derived type.
The parent or one of the components can have nonzero rank (be an array). Any component to the
right of a parent or component of nonzero rank must not have the POINTER attribute.
The rank of the structure component is the rank of the part (parent or component) with nonzero
rank (if any); otherwise, the rank is zero. The type and type parameters (if any) of a structure
component are those of the rightmost part name.
The structure component must not be referenced or defined before the declaration of the parent
object.
If the parent object has the INTENT, TARGET, or PARAMETER attribute, the structure
component also has the attribute.

Examples

The following example shows a derived-type definition with two components:
TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:
TYPE(EMPLOYEE) :: CONTRACT

Note that both examples started with the keyword TYPE. The first (initial) statement of a
derived-type definition is called a derived-type statement, while the statement that declares a
derived- type object is called a TYPE statement.
The following example shows how to reference component ID of parent structure CONTRACT:
CONTRACT%ID

The following example shows a derived type with a component that is a previously defined type:
TYPE DOT

 REAL X, Y

END TYPE DOT

3-24

Data Types, Constants, and Variables 3

TYPE SCREEN

 TYPE(DOT) C, D

END TYPE SCREEN

The following declares a variable of type SCREEN:
TYPE(SCREEN) M

Variable M has components M%C and M%D (both of type DOT); M%C has components
M%C%X and M%C%Y of type REAL.
The following example shows a derived type with a component that is an array:
TYPE CAR_INFO

 INTEGER YEAR

 CHARACTER(LEN=15), DIMENSION(10) :: MAKER

 CHARACTER(LEN=10) MODEL, BODY_TYPE*8

 REAL PRICE

END TYPE

...

TYPE(CAR_INFO) MY_CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a character length of 8. You
can assign a value to a component of a structure; for example:
MY_CAR%YEAR = 1985

The following shows an array structure component:
MY_CAR%MAKER

In the preceding example, if a subscript list (or substring) was appended to MAKER, the reference
would not be to an array structure component, but to an array element or section.
Consider the following:
MY_CAR%MAKER(2) (4:10)

In this case, the component is substring 4 to 10 of the second element of array MAKER.
Consider the following:
TYPE CHARGE

 INTEGER PARTS(40)

 REAL LABOR

 REAL MILEAGE

END TYPE CHARGE

TYPE(CHARGE) MONTH

TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:
3-25

3 Intel Fortran Language Reference
MONTH%PARTS(I) ! An array element

MONTH%PARTS(I:K) ! An array section

YEAR(I)%PARTS ! An array structure component (a whole array)

YEAR(J)%PARTS(I) ! An array element

YEAR(J)%PARTS(I:K) ! An array section

YEAR(J:K)%PARTS(I) ! An array section

YEAR%PARTS(I) ! An array section

The following example shows a derived type with a pointer component that is of the type being
defined:
TYPE NUMBER

 INTEGER NUM

 TYPE(NUMBER), POINTER :: START_NUM => NULL()

 TYPE(NUMBER), POINTER :: NEXT_NUM => NULL()

END TYPE

A type such as this can be used to construct linked lists of objects of type NUMBER. Note that the
pointers are given the default initialization status of disassociated.
The following example shows a private type:
TYPE, PRIVATE :: SYMBOL

LOGICAL TEST

CHARACTER(LEN=50) EXPLANATION

END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping unit, but type
SYMBOL is not available.

See Also
• “Array Elements” for details on references to array elements
• “Array Sections” for details on references to array sections
• “Modules and Module Procedures” for examples of derived types in modules

Structure Constructors

A structure constructor lets you specify scalar values of a derived type. It takes the following
form:

d-name (expr-list)
d-name
Is the name of the derived type.
3-26

Data Types, Constants, and Variables 3

expr-list
Is a list of expressions specifying component values. The values must agree in number and order
with the components of the derived type. If necessary, values are converted (according to the rules
of assignment), to agree with their corresponding components in type and kind parameters.

Rules and Behavior

A structure constructor must not appear before its derived type is defined.
If a component of the derived type is an array, the shape in the expression list must conform to the
shape of the component array.
If a component of the derived type is a pointer, the value in the expression list must evaluate to an
object that would be a valid target in a pointer assignment statement. (A constant is not a valid
target in a pointer assignment statement.)
If all the values in a structure constructor are constant expressions, the constructor is a
derived-type constant expression.

Examples

Consider the following derived-type definition:
TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

This can be used to produce the following structure constructor:
EMPLOYEE(3472, "John Doe")

The following example shows a type with a component of derived type:
TYPE ITEM

 REAL COST

 CHARACTER(LEN=30) SUPPLIER

 CHARACTER(LEN=20) ITEM_NAME

END TYPE ITEM

TYPE PRODUCE

 REAL MARKUP

 TYPE(ITEM) FRUIT

END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the values of that
component; for example:
3-27

3 Intel Fortran Language Reference
PRODUCE(.70, ITEM (.25, "Daniels", "apple"))

See Also

“Pointer Assignments”

Binary, Octal, Hexadecimal, and Hollerith Constants
Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants. They have no
intrinsic data type, but assume a numeric data type depending on their use.
Fortran 95/90 allows unsigned binary, octal, and hexadecimal constants to be used in DATA
statements; the constant must correspond to an integer scalar variable.
In Intel Fortran, binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric
constants are allowed.

Binary Constants

A binary constant is an alternative way to represent a numeric constant. A binary constant takes
one of the following forms:

B'd[d...]'
B"d[d...]"

d
Is a binary (base 2) digit (0 or 1).
You can specify up to 256 binary digits in a binary constant. Leading zeros are ignored.

Examples

The following examples show valid and invalid binary constants:

Valid

B'0101110'

B"1"

Invalid Explanation

B'0112' The character 2 is invalid.

B10011' No apostrophe after the B.

"1000001" No B before the first quotation mark.
3-28

Data Types, Constants, and Variables 3

Octal Constants

An octal constant is an alternative way to represent numeric constants. An octal constant takes one
of the following forms:

O'd[d...]'
O"d[d...]"

d
Is an octal (base 8) digit (0 through 7).
You can specify up to 256 bits (86 octal digits) in octal constants. Leading zeros are ignored.

Examples

The following examples show valid and invalid octal constants:

See Also

“Alternative Syntax for Octal and Hexadecimal Constants”

Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric constants. A hexadecimal
constant takes one of the following forms:

Z'd[d...]'
Z"d[d...]"

d
Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or lowercase letter in the range of A
to F).
You can specify up to 256 bits (64 hexadecimal digits) in hexadecimal constants. Leading zeros
are ignored.

Valid

O'07737'

O"1"

Invalid Explanation

O'7782' The character 8 is invalid.

O7772' No apostrophe after the O.

"0737" No O before the first quotation mark.
3-29

3 Intel Fortran Language Reference
Examples

The following examples show valid and invalid hexadecimal constants:

See Also

“Alternative Syntax for Octal and Hexadecimal Constants”

Hollerith Constants

A Hollerith constant is a string of printable ASCII characters preceded by the letter H. Before the
H, there must be an unsigned, nonzero default integer constant stating the number of characters in
the string (including blanks and tabs).
Hollerith constants are strings of 1 to 2000 characters. They are stored as byte strings, one
character per byte.

Examples

The following examples show valid and invalid Hollerith constants:

Valid

Z'AF9730'

Z"FFABC"

Z'84'

Invalid Explanation

Z'999.' Decimal not allowed.

"ZF9" No quotation mark after the Z.

Valid

16HTODAY'S DATE IS:

1HB

4H ABC

Invalid Explanation

3HABCD Wrong number of characters.

0H Hollerith constants must contain at least one character.
3-30

Data Types, Constants, and Variables 3

Determining the Data T ype of Nondecima l Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type. These constants
assume a numeric data type depending on their use.
When the constant is used with a binary operator (including the assignment operator), the data
type of the constant is the data type of the other operand. For example:

When a specific data type (generally integer) is required, that type is assumed for the constant. For
example:

When a nondecimal constant is used as an actual argument, the following occurs:

Statement Data Type of Constant Length of Constant 1

1. In bytes.

INTEGER(2) ICOUNT

INTEGER(4) jCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

RAFFIA = B'1001100111111010011' REAL(4) 4

RAFFIA = Z'99AF2' REAL(4) 4

RALPHA = 4HABCH REAL(4) 4

DOUBLE = B'1111111111100110011010' REAL(8) 8

DOUBLE = Z'FFF99A' REAL(8) 8

DOUBLE = 8HABCDEFGH REAL(8) 8

JCOUNT = ICOUNT + B'011101110111' INTEGER(2) 2

JCOUNT = ICOUNT + O'777' INTEGER(2) 2

JCOUNT = ICOUNT + 2HXY INTEGER(2) 2

IF (N .EQ. B'1010100') GO TO 10 INTEGER(4) 4

IF (N .EQ. O'123') GO TO 10 INTEGER(4) 4

IF (N .EQ. 1HZ) GO TO 10 INTEGER(4) 4

Statement Data Type of Constant Length of Constant 1

1. In bytes.

Y(1X) = Y (O'15') + 3 INTEGER(4) 4

Y(1X) = Y (1HA) + 3 INTEGER(4) 4
3-31

3 Intel Fortran Language Reference
• For binary, octal, and hexadecimal constants, INTEGER(8) is assumed on Intel® Itanium®
processors. On IA-32 processors, INTEGER(4) is used.

• For Hollerith constants, no data type is assumed.
For example:

When a binary, octal, or hexadecimal constant is used in any other context, the default integer data
type is assumed (default integer can be affected by compiler options). In the following examples,
default integer is INTEGER(4):

When nondecimal constants are not the same length as the length implied by a data type, the
following occurs:
• Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of the constant is less
than the length implied by the data type, the leftmost digits have a value of zero.
When the length of the constant is greater than the length implied by the data type, the
constant is truncated on the left. An error results if any nonzero digits are truncated.
Table 15-2 lists the number of bytes that each data type requires.

• Hollerith constants
When the length of the constant is less than the length implied by the data type, blanks are
appended to the constant on the right.

Statement Data Type of Constant Length of Constant 1

1. In bytes.

CALL APAC (Z'34BC2') INTEGER(4) 4

CALL APAC (9HABCDEFGHI) None 9

Statement Data Type of Constant Length of Constant 1

1. In bytes.

IF (Z'AF77') 1,2,3 INTEGER(4) 4

IF (2HAB) 1,2,3 INTEGER(4) 4

I = O'7777' – Z'A39' 2

2. When two typeless constants are used in an operation, they both take default integer type.

INTEGER(4) 4

I = 1HC – 1HA INTEGER(4) 4

J = .NOT. O'73777' INTEGER(4) 4

J = .NOT. 1HB INTEGER(4) 4
3-32

Data Types, Constants, and Variables 3

When the length of the constant is greater than the length implied by the data type, the
constant is truncated on the right. If any characters other than blank characters are truncated,
an error occurs.
Each Hollerith character occupies one byte of memory.

See Also

Your user’s guide for details on compiler options

Variables
A variable is a data object whose value can be changed at any point in a program. A variable can
be any of the following:
• A scalar

A scalar is a single object that has a single value; it can be of any intrinsic or derived
(user-defined) type.

• An array
An array is a collection of scalar elements of any intrinsic or derived type. All elements must
have the same type and kind parameters.

• A subobject designator
A subobject is part of an object. The following are subobjects:

For example, B(3) is a subobject (array element) designator for array B. A subobject cannot
be a variable if its parent object is a constant.

The name of a variable is associated with a single storage location.
Variables are classified by data type, as constants are. The data type of a variable indicates the type
of data it contains, including its precision, and implies its storage requirements. When data of any
type is assigned to a variable, it is converted to the data type of the variable (if necessary).
A variable is defined when you give it a value. A variable can be defined before program
execution by a DATA statement or a type declaration statement. During program execution,
variables can be defined or redefined in assignment statements and input statements, or undefined
(for example, if an I/O error occurs). When a variable is undefined, its value is unpredictable.
When a variable becomes undefined, all variables associated by storage association also become
undefined.

An array element A structure component
An array section A character substring
3-33

3 Intel Fortran Language Reference
See Also
• “Arrays”
• “Type Declaration Statements”
• “DATA Statement”
• “Data Type of Numeric Expressions”
• “Storage Association” for details on storage association of variables

Data Types of Scalar Variables

The data type of a scalar variable can be explicitly declared in a type declaration statement. If no
type is declared, the variable has an implicit data type based on predefined typing rules or
definitions in an IMPLICIT statement.
An explicit declaration of data type takes precedence over any implicit type. Implicit type
specified in an IMPLICIT statement takes precedence over predefined typing rules.

Specification of Data Type

Type declaration statements explicitly specify the data type of scalar variables. For example, the
following statements associate VAR1 with an 8-byte complex storage location, and VAR2 with an
8-byte double-precision storage location:
COMPLEX VAR1

DOUBLE PRECISION VAR2

You can explicitly specify the data type of a scalar variable only once.
If no explicit data type specification appears, any variable with a name that begins with the letter
in the range specified in the IMPLICIT statement becomes the data type of the variable.
Character type declaration statements specify that given variables represent character values with
the length specified. For example, the following statements associate the variable names INLINE,
NAME, and NUMBER with storage locations containing character data of lengths 72, 12, and 9,
respectively:
CHARACTER*72 INLINE

CHARACTER NAME*12, NUMBER*9

In single subprograms, assumed-length character arguments can be used to process character
strings with different lengths. The assumed-length character argument has its length specified with
an asterisk, for example:
CHARACTER*(*) CHARDUMMY

The argument CHARDUMMY assumes the length of the actual argument.
3-34

Data Types, Constants, and Variables 3

See Also
• “Type Declaration Statements”
• “Declaration Statements for Character Types”
• “Assumed-Length Character Arguments”
• “IMPLICIT Statement”

Implicit Typing Rules

By default, all scalar variables with names beginning with I, J, K, L, M, or N are assumed to be
default integer variables. Scalar variables with names beginning with any other letter are assumed
to be default real variables. For example:

Names beginning with a dollar sign ($) are implicitly INTEGER.
You can override the default data type implied in a name by specifying data type in either an
IMPLICIT statement or a type declaration statement.

See Also
• “Type Declaration Statements”
• “IMPLICIT Statement”

Arrays

An array is a set of scalar elements that have the same type and kind parameters. Any object that is
declared with an array specification is an array. Arrays can be declared by using a type declaration
statement, or by using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET
statement.
An array can be referenced by element (using subscripts), by section (using a section subscript
list), or as a whole. A subscript list (appended to the array name) indicates which array element or
array section is being referenced.
A section subscript list consists of subscripts, subscript triplets, or vector subscripts. At least one
subscript in the list must be a subscript triplet or vector subscript.
When an array name without any subscripts appears in an intrinsic operation (for example,
addition), the operation applies to the whole array (all elements in the array).

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM_1

TOTAL_NUM NTOTAL
3-35

3 Intel Fortran Language Reference
An array has the following properties:
• Data type

An array can have any intrinsic or derived type. The data type of an array (like any other
variable) is specified in a type declaration statement or implied by the first letter of its name.
All elements of the array have the same type and kind parameters. If a value assigned to an
individual array element is not the same as the type of the array, it is converted to the array's
type.

• Rank
The rank of an array is the number of dimensions in the array. An array can have up to seven
dimensions. A rank-one array represents a column of data (a vector), a rank-two array
represents a table of data arranged in columns and rows (a matrix), a rank-three array
represents a table of data on multiple pages (or planes), and so forth.

• Bounds
Arrays have a lower and upper bound in each dimension. These bounds determine the range
of values that can be used as subscripts for the dimension. The value of either bound can be
positive, negative, or zero.
The bounds of a dimension are defined in an array specification.

• Size
The size of an array is the total number of elements in the array (the product of the array's
extents).
The extent is the total number of elements in a particular dimension. It is determined as
follows: upper bound – lower bound + 1. If the value of any of an array's extents is zero, the
array has a size of zero.

• Shape
The shape of an array is determined by its rank and extents, and can be represented as a
rank-one array (vector) where each element is the extent of the corresponding dimension.
Two arrays with the same shape are said to be conformable. A scalar is conformable to an
array of any shape.

The name and rank of an array must be specified when the array is declared. The extent of each
dimension can be constant, but does not need to be. The extents can vary during program
execution if the array is a dummy argument array, an automatic array, an array pointer, or an
allocatable array.
A whole array is referenced by the array name. Individual elements in a named array are
referenced by a scalar subscript or list of scalar subscripts (if there is more than one dimension). A
section of a named array is referenced by a section subscript.
3-36

Data Types, Constants, and Variables 3

Examples

The following are examples of valid array declarations:
DIMENSION A(10, 2, 3) ! DIMENSION statement

ALLOCATABLE B(:, :) ! ALLOCATABLE statement

POINTER C(:, :, :) ! POINTER statement

REAL, DIMENSION (2, 5) :: D ! Type declaration with DIMENSION attribute

Consider the following array declaration:
INTEGER L(2:11,3)

The properties of array L are as follows:

The following example shows other valid ways to declare this array:
DIMENSION L(2:11,3)

INTEGER, DIMENSION(2:11,3) :: L

COMMON L(2:11,3)

The following example shows references to array elements, array sections, and a whole array:
REAL B(10) ! Declares a rank-one array with 10 elements

INTEGER C(5,8) ! Declares a rank-two array with 5 elements in

 ! dimension one and 8 elements in dimension two

...

B(3) = 5.0 ! Reference to an array element

B(2:5) = 1.0 ! Reference to an array section consisting of

 ! elements: B(2), B(3), B(4), B(5)

...

C(4,8) = I ! Reference to an array element

C(1:3,3:4) = J ! Reference to an array section consisting of

 ! elements: C(1,3) C(1,4)

 ! C(2,3) C(2,4)

 ! C(3,3) C(3,4)

Data type: INTEGER

Rank: 2 (two dimensions)

Bounds: First dimension: 2 to 11

Second dimension: 1 to 3

Size: 30; the product of the extents: 10 x 3

Shape: (/10,3/) (or 10 by 3); a vector of the extents 10 and 3
3-37

3 Intel Fortran Language Reference
B = 99 ! Reference to a whole array consisting of

 ! elements: B(1), B(2), B(3), B(4), B(5),

 ! B(6), B(7), B(8), B(9), and B(10)

See Also
• “DIMENSION Attribute and Statement”
• “Intrinsic Data Types”
• “Derived Data Types”
• “Whole Arrays”
• “Array Elements”
• “Array Sections”
• “Declaration Statements for Arrays” for details on array specifications
• Table 9-2 for details on intrinsic functions that perform array operations

Whole Arrays

A whole array is a named array; it is either a named constant or a variable. It is referenced by
using the array name (without any subscripts).
If a whole array appears in a nonexecutable statement, the statement applies to the entire array. For
example:
INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and

 ! dimensions of array L

If a whole array appears in an executable statement, the statement applies to all of the elements in
the array. For example:
L = 10 ! The value 10 is assigned to all the

 ! elements in array L

WRITE *, L ! Prints all the elements in array L

Array Elements

An array element is one of the scalar data items that make up an array. A subscript list (appended
to the array or array component) determines which element is being referred to. A reference to an
array element takes the following form:

array(subscript-list)
array
Is the name of the array.
3-38

Data Types, Constants, and Variables 3

subscript-list
Is a list of one or more subscripts separated by commas. The number of subscripts must equal the
rank of the array.
Each subscript must be a scalar integer (or other numeric) expression with a value that is within
the bounds of its dimension.

Rules and Behavior

Each array element inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array element cannot inherit the POINTER
attribute.
If an array element is of type character, it can be followed by a substring range in parentheses; for
example:
ARRAY_D(1,2) (1:3) ! Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather than an array
element.
The following are some valid array element references for an array declared as REAL B(10,20):
B(1,3), B(10,10), and B(5,8).
For information on forms for array specifications, see “Declaration Statements for Arrays”.

Array Element Order

The elements of an array form a sequence known as array element order. The position of an
element in this sequence is its subscript order value.
The elements of an array are stored as a linear sequence of values. A one-dimensional array is
stored with its first element in the first storage location and its last element in the last storage
location of the sequence. A multidimensional array is stored so that the leftmost subscripts vary
most rapidly. This is called the order of subscript progression.
Figure 3-1 shows array storage in one, two, and three dimensions
3-39

3 Intel Fortran Language Reference
.

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript order value of 4;
in three-dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

Figure 3-1 Array Storage

BAN(1,3)7BAN(1,2)4BAN(1,1)1

2

3

BAN(2,1)

BAN(3,1) BAN(3,2)6

5 BAN(2,2)

9

8 BAN(2,3)

BAN(3,3)

10

11

12

BAN(1,4)

BAN(2,4)

BAN(3,4)

1 BRC(1) 2 BRC(2) 3 BRC(3) 4 BRC(4) 5 BRC(5) 6 BRC(6)

One−Dimensional Array BRC (6)

Two−Dimensional Array BAN (3,4)

Three−Dimensional Array BOS (3,3,3)

ZK−0616−GE

Memory Positions

Memory Positions

Memory Positions

19

20

21

BOS(1,1,3)

BOS(2,1,3)

BOS(3,1,3)

22

23

24

BOS(1,2,3)

BOS(2,2,3)

BOS(3,2,3)

25

26

27

BOS(1,3,3)

BOS(2,3,3)

BOS(3,3,3)10

11

12

BOS(1,1,2)

BOS(2,1,2)

BOS(3,1,2)

13

14

15

BOS(1,2,2)

BOS(2,2,2)

BOS(3,2,2)

16

17

18

BOS(1,3,2)

BOS(2,3,2)

BOS(3,3,2)1

2

3

BOS(1,1,1)

BOS(2,1,1)

BOS(3,1,1)

4

5

6

BOS(1,2,1)

BOS(2,2,1)

BOS(3,2,1)

7

8

9

BOS(1,3,1)

BOS(2,3,1)

BOS(3,3,1)
3-40

Data Types, Constants, and Variables 3

In an array section, the subscript order of the elements is their order within the section itself. For
example, if an array is declared as B(20), the section B(4:19:4) consists of elements B(4), B(8),
B(12), and B(16). The subscript order value of B(4) in the array section is 1; the subscript order
value of B(12) in the section is 3.

See Also
• “Character Substrings”
• “Array Association”
• “Structure Components” for details on arrays as structure components
• “Storage Association” for details on storage sequence association

Array Sections

An array section is a portion of an array that is an array itself. It is an array subobject. A section
subscript list (appended to the array or array component) determines which portion is being
referred to. A reference to an array section takes the following form:

array(sect-subscript-list)
array
Is the name of the array.
sect-subscript-list
Is a list of one or more section subscripts (subscripts, subscript triplets, or vector subscripts)
indicating a set of elements along a particular dimension.
At least one of the items in the section subscript list must be a subscript triplet or vector subscript.
A subscript triplet specifies array elements in increasing or decreasing order at a given stride. A
vector subscript specifies elements in any order.
Each subscript and subscript triplet must be a scalar integer (or other numeric) expression. Each
vector subscript must be a rank-one integer expression.

Rules and Behavior

If no section subscript list is specified, the rank and shape of the array section is the same as the
parent array.
Otherwise, the rank of the array section is the number of vector subscripts and subscript triplets
that appear in the list. Its shape is a rank-one array where each element is the number of integer
values in the sequence indicated by the corresponding subscript triplet or vector subscript.
If any of these sequences is empty, the array section has a size of zero. The subscript order of the
elements of an array section is that of the array object that the array section represents.
3-41

3 Intel Fortran Language Reference
Each array section inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array section cannot inherit the POINTER
attribute.
If an array (or array component) is of type character, it can be followed by a substring range in
parentheses. Consider the following declaration:
CHARACTER(LEN=15) C(10,10)

In this case, an array section referenced as C(:,:) (1:3) is an array of shape (10,10), whose elements
are substrings of length 3 of the corresponding elements of C.
The following shows valid references to array sections. Note that the syntax (/.../) denotes an
array constructor (see “Array Constructors”):
REAL, DIMENSION(20) :: B

...

PRINT *, B(2:20:5) ! The section consists of elements

 ! B(2), B(7), B(12), and B(17)

K = (/3, 1, 4/)

B(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and

 ! size 3. (0.0 is assigned to B(1), B(3), and B(4).)

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section, the
upper bound of the array section, and the increment (stride) between them. It takes the following
form:
[first-bound] : [last-bound] [:stride]
first-bound
Is a scalar integer (or other numeric) expression representing the first value in the subscript
sequence. If omitted, the declared lower bound of the dimension is used.
last-bound
Is a scalar integer (or other numeric) expression representing the last value in the subscript
sequence. If omitted, the declared upper bound of the dimension is used.
When indicating sections of an assumed-size array, this subscript must be specified.
stride
Is a scalar integer (or other numeric) expression representing the increment between successive
subscripts in the sequence. It must have a nonzero value. If it is omitted, it is assumed to be 1.
The stride has the following effects:
3-42

Data Types, Constants, and Variables 3

• If the stride is positive, the subscript range starts with the first subscript and is incremented by

the value of the stride, until the largest value less than or equal to the second subscript is
attained.
For example, if an array has been declared as B(6,3,2), the array section specified as
B(2:4,1:2,2) is a rank-two array with shape (3,2) and size 6. It consists of the following six
elements:
B(2,1,2) B(2,2,2)

B(3,1,2) B(3,2,2)

B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is empty.
• If the stride is negative, the subscript range starts with the value of the first subscript and is

decremented by the absolute value of the stride, until the smallest value greater than or equal
to the second subscript is attained.
For example, if an array has been declared as A(15), the array section specified as A(10:3:-2)
is a rank-one array with shape (4) and size 4. It consists of the following four elements:
A(10)

A(8)

A(6)

A(4)

If the second subscript is greater than the first subscript, the range is empty.
If a range specified by the stride is empty, the array section has a size of zero.
A subscript in a subscript triplet need not be within the declared bounds for that dimension if all
values used to select the array elements are within the declared bounds. For example, if an array
has been declared as A(15), the array section specified as A(4:16:10) is valid. The section is a
rank-one array with shape (2) and size 2. It consists of elements A(4) and A(14).
If the subscript triplet does not specify bounds or stride, but only a colon (:), the entire declared
range for the dimension is used.

Vector Subscripts

A vector subscript is a one-dimensional (rank one) array of integer values (within the declared
bounds for the dimension) that selects a section of a whole (parent) array. The elements in the
section do not have to be in order and the section can contain duplicate values.
For example, A is a rank-two array of shape (4,6). B and C are rank- one arrays of shape (2) and
(3), respectively, with the following values:
B = (/1,4/) ! Syntax (/.../) denotes an array constructor

C = (/2,1,1/) ! Will result in a many-one array section
3-43

3 Intel Fortran Language Reference
Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section A(C,1) consists of
elements A(2,1), A(1,1), and A(1,1). Array section A(B,C) consists of the following elements:

A(1,2) A(1,1) A(1,1)

A(4,2) A(4,1) A(4,1)

An array section with a vector subscript that has two or more elements with the same value is
called a many-one array section. A many-one section must not appear on the left of the equal sign
in an assignment statement, or as an input item in a READ statement.
The following assignments to C also show examples of vector subscripts:
INTEGER A(2), B(2), C(2)

...

B = (/1,2/)

C(B) = A(B)

C = A((/1,2/))

An array section with a vector subscript must not be any of the following:
• An internal file
• An actual argument associated with a dummy array that is defined or redefined (if the

INTENT attribute is specified, it must be INTENT(IN))
• The target in a pointer assignment statement
If the sequence specified by the vector subscript is empty, the array section has a size of zero.

See Also
• “INTENT Attribute and Statement”
• “PARAMETER Attribute and Statement”
• “TARGET Attribute and Statement”
• “Character Substrings”
• “Array Constructors”
• “Structure Components” for details on array sections as structure components

Array Constructors

An array constructor can be used to create and assign values to rank-one arrays (and array
constants). An array constructor takes the following form:

(/ac-value-list/)
ac-value-list
Is a list of one or more expressions or implied-DO loops. Each ac-value must have the same type
and kind parameters, and be separated by commas.
3-44

Data Types, Constants, and Variables 3

An implied-DO loop in an array constructor takes the following form:

(ac-value-list, do-variable = expr1, expr2 [, expr3])
do-variable
Is the name of a scalar integer variable. Its scope is that of the implied-DO loop.
expr
Is a scalar integer expression. The expr1 and expr2 specify a range of values for the loop; expr3
specifies the stride. The expr3 must be a nonzero value; if it is omitted, it is assumed to be 1.

Rules and Behavior

The array constructed has the same type as the ac-value-list expressions.
If the sequence of values specified by the array constructor is empty (there are no expressions or
the implied-DO loop produces no values), the rank-one array has a size of zero.
An ac-value is interpreted as follows:

The following shows the three forms of an ac-value:
C1 = (/4,8,7,6/) ! A scalar expression

C2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression

C3 = (/(I, I=1, 4)/) ! An implied-DO loop

You can also mix these forms, for example:
C4 = (/4, A(1:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array constructor is a
constant expression.
If the expressions are of type character, Fortran 95/90 requires each expression to have the same
character length.
However, Intel Fortran allows the character expressions to be of different character lengths. The
length of the resultant character array is the maximum of the lengths of the individual character
expressions. For example:
print *,len ((/'a','ab','abc','d'/))

Form of ac-value Result

A scalar expression Its value is an element of the new array.

An array expression The values of the elements in the expression (in array element
order) are the corresponding sequence of elements in the new
array.

An implied-DO loop It is expanded to form a list of array elements under control of the
DO variable (like a DO construct).
3-45

3 Intel Fortran Language Reference
print *,'++'//(/'a','ab','abc','d'/)//'--'

This causes the following to be displayed:
 3

 ++a --++ab --++abc--++d --

If an implied-DO loop is contained within another implied-DO loop (nested), they cannot have the
same DO variable (do-variable).
To define arrays of more than one dimension, use the RESHAPE intrinsic function.
The following are alternative forms for array constructors:
• Square brackets (instead of parentheses and slashes) to enclose array constructors; for

example, the following two array constructors are equivalent:
INTEGER C(4)

C = (/4,8,7,6/)

C = [4,8,7,6]

• A colon-separated triplet (instead of an implied-DO loop) to specify a range of values and a
stride; for example, the following two array constructors are equivalent:
INTEGER D(3)

D = (/1:5:2/) ! Triplet form

D = (/(I, I=1, 5, 2)/) ! implied-DO loop form

Examples

The following example shows an array constructor using an implied-DO loop:
INTEGER ARRAY_C(10)

ARRAY_C = (/(I, I=30, 48, 2)/)

The values of ARRAY_C are the even numbers 30 through 48.
The following example shows an array constructor of derived type that uses a structure
constructor:
TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=30) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) CC_4T(4)

CC_4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &

 EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

The following example shows how the RESHAPE intrinsic function can be used to create a
multidimensional array:
3-46

Data Types, Constants, and Variables 3

E = (/2.3, 4.7, 6.6/)

D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:
 3.5 1.0 4.7

 2.0 2.3 6.6

See Also
• “DO Constructs”
• “RESHAPE”
• “Subscript Triplets”
• “Derived Data Types”
• “Structure Constructors”
• “Array Elements” for details on array element order
• “Array Assignment Statements” for details on another way to assign values to arrays
• “Declaration Statements for Arrays” for details on array specifications

3-47

3 Intel Fortran Language Reference
3-48

Expressions and
Assignment Statements
 4
This chapter contains information on the following topics:
• “Expressions”
• “Assignment Statements”

Expressions
An expression represents either a data reference or a computation, and is formed from operators,
operands, and parentheses. The result of an expression is either a scalar value or an array of scalar
values.
If the value of an expression is of intrinsic type, it has a kind type parameter. (If the value is of
intrinsic type CHARACTER, it also has a length parameter.) If the value of an expression is of
derived type, it has no kind type parameter.
An operand is a scalar or array. An operator can be either intrinsic or defined. An intrinsic operator
is known to the compiler and is always available to any program unit. A defined operator is
described explicitly by a user in a function subprogram and is available to each program unit that
uses the subprogram.
The simplest form of an expression (a primary) can be any of the following:
• A constant; for example, 4.2
• A subobject of a constant; for example, 'LMNOP' (2:4)
• A variable; for example, VAR_1
• A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")
• An array constructor; for example, (/12.0,16.0/)
• A function reference; for example, COS(X)
• Another expression in parentheses; for example, (I+5)
4-1

4 Intel Fortran Language Reference
Any variable or function reference used as an operand in an expression must be defined at the time
the reference is executed. If the operand is a pointer, it must be associated with a target object that
is defined. An integer operand must be defined with an integer value rather than a statement label
value. All of the characters in a character data object reference must be defined.
When a reference to an array or an array section is made, all of the selected elements must be
defined. When a structure is referenced, all of the components must be defined.
In an expression that has intrinsic operators with an array as an operand, the operation is
performed on each element of the array. In expressions with more than one array operand, the
arrays must be conformable (they must have the same shape). The operation is applied to
corresponding elements of the arrays, and the result is an array of the same shape (the same rank
and extents) as the operands.
In an expression that has intrinsic operators with a pointer as an operand, the operation is
performed on the value of the target associated with the pointer.
For defined operators, operations on arrays and pointers are determined by the procedure defining
the operation.
A scalar is conformable with any array. If one operand of an expression is an array and another
operand is a scalar, it is as if the value of the scalar were replicated to form an array of the same
shape as the array operand. The result is an array of the same shape as the array operand.
The following sections describe numeric, character, relational, and logical expressions; defined
operations; a summary of operator precedence; and initialization and specification expressions.

See Also
• “Arrays”
• “Derived Data Types”
• “Defining Generic Operators” for details on function subprograms that define operators
• “POINTER Attribute and Statement” for details on pointers

Numeric Expressions

Numeric expressions express numeric computations, and are formed with numeric operands and
numeric operators. The evaluation of a numeric operation yields a single numeric value.
The term numeric includes logical data, because logical data is treated as integer data when used in
a numeric context. The default for .TRUE. is –1; .FALSE. is 0. The default can change if a
specific compiler option is used.
Numeric operators specify computations to be performed on the values of numeric operands. The
result is a scalar numeric value or an array whose elements are scalar numeric values. The
following are numeric operators:
4-2

Expressions and Assignment Statements 4

Unary operators operate on a single operand. Binary operators operate on a pair of operands. The
plus and minus operators can be unary or binary. When they are unary operators, the plus or minus
operators precede a single operand and denote a positive (identity) or negative (negation) value,
respectively. The exponentiation, multiplication, and division operators are binary operators.
Valid numeric operations must have results that are defined by the arithmetic used by the
processor. For example, raising a negative-valued base to a real power is invalid.
Numeric expressions are evaluated in an order determined by a precedence associated with each
operator, as follows (see also “Summary of Operator Precedence”):

Operators with equal precedence are evaluated in left-to-right order. However, exponentiation is
evaluated from right to left. For example, A**B**C is evaluated as A**(B**C). B**C is
evaluated first, then A is raised to the resulting power.
Normally, two operators cannot appear together. However, Intel® Fortran allows two consecutive
operators if the second operator is a plus or minus.

Examples

In the following example, the exponentiation operator is evaluated first because it takes
precedence over the multiplication operator:

A**B*C is evaluated as (A**B)*C

Ordinarily, the exponentiation operator would be evaluated first in the following example.
However, because Intel Fortran allows the combination of the exponentiation and minus operators,
the exponentiation operator is not evaluated until the minus operator is evaluated:

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

– Subtraction or unary minus (negation)

Operator Precedence

** Highest

* and / .

Unary + and – .

Binary + and – Lowest
4-3

4 Intel Fortran Language Reference
A**-B*C is evaluated as A**(-(B*C))

Note that the multiplication operator is evaluated first, since it takes precedence over the minus
operator.
When consecutive operators are used with constants, the unary plus or minus before the constant is
treated the same as any other operator. This can produce unexpected results. In the following
example, the multiplication operator is evaluated first, since it takes precedence over the minus
operator:

X/-15.0*Y is evaluated as X/-(15.0*Y)

Using Parentheses in Numeric Expressions

You can use parentheses to force a particular order of evaluation. When part of an expression is
enclosed in parentheses, that part is evaluated first. The resulting value is used in the evaluation of
the remainder of the expression.
In the following examples, the numbers below the operators indicate a possible order of
evaluation. Alternative evaluation orders are possible in the first three examples because they
contain operators of equal precedence that are not enclosed in parentheses. In these cases, the
compiler is free to evaluate operators of equal precedence in any order, as long as the result is the
same as the result gained by the algebraic left-to-right order of evaluation.
4 + 3 * 2 - 6/2 = 7

 ^ ^ ^ ^

 2 1 4 3

(4 + 3) * 2 - 6/2 = 11

 ^ ^ ^ ^

 1 2 4 3

(4 + 3 * 2 - 6)/2 = 2

 ^ ^ ^ ^

 2 1 3 4

((4 + 3) * 2 - 6)/2 = 4

 ^ ^ ^ ^

 1 2 3 4

Expressions within parentheses are evaluated according to the normal order of precedence. In
expressions containing nested parentheses, the innermost parentheses are evaluated first.
Nonessential parentheses do not affect expression evaluation, as shown in the following example:

4 + (3 * 2) - (6/2)
4-4

Expressions and Assignment Statements 4

However, using parentheses to specify the evaluation order is often important in high-accuracy
numerical computations. In such computations, evaluation orders that are algebraically equivalent
may not be computationally equivalent when processed by a computer (because of the way
intermediate results are rounded off).
Parentheses can be used in argument lists to force a given argument to be treated as an expression,
rather than as the address of a memory item.

Data Type of Numeric Expressions

If every operand in a numeric expression is of the same data type, the result is also of that type.
If operands of different data types are combined in an expression, the evaluation of that expression
and the data type of the resulting value depend on the ranking associated with each data type. The
following table shows the ranking assigned to each data type:

The data type of the value produced by an operation on two numeric operands of different data
types is the data type of the highest- ranking operand in the operation. For example, the value
resulting from an operation on an integer and a real operand is of real type. However, an operation
involving a COMPLEX(4) or COMPLEX(8) data type and a DOUBLE PRECISION data type
produces a COMPLEX(8) result.

Data Type Ranking

LOGICAL(1) and BYTE Lowest

LOGICAL(2) .

LOGICAL(4) .

LOGICAL(8) .

INTEGER(1) .

INTEGER(2) .

INTEGER(3) .

INTEGER(4) .

REAL(4) .

REAL(8)1

1. DOUBLE PRECISION

 .

REAL(16) .

COMPLEX(4) .

COMPLEX(8) .

COMPLEX(16)2

2. DOUBLE COMPLEX

Highest
4-5

4 Intel Fortran Language Reference
The data type of an expression is the data type of the result of the last operation in that expression,
and is determined according to the following conventions:
• Integer operations: Integer operations are performed only on integer operands. (Logical

entities used in a numeric context are treated as integers.) In integer arithmetic, any fraction
resulting from division is truncated, not rounded. For example, the result of 1/4 + 1/4 +
1/4 + 1/4 is 0, not 1.

• Real operations: Real operations are performed only on real operands or combinations of real,
integer, and logical operands. Any integer operands present are converted to real data type by
giving each a fractional part equal to zero. The expression is then evaluated using real
arithmetic. However, in the statement Y = (I /J)*X, an integer division operation is
performed on I and J, and a real multiplication is performed on that result and X.
If one operand is a higher-precision real (REAL(8) or REAL(16)) type, the other operand is
converted to that higher-precision real type before the expression is evaluated.
When a single-precision real operand is converted to a double-precision real operand,
low-order binary digits are set to zero. This conversion does not increase accuracy;
conversion of a decimal number does not produce a succession of decimal zeros. For
example, a REAL variable having the value 0.3333333 is converted to approximately
0.3333333134651184D0. It is not converted to either 0.3333333000000000D0 or
0.3333333333333333D0.

• Complex operations: In operations that contain any complex operands, integer operands are
converted to real type, as previously described. The resulting single-precision or
double-precision operand is designated as the real part of a complex number and the
imaginary part is assigned a value of zero. The expression is then evaluated using complex
arithmetic and the resulting value is of complex type. Operations involving a COMPLEX(4)
or COMPLEX(8) operand and a DOUBLE PRECISION operand are performed as
COMPLEX(8) operations; the DOUBLE PRECISION operand is not rounded.

These rules also generally apply to numeric operations in which one of the operands is a constant.
However, if a real or complex constant is used in a higher-precision expression, additional
precision will be retained for the constant. The effect is as if a DOUBLE PRECISION (REAL(8))
or REAL(16) representation of the constant were given. For example, the expression 1.0D0 +
0.3333333 is treated as if it is 1.0D0 + 0.3333333000000000D0.

Character Expressions

A character expression consists of a character operator (//) that concatenates two operands of type
character. The evaluation of a character expression produces a single value of that type.
4-6

Expressions and Assignment Statements 4

The result of a character expression is a character string whose value is the value of the left
character operand concatenated to the value of the right operand. The length of a character
expression is the sum of the lengths of the values of the operands. For example, the value of the
character expression ’AB’//’CDE’ is ’ABCDE’, which has a length of five.
Parentheses do not affect the evaluation of a character expression; for example, the following
character expressions are equivalent:

(’ABC’//’DE’)//’F’

’ABC’//(’DE’//’F’)

’ABC’//’DE’//’F’

Each of these expressions has the value ’ ABCDEF’.
If a character operand in a character expression contains blanks, the blanks are included in the
value of the character expression. For example, ’ABC ’//’D E’//’F ’ has a value of
’ABC D EF ’.

Relational Expressions

A relational expression consists of two or more expressions whose values are compared to
determine whether the relationship stated by the relational operator is satisfied. The following are
relational operators:

The result of the relational expression is .TRUE. if the relation specified by the operator is
satisfied; the result is .FALSE. if the relation specified by the operator is not satisfied.
Relational operators are of equal precedence. Numeric operators and the character operator // have
a higher precedence than relational operators.
In a numeric relational expression, the operands are numeric expressions. Consider the following
example:

APPLE+PEACH > PEAR+ORANGE

Operator Relationship

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or == Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to
4-7

4 Intel Fortran Language Reference
This expression states that the sum of APPLE and PEACH is greater than the sum of PEAR and
ORANGE. If this relationship is valid, the value of the expression is .TRUE.; if not, the value is
.FALSE..
Operands of type complex can only be compared using the equal operator (= = or .EQ.) or the not
equal operator (/= or .NE.). Complex entities are equal if their corresponding real and imaginary
parts are both equal.
In a character relational expression, the operands are character expressions. In character relational
expressions, less than (< or .LT.) means the character value precedes in the ASCII collating
sequence, and greater than (> or .GT.) means the character value follows in the ASCII collating
sequence. For example:

'AB'//'ZZZ' .LT. 'CCCCC'

This expression states that 'ABZZZ' is less than 'CCCCC'. In this case, the relation specified by
the operator is satisfied, so the result is .TRUE..
Character operands are compared one character at a time, in order, starting with the first character
of each operand. If the two character operands are not the same length, the shorter one is padded
on the right with blanks until the lengths are equal; for example:

'ABC' .EQ. 'ABC '

'AB' .LT. 'C'

The first relational expression has the value .TRUE. even though the lengths of the expressions are
not equal, and the second has the value .TRUE. even though 'AB' is longer than 'C'.
A relational expression can compare two numeric expressions of different data types. In this case,
the value of the expression with the lower-ranking data type is converted to the higher-ranking
data type before the comparison is made.

See Also

“Data Type of Numeric Expressions” for details on the ranking of data types

Logical Expressions

A logical expression consists of one or more logical operators and logical, numeric, or relational
operands. The following are logical operators:

Operator Example Meaning

.AND. A .AND. B Logical conjunction: the expression is true if both A and B
are true.

.OR. A .OR. B Logical disjunction (inclusive OR): the expression is true if
either A, B, or both, are true.
4-8

Expressions and Assignment Statements 4
Periods cannot appear consecutively except when the second operator is .NOT. For example, the
following logical expression is valid:

A+B/(A-1) .AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations

Logical operations on logical operands produce single logical values (.TRUE. or .FALSE.) of
logical type.
Logical operations on integers produce single values of integer type. The operation is carried out
bit-by-bit on corresponding bits of the internal (binary) representation of the integer operands.
Logical operations on a combination of integer and logical values also produce single values of
integer type. The operation first converts logical values to integers, then operates as it does with
integers.
Logical operations cannot be performed on other data types.

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their operators. Consider the
following expression:

A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B> TT

This expression is evaluated in the following sequence:
(((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B)> TT))

As with numeric expressions, you can use parentheses to alter the sequence of evaluation.
When operators have equal precedence, the compiler can evaluate them in any order, as long as the
result is the same as the result gained by the algebraic left-to-right order of evaluation (except for
exponentiation, which is evaluated from right to left).

.NEQV. A .NEQV. B Logical inequivalence (exclusive OR): the expression is true
if either A or B is true, but false if both are true.

.XOR. A .XOR. B Same as .NEQV.

.EQV. A .EQV. B Logical equivalence: the expression is true if both A and B
are true, or both are false.

.NOT.1 .NOT. A Logical negation: the expression is true if A is false and
false if A is true.

1. .NOT. is a unary operator.

Operator Example Meaning
4-9

4 Intel Fortran Language Reference
You should not write logical expressions whose results might depend on the evaluation order of
subexpressions. The compiler is free to evaluate subexpressions in any order. In the following
example, either (A(I)+1.0) or B(I)*2.0 could be evaluated first:

(A(I)+1.0) .GT. B(I)*2.0

Some subexpressions might not be evaluated if the compiler can determine the result by testing
other subexpressions in the logical expression. Consider the following expression:

A .AND. (F(X,Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine that the expression
is false and might not call the subprogram F(X,Y).

See Also

“Summary of Operator Precedence” for details on the precedence of numeric, relational, and
logical operators

Defined Operations

When operators are defined for functions, the functions can then be referenced as defined
operations.
The operators are defined by using a generic interface block specifying OPERATOR, followed by
the defined operator (in parentheses).
A defined operation is not an intrinsic operation. However, you can use a defined operation to
extend the meaning of an intrinsic operator.
For defined unary operations, the function must contain one argument. For defined binary
operations, the function must contain two arguments.
Interpretation of the operation is provided by the function that defines the operation.
A Fortran 95/90 defined operator can contain up to 31 letters, and is enclosed in periods (.). Its
name cannot be the same name as any of the following:
• The intrinsic operators (.NOT., .AND., .OR., .XOR., .EQV., .NEQV., .EQ., .NE., .GT., .GE.,

.LT., and .LE.)
• The logical literal constants (.TRUE. or .FALSE.).
An intrinsic operator can be followed by a defined unary operator.
The result of a defined operation can have any type. The type of the result (and its value) must be
specified by the defining function.
The following examples show expressions containing defined operators:

.COMPLEMENT. A

X .PLUS. Y .PLUS. Z
4-10

Expressions and Assignment Statements 4

M * .MINUS. N

See Also
• “Defining Generic Operators”
• “Summary of Operator Precedence”

Summary of Operator Precedence

Table 4-1 shows the precedence of all intrinsic and defined operators:

Initialization and S pecification Expressions

A constant expression contains intrinsic operations and parts that are all constants. An
initialization expression is a constant expression that is evaluated when a program is compiled. A
specification expression is a scalar, integer expression that is restricted to declarations of array
bounds and character lengths.
Initialization and specification expressions can appear in specification statements, with some
restrictions.

Table 4-1 Precedence of Expression Operators

Category Operator Precedence

Defined unary operators Highest

Numeric ** .

Numeric * or / .

Numeric Unary + or – .

Numeric Binary + or – .

Character // .

Relational .EQ., .NE., .LT., .LE., .GT., .GE. = =,
/=, <, <=, >, >=

 .

Logical .NOT. .

Logical .AND. .

Logical .OR. .

Logical .XOR., .EQV., .NEQV. .

Defined binary operators Lowest
4-11

4 Intel Fortran Language Reference
Initialization Expressions

An initialization expression must evaluate at compile time to a constant. It is used to specify an
initial value for an entity.
In an initialization expression, each operation is intrinsic and each operand is one of the following:
• A constant or subobject of a constant
• An array constructor where each element and the bounds and strides of each implied-DO, are

expressions whose primaries are initialization expressions
• A structure constructor whose components are initialization expressions
• An elemental intrinsic function reference of type integer or character, whose arguments are

initialization expressions of type integer or character
• A reference to one of the following inquiry functions:

• Each function argument must be one of the following:
— An initialization expression
— A variable whose kind type parameter and bounds are not assumed or defined by an

ALLOCATE statement, pointer assignment, or an expression that is not an initialization
expression

• A reference to one of the following transformational functions (each argument must be an
initialization expression): functions:

• A reference to the transformational function NULL
• An implied-DO variable within an array constructor where the bounds and strides of the

corresponding implied-DO are initialization expressions

BIT_SIZE MINEXPONENT
DIGITS PRECISION
EPSILON RADIX
HUGE RANGE
ILEN SHAPE
KIND SIZE
LBOUND TINY
LEN UBOUND
MAXEXPONENT

REPEAT SELECTED_REAL_KIND
RESHAPE TRANSFER
SELECTED_INT_KIND TRIM
4-12

Expressions and Assignment Statements 4

• Another initialization expression enclosed in parentheses
Each subscript, section subscript, and substring starting and ending point must be an initialization
expression.
In an initialization expression, the exponential operator (**) must have a power of type integer.
If an initialization expression invokes an inquiry function for a type parameter or an array bound
of an object, the type parameter or array bound must be specified in a prior specification statement
(or to the left of the inquiry function in the same statement).

Examples

The following examples show valid and invalid initialization (constant) expressions:

See Also
• “Array Constructors”
• “Structure Constructors”
• “Intrinsic Procedures” for details on intrinsic functions

Specification Expressions

A specification expression is a restricted expression that is of type integer and has a scalar value.
This type of expression appears only in the declaration of array bounds and character lengths.
In a restricted expression, each operation is intrinsic and each operand is one of the following:
• A constant or subobject of a constant
• A variable that is one of the following:

Valid

–1 + 3

SIZE(B) ! B is a named constant

7_2

INT(J, 4) ! J is a named constant

SELECTED_INT_KIND (2)

Invalid Explanation

SUM(A) Not an allowed function.

A/4.1 – K**1.2 Exponential does not have integer power (A and K are named
constants).

HUGE(4.0) Argument is not an integer.
4-13

4 Intel Fortran Language Reference
— A dummy argument that does not have the OPTIONAL or INTENT (OUT) attribute (or
the subobject of such a variable)

— In a common block (or the subobject of such a variable)
— Made accessible by use or host association (or the subobject of such a variable)

• A structure constructor whose components are restricted expressions
• An implied-DO variable within an array constructor where the bounds and strides of the

corresponding implied-DO are restricted expressions
• A reference to one of the following inquiry functions:

Each function argument must be one of the following:
— A restricted expression
— A variable whose properties inquired about are not dependent on the upper bound of the

last dimension of an assumed-size array, are not defined by an expression that is not a
restricted expression, or are not definable by an ALLOCATE or pointer assignment
statement.

• A reference to any other intrinsic function where each argument is a restricted expression.
• A reference to a specification function where each argument is a restricted expression
• An array constructor where each element and the bounds and strides of each implied-DO, are

expressions whose primaries are restricted expressions
• Another restricted expression enclosed in parentheses
Each subscript, section subscript, and substring starting and ending point must be a restricted
expression.
Specification functions can be used in specification expressions to indicate the attributes of data
objects. A specification function is a pure function. It cannot have a dummy procedure argument
or be any of the following:
• An intrinsic function

BIT_SIZE MINEXPONENT
DIGITS PRECISION
EPSILON RADIX
HUGE RANGE
ILEN SHAPE
KIND SIZE
LBOUND SIZEOF
LEN TINY
MAXEXPONENT UBOUND
4-14

Expressions and Assignment Statements 4

• An internal function
• A statement function
• Defined as RECURSIVE
A variable in a specification expression must have its type and type parameters (if any) specified
in one of the following ways:
• By a previous declaration in the same scoping unit
• By the implicit typing rules currently in effect for the scoping unit
• By host or use association
If a variable in a specification expression is typed by the implicit typing rules, its appearance in
any subsequent type declaration statement must confirm the implied type and type parameters.
If a specification expression invokes an inquiry function for a type parameter or an array bound of
an object, the type parameter or array bound must be specified in a prior specification statement
(or to the left of the inquiry function in the same statement).
In a specification expression, the number of arguments for a function reference is limited to 255.

Examples

The following shows valid specification expressions:
MAX(I) + J ! I and J are scalar integer variables

UBOUND(ARRAY_B,20) ! ARRAY_B is an assumed-shape dummy array

See Also
• “Array Constructors”
• “Implicit Typing Rules”
• “Structure Constructors”
• “Use and Host Association”
• “Pure Procedures”
• Chapter 9, “Intrinsic Procedures”, for details on intrinsic functions

Assignment Statements
An assignment statement causes variables to be defined or redefined. This section describes the
following kinds of assignment statements: intrinsic, defined, pointer, masked array (WHERE), and
element array (FORALL).
The ASSIGN statement assigns a label to an integer variable. It is discussed in “The ASSIGN and
Assigned GO TO Statements”.
4-15

4 Intel Fortran Language Reference
Intrinsic Assignments

Intrinsic assignment is used to assign a value to a nonpointer variable. In the case of pointers,
intrinsic assignment is used to assign a value to the target associated with the pointer variable. The
value assigned to the variable (or target) is determined by evaluation of the expression to the right
of the equal sign.
An intrinsic assignment statement takes the following form:

variable = expression
variable
Is the name of a scalar or array of intrinsic or derived type (with no defined assignment). The array
cannot be an assumed-size array, and neither the scalar nor the array can be declared with the
PARAMETER or INTENT(IN) attribute.
expression
Is of intrinsic type or the same derived type as variable. Its shape must conform with variable. If
necessary, it is converted to the same type and kind as variable.

Rules and Behavior

Before a value is assigned to the variable, the expression part of the assignment statement and any
expressions within the variable are evaluated. No definition of expressions in the variable can
affect or be affected by the evaluation of the expression part of the assignment statement.

If the variable is a pointer, it must be associated with a definable target. The shape of the target and
expression must conform and their type and kind parameters must match.
The following sections discuss numeric, logical, character, derived- type, and array intrinsic
assignment.

See Also
• “Arrays”
• “Derived Data Types”
• “Defining Generic Assignment” for details on subroutine subprograms that define assignment

NOTE. When the run-time system assigns a value to a scalar integer or
character variable and the variable is shorter than the value being assigned,
the assigned value may be truncated and significant bits (or characters) lost.
This truncation can occur without warning, and can cause the run- time system
to pass incorrect information back to the program.
4-16

Expressions and Assignment Statements 4

• “POINTER Attribute and Statement” for details on pointers

Numeric Assignment Statements

For numeric assignment statements, the variable and expression must be numeric type.
The expression must yield a value that conforms to the range requirements of the variable. For
example, a real expression that produces a value greater than 32767 is invalid if the entity on the
left of the equal sign is an INTEGER(2) variable.
Significance can be lost if an INTEGER(4) value, which can exactly represent values of
approximately the range –2*10**9 to +2*10**9, is converted to REAL(4) (including the real part
of a complex constant), which is accurate to only about seven digits.
If the variable has the same data type as that of the expression on the right, the statement assigns
the value directly. If the data types are different, the value of the expression is converted to the
data type of the variable before it is assigned.
Table 4-2 summarizes the data conversion rules for numeric assignment statements.

Table 4-2 Conversion Rules for Numeric Assignment Statements

Expression (E)

Scalar Memory
Reference (V) Integer, Logical, or Real Complex

Integer or Logical V=INT(E) V=INT(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=4)

V=REAL(E) V=REAL(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=8)

V=DBLE(E) V=DBLE(REAL(E))

Imaginary part of E is not used.

REAL

(KIND=16)

V=QEXT(E) V=QEXT(REAL(E))

Imaginary part of E is not used.

COMPLEX

(KIND=4)

V=CMPLX(REAL(E), 0.0) V=CMPLX(REAL(REAL(E)), REAL(AIMAG(E)))

COMPLEX

(KIND=8)

V=CMPLX(DBLE(E), 0.0) V=CMPLX(DBLE(REAL(E)), DBLE(AIMAG(E)))

COMPLEX

(KIND=16)

V=CMPLX(QEXT(E), 0.0) V=CMPLX(QEXT(REAL(E)), QEXT(AIMAG(E)))
4-17

4 Intel Fortran Language Reference
Examples

The following examples show valid and invalid numeric assignment statements:

See Also
• “INT”
• “REAL”
• “DBLE”
• “QEXT”
• “CMPLX”
• “AIMAG”

Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the expression can be
of logical or numeric type.
If necessary, the expression is converted to the same type and kind as the variable.

Examples

The following examples show valid logical assignment statements:
PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D

LOGICAL_VAR = 123 ! Moves binary value of 123 to LOGICAL_VAR

Character Assignment Statements

For character assignment statements, the variable and expression must be of character type and
have the same kind parameter.

Valid

BETA = -1./(2.*X)+A*A /(4.*(X*X))

PI = 3.14159

SUM = SUM + 1.

ARRAY_A = ARRAY_B + ARRAY_C + SCALAR_I ! Valid if all arrays conform in shape.

Invalid Explanation

3.14 = A – B Entity on the left must be a variable.

ICOUNT = A//B(3:7) Implicitly typed data types do not match.

SCALAR_I = ARRAY_A(:) Shapes do not match.
4-18

Expressions and Assignment Statements 4

The variable and expression can have different lengths. If the length of the expression is greater
than the length of the variable, the character expression is truncated on the right. If the length of
the expression is less than the length of the variable, the character expression is filled on the right
with blank characters.
If you assign a value to a character substring, you do not affect character positions in any part of
the character scalar variable not included in the substring. If a character position outside of the
substring has a value previously assigned, it remains unchanged. If the character position is
undefined, it remains undefined.

Examples

The following examples show valid and invalid character assignment statements. (In the valid
examples, all variables are of type character.)

Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be of the same derived
type. There must be no accessible interface block with defined assignment for objects of this
derived type.
The derived-type assignment is performed as if each component of the expression is assigned to
the corresponding component of the variable. Pointer assignment is performed for pointer
components, and intrinsic assignment is performed for nonpointer components.

Examples

The following example shows derived-type assignment:

Valid

FILE = 'PROG2'

REVOL(1) = 'MAR'//'CIA'

LOCA(3:8) = 'PLANT5'

TEXT(I,J+1)(2:N-1) = NAME/ /X

Invalid Explanation

'ABC'= CHARS Left element must be a character variable, array element, or
substring reference.

CHARS = 25 Expression does not have a character data type.

STRING = 5HBEGIN Expression does not have a character data type. (Hollerith
constants are numeric, not character.)
4-19

4 Intel Fortran Language Reference
TYPE DATE

 LOGICAL(1) DAY, MONTH

 INTEGER(2) YEAR

END TYPE DATE

TYPE(DATE) TODAY, THIS_WEEK(7)

TYPE APPOINTMENT

...

 TYPE(DATE) APP_DATE

END TYPE

TYPE(APPOINTMENT) MEETING

DO I = 1,7

 CALL GET_DATE(TODAY)

 THIS_WEEK(I) = TODAY

END DO

MEETING%APP_DATE = TODAY

See Also
• “Derived Data Types”
• “Pointer Assignments”

Array Assignment Statements

Array assignment is permitted when the array expression on the right has the same shape as the
array variable on the left, or the expression on the right is a scalar.
If the expression is a scalar, and the variable is an array, the scalar value is assigned to every
element of the array.
If the expression is an array, the variable must also be an array. The array element values of the
expression are assigned (element by element) to corresponding elements of the array variable.
A many-one array section is a vector-valued subscript that has two or more elements with the
same value. In intrinsic assignment, the variable cannot be a many-one array section because the
result of the assignment is undefined.

Examples

In the following example, X and Y are arrays of the same shape:
X = Y
4-20

Expressions and Assignment Statements 4

The corresponding elements of Y are assigned to those of X element by element; the first element
of Y is assigned to the first element of X, and so forth. The processor can perform the
element-by-element assignment in any order.
The following example shows a scalar assigned to an array:

B(C+1:N, C) = 0

This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.
The following example causes the values of the elements of array A to be reversed:

REAL A(20) ... A(1:20) = A(20:1:-1)

See Also
• “Arrays”
• “WHERE Statement and Construct” for details on masked array assignment
• “FORALL Statement and Construct” for details on element array assignment

Defined Assignments

Defined assignment specifies an assignment operation. It is defined by a subroutine subprogram
containing a generic interface block with the specifier ASSIGNMENT(=). The subroutine is
specified by a SUBROUTINE or ENTRY statement that has two nonoptional dummy arguments.
Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.
The dummy arguments represent the variable and expression, in that order. The rank (and shape, if
either or both are arrays), type, and kind parameters of the variable and expression in the
assignment statement must match those of the corresponding dummy arguments.
The dummy arguments must not both be numeric, or of type logical or character with the same
kind parameter.
If the variable in an elemental assignment is an array, the defined assignment is performed
element-by-element, in any order, on corresponding elements of the variable and expression. If the
expression is scalar, it is treated as if it were an array of the same shape as the variable with every
element of the array equal to the scalar value of the expression.

See Also
• “Derived Data Types”
• “Subroutines” for details on subroutine subprograms
• “Defining Generic Assignment” for details on subroutine subprograms that define assignment
• “Numeric Expressions” and “Character Expressions” for details on intrinsic operations
4-21

4 Intel Fortran Language Reference
Pointer Assignments

In ordinary assignment involving pointers, the pointer is an alias for its target. In pointer
assignment, the pointer is associated with a target. If the target is undefined or disassociated, the
pointer acquires the same status as the target. The pointer assignment statement has the following
form:

pointer-object => target
pointer-object
Is a variable name or structure component declared with the POINTER attribute.
target
Is a variable or expression. Its type and kind parameters, and rank must be the same as
pointer-object. It cannot be an array section with a vector subscript.

Rules and Behavior

If the target is a variable, it must have the POINTER or TARGET attribute, or be a subobject
whose parent object has the TARGET attribute.
If the target is an expression, the result must be a pointer.
If the target is not a pointer (it has the TARGET attribute), the pointer object is associated with the
target.
If the target is a pointer (it has the POINTER attribute), its status determines the status of the
pointer object, as follows:
• If the pointer is associated, the pointer object is associated with the same object as the target.
• If the pointer is disassociated, the pointer object becomes disassociated.
• If the pointer is undefined, the pointer object becomes undefined.
A pointer must not be referenced or defined unless it is associated with a target that can be
referenced or defined.
When pointer assignment occurs, any previous association between the pointer object and a target
is terminated.
Pointers can also be assigned for a pointer structure component by execution of a derived-type
intrinsic assignment statement or a defined assignment statement.
Pointers can also become associated by using the ALLOCATE statement to allocate the pointer.
Pointers can become disassociated by deallocation, nullification of the pointer (using the
DEALLOCATE or NULLIFY statements), or by reference to the NULL intrinsic function.

Examples

The following are examples of pointer assignments:
4-22

Expressions and Assignment Statements 4

HOUR => MINUTES(1:60) ! target is an array

M_YEAR => MY_CAR%YEAR ! target is a structure component

NEW_ROW%RIGHT => CURRENT_ROW ! pointer object is a structure component

PTR => M ! target is a variable

POINTER_C => NULL () ! reference to NULL intrinsic

The following example shows a target as a pointer:
INTEGER, POINTER :: P, N

INTEGER, TARGET :: M

INTEGER S

M = 14

N => M ! N is associated with M

P => N ! P is associated with M through N

S = P + 5

The value assigned to S is 19 (14 + 5).

See Also
• “Arrays”
• “Defined Assignments”
• “NULL”
• “POINTER Attribute and Statement” for details on pointers
• Chapter 6, “Dynamic Allocation”, for details on the ALLOCATE, DEALLOCATE, and

NULLIFY statements
• “Intrinsic Assignments” for details on derived-type intrinsic assignments

WHERE Statement and Construct

The WHERE statement and construct let you use masked array assignment, which performs an
array operation on selected elements. This kind of assignment applies a logical test to an array on
an element-by-element basis.
The WHERE statement takes the following form:

WHERE (mask-expr1) assign-stmt
The WHERE construct takes the following form:

[name:] WHERE (mask-expr1)
 [where-body-stmt]...
[ELSE WHERE (mask-expr2) [name]
 [where-body-stmt]...]
4-23

4 Intel Fortran Language Reference
[ELSE WHERE [name]
[where-body-stmt]...]

END WHERE [name]
mask-expr1, mask-expr2
Are logical array expressions (called mask expressions).
assign-stmt
Is an assignment statement of the form: array variable = array expression.
name
Is the name of the WHERE construct.
where-body-stmt
Is one of the following:
• An assign-stmt

The assignment can be a defined assignment only if the routine implementing the defined
assignment is elemental.

• A WHERE statement or construct

Rules and Behavior

If a construct name is specified in a WHERE statement, the same name must appear in the
corresponding END WHERE statement. The same construct name can optionally appear in any
ELSE WHERE statement in the construct. (ELSE WHERE cannot specify a different name.)
In each assignment statement, the mask expression, the variable being assigned to, and the
expression on the right side, must all be conformable. Also, the assignment statement cannot be a
defined assignment.
Only the WHERE statement (or the first line of the WHERE construct) can be labeled as a branch
target statement.
The following is an example of a WHERE statement:
INTEGER A, B, C

DIMENSION A(5), B(5), C(5)

DATA A /0,1,1,1,0/

DATA B /10,11,12,13,14/

C = -1

WHERE(A .NE. 0) C = B / A

The resulting array C contains: –1,11,12,13, and –1.
4-24

Expressions and Assignment Statements 4

The assignment statement is only executed for those elements where the mask is true. Think of the
mask expression as being evaluated first into a logical array that has the value true for those
elements where A is positive. This array of trues and falses is applied to the arrays A, B and C in
the assignment statement. The right side is only evaluated for elements for which the mask is true;
assignment on the left side is only performed for those elements for which the mask is true. The
elements for which the mask is false do not get assigned a value.
In a WHERE construct, the mask expression is evaluated first and only once. Every assignment
statement following the WHERE is executed as if it were a WHERE statement with "mask-expr1"
and every assignment statement following the ELSE WHERE is executed as if it were a WHERE
statement with ".NOT. mask-expr1". If ELSE WHERE specifies "mask-expr2", it is executed as
"(.NOT. mask-expr1) .AND. mask-expr2" during the processing of the ELSE WHERE statement.
You should be careful if the statements have side effects, or modify each other or the mask
expression.
The following is an example of the WHERE construct:
DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)

WHERE(PRESSURE .GE. 1.0)

 PRESSURE = PRESSURE + 1.0

 TEMP = TEMP - 10.0

ELSEWHERE

 PRECIPITATION = .TRUE.

ENDWHERE

The mask is applied to the arguments of functions on the right side of the assignment if they are
considered to be elemental functions. Only elemental intrinsics are considered elemental
functions. Transformational intrinsics, inquiry intrinsics, and functions or operations defined in
the subprogram are considered to be nonelemental functions.
Consider the following example using LOG, an elemental function:
WHERE(A .GT. 0) B = LOG(A)

The mask is applied to A, and LOG is executed only for the positive values of A. The result of the
LOG is assigned to those elements of B where the mask is true.
Consider the following example using SUM, a nonelemental function:
REAL A, B

DIMENSION A(10,10), B(10)

WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the assignment only happens
for those elements for which the mask evaluated to true.
Consider the following example:
4-25

4 Intel Fortran Language Reference
REAL A, B, C

DIMENSION A(10,10), B(10), C(10)

WHERE(C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully regardless of whether they
are elemental or not. In this example, LOG(A) is fully evaluated for all elements in A even though
LOG is elemental. Notice that the mask is applied to the result of the SUM and to C to determine
the right side. One way of thinking about this is that everything inside the argument list of a
nonelemental function does not use the mask, everything outside does.

See Also

“FORALL Statement and Construct” for details on a generalized form of masked array
assignment

FORALL Statement and Construct

The FORALL statement and construct is a generalization of the Fortran 95/90 masked array
assignment (WHERE statement and construct). It allows more general array shapes to be assigned,
especially in construct form.
FORALL is a feature of Fortran 95. It takes the following form:

FORALL (triplet-spec [, triplet-spec]...[, mask-expr]) assign-stmt
The FORALL construct takes the following form:

[name:] FORALL (triplet-spec [, triplet-spec]...[, mask-expr])
forall-body-stmt

 [forall-body-stmt]...
END FORALL [name]

triplet-spec
Is a triplet specification with the following form:

subscript-name = subscript-1 : subscript-2 [:stride]
The subscript-name must be a scalar of type integer. It is valid only within the scope of the
FORALL; its value is undefined on completion of the FORALL.
The subscripts and stride cannot contain a reference to any subscript-name in triplet-spec.
The stride cannot be zero. If it is omitted, the default value is 1.
Evaluation of an expression in a triplet specification must not affect the result of evaluating any
other expression in another triplet specification.
4-26

Expressions and Assignment Statements 4

mask-expr
Is a logical array expression (called the mask expression). If it is omitted, the value .TRUE. is
assumed. The mask expression can reference the subscript name in triplet-spec.
assign-stmt
Is an assignment statement or a pointer assignment statement. It may be a scalar or array
assignment statement, or a defined assignment statement. The variable being defined will
normally use each subscript-name in the triplet-spec.
name
Is the name of the FORALL construct.
forall-body-stmt
Is one of the following:
• An assign-stmt
• A WHERE statement or construct

The WHERE statement and construct use a mask to make the array assignments (see
“WHERE Statement and Construct”).

• A FORALL statement or construct

Rules and Behavior

If a construct name is specified in the FORALL statement, the same name must appear in the
corresponding END FORALL statement.
A FORALL statement is executed by first evaluating all bounds and stride expressions in the
triplet specifications, giving a set of values for each subscript name. The FORALL assignment
statement is executed for all combinations of subscript name values for which the mask expression
is true.
The FORALL assignment statement is executed as if all expressions (on both sides of the
assignment) are completely evaluated before any part of the left side is changed. Valid values are
assigned to corresponding elements of the array being assigned to. No element of an array can be
assigned a value more than once.
A FORALL construct is executed as if it were multiple FORALL statements, with the same triplet
specifications and mask expressions. Each statement in the FORALL body is executed completely
before execution begins on the next FORALL body statement.
Any procedure referenced in the mask expression or FORALL assignment statement must be pure.
Pure functions can be used in the mask expression or called directly in a FORALL statement. Pure
subroutines cannot be called directly in a FORALL statement, but can be called from other pure
procedures.
4-27

4 Intel Fortran Language Reference
Examples

Consider the following:
FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)

This statement takes the reciprocal of each nonzero element of array A(1:N, 1:N) and assigns it to
the corresponding element of array B. Elements of A that are zero do not have their reciprocal
taken, and no assignments are made to corresponding elements of B.
Every array assignment statement and WHERE statement can be written as a FORALL statement,
but some FORALL statements cannot be written using just array syntax. For example, the
preceding FORALL statement is equivalent to the following:
WHERE(A /= 0.0) B = 1.0 / A

It is also equivalent to:
FORALL (I = 1:N, J = 1:N)

 WHERE(A(I, J) .NE. 0.0) B(I, J) = 1.0/A(I, J)

END FORALL

However, the following FORALL example cannot be written using just array syntax:
FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)

This statement sets array element H(I, J) to the value 1.0 /REAL(I + J - 1) for values of I and
J between 1 and N.
Consider the following:
TYPE MONARCH

 INTEGER, POINTER :: P

END TYPE MONARCH

TYPE(MONARCH), DIMENSION(8) :: PATTERN

INTEGER, DIMENSION(8), TARGET :: OBJECT

FORALL(J=1:8) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to point to elements 3, 4,
1, 2, 7, 8, 5, and 6, respectively, of OBJECT. IEOR can be referenced here because it is pure.
The following example shows a FORALL construct:
FORALL(I = 3:N + 1, J = 3:N + 1)

 C(I, J) = C(I, J + 2) + C(I, J - 2) + C(I + 2, J) + C(I - 2, J)

 D(I, J) = C(I, J)

END FORALL

The assignment to array D uses the values of C computed in the first statement in the construct,
not the values before the construct began execution.
4-28

Expressions and Assignment Statements 4

See Also
• “Subscript Triplets”
• “Pointer Assignments”
• “WHERE Statement and Construct”
• “Pure Procedures”
4-29

4 Intel Fortran Language Reference
4-30

Specification Statements
 5

A specification statement is a nonexecutable statement that declares the attributes of data objects.
In Fortran 95/90, many of the attributes that can be defined in specification statements can also be
optionally specified in type declaration statements.
This chapter contains information on the following topics:
• “Type Declaration Statements”

Explicitly specifies the properties (for example: data type, rank, and extent) of data objects.
• “ALLOCATABLE Attribute and Statement”

Specifies a list of array names that are allocatable (have a deferred-shape).
• “AUTOMATIC and STATIC Attributes and Statements”

Control the storage allocation of variables in subprograms.
• “COMMON Statement”

Defines one or more contiguous areas, or blocks, of physical storage (called common blocks).
• “DATA Statement”

Assigns initial values to variables before program execution.
• “DIMENSION Attribute and Statement”

Specifies that an object is an array, and defines the shape of the array.
• “EQUIVALENCE Statement”

Specifies that a storage area is shared by two or more objects in a program unit.
• “EXTERNAL Attribute and Statement”

Allows external (user-supplied) procedures to be used as arguments to other subprograms.
• “IMPLICIT Statement”

Overrides the implicit data type of names.
• “INTENT Attribute and Statement”

Specifies the intended use of a dummy argument.
5-1

5 Intel Fortran Language Reference
• “INTRINSIC Attribute and Statement”
Allows intrinsic procedures to be used as arguments to subprograms.

• “NAMELIST Statement”
Associates a name with a list of variables. This group name can be referenced in some
input/output operations.

• “OPTIONAL Attribute and Statement”
Allows a procedure reference to omit arguments.

• “PARAMETER Attribute and Statement”
Defines a named constant.

• “POINTER Attribute and Statement”
Specifies that an object is a pointer.

• “PRIVATE and PUBLIC Attributes and Statements”
Declare the accessibility of entities in a module.

• “SAVE Attribute and Statement”
Causes the definition and status of objects to be retained after the subprogram in which they
are declared completes execution.

• “TARGET Attribute and Statement”
Specifies a pointer target.

• “VOLATILE Attribute and Statement”
Prevents optimizations from being performed on specified objects.

See Also

Chapter 8, “Program Units and Procedures”, for details on BLOCK DATA and PROGRAM
statements

Type Declaration Statements
A type declaration statement explicitly specifies the properties of data objects or functions.
The general form of a type declaration statement follows:

type [[, att]... ::] v [/c-list/] [, v [/c-list/]]...
type
Is one of the following data type specifiers:

BYTE DOUBLE COMPLEX
INTEGER[([KIND=]k)] CHARACTER[([LEN=]n)[,[KIND=]k]]
5-2

Specification Statements 5
In the optional kind selector "([KIND=]k) ", k is the kind parameter. It must be an acceptable kind
parameter for that data type. If the kind selector is not present, entities declared are of default type.
(For a list of the valid noncharacter data types, see Table 5-2.)
Kind parameters for intrinsic numeric and logical data types can also be specified using the *n
format, where n is the length (in bytes) of the entity; for example, INTEGER*4.
att
Is one of the following attribute specifiers:

v
Is the name of a data object or function. It can optionally be followed by:
• An array specification, if the object is an array.

In a function declaration, an array must be a deferred-shape array if it has the POINTER
attribute; otherwise, it must be an explicit-shape array.

• A character length, if the object is of type character.
• An initialization expression or, for pointer objects, => NULL().
A function name must be the name of an intrinsic function, external function, function dummy
procedure, or statement function.
c-list
Is a list of constants, as in a DATA statement. If v is the name of a constant or an initialization
expression, the c-list cannot be present.

REAL[([KIND=]k)] LOGICAL[([KIND=]k)]
DOUBLE PRECISION TYPE (derived-type-name)
COMPLEX[([KIND=]k)]

ALLOCATABLE POINTER
AUTOMATIC PRIVATE1

1. These are access specifiers.

DIMENSION PUBLIC1
EXTERNAL SAVE
INTENT STATIC
INTRINSIC TARGET
OPTIONAL VOLATILE
PARAMETER
5-3

5 Intel Fortran Language Reference
The c-list cannot specify more than one value unless it initializes an array. When initializing an
array, the c-list must contain a value for every element in the array.

Rules and Behavior

Type declaration statements must precede all executable statements.
In most cases, a type declaration statement overrides (or confirms) the implicit type of an entity.
However, a variable that appears in a DATA statement and is typed implicitly can appear in a
subsequent type declaration only if that declaration confirms the implicit typing.
The double colon separator (::) is required only if the declaration contains an attribute specifier or
initialization; otherwise it is optional.
If att appears, c-list cannot be specified; for example:
INTEGER I /2/ ! Valid

INTEGER, SAVE :: I /2/ ! Invalid

The same attribute must not appear more than once in a given type declaration statement, and an
entity cannot be given the same attribute more than once in a scoping unit.
If the PARAMETER attribute is specified, the declaration must contain an initialization
expression.
If => NULL() is specified for a pointer, its initial association status is disassociated.
A variable (or variable subobject) can only be initialized once in an executable program.
If a declaration contains an initialization expression, but no PARAMETER attribute is specified,
the object is a variable whose value is initially defined. The object becomes defined with the value
determined from the initialization expression according to the rules of intrinsic assignment.
The presence of initialization implies that the name of the object is saved, except for objects in
named common blocks or objects with the PARAMETER attribute.
The following objects cannot be initialized in a type declaration statement:
• A dummy argument
• A function result
• An object in a named common block (unless the type declaration is in a block data program

unit)
• An object in blank common
• An allocatable array
• An external name
• An intrinsic name
• An automatic object
• An object that has the AUTOMATIC attribute
5-4

Specification Statements 5

An object can have more than one attribute. Table 5-1 lists the compatible attributes.

Examples

The following show valid type declaration statements:
DOUBLE PRECISION B(6)

INTEGER(KIND=2) I

REAL(KIND=4) X, Y

REAL(4) X, Y

LOGICAL, DIMENSION(10,10) :: ARRAY_A, ARRAY_B

Table 5-1 Compatible Attributes

Attribute Compatible with:

ALLOCATABLE AUTOMATIC, DIMENSION1, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET, VOLATILE

1. With deferred shape

AUTOMATIC ALLOCATABLE, DIMENSION, POINTER, TARGET, VOLATILE

DIMENSION ALLOCATABLE, AUTOMATIC, INTENT, OPTIONAL, PARAMETER,
POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET, VOLATILE

EXTERNAL OPTIONAL, PRIVATE, PUBLIC

INTENT DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL DIMENSION, EXTERNAL, INTENT, POINTER, TARGET, VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER AUTOMATIC, DIMENSION1, OPTIONAL, PRIVATE, PUBLIC, SAVE,
STATIC, VOLATILE

PRIVATE ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

PUBLIC ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,
POINTER, SAVE, STATIC, TARGET, VOLATILE

SAVE ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, SAVE,
TARGET, VOLATILE

STATIC ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC, SAVE,
TARGET, VOLATILE

TARGET ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT, OPTIONAL,
PRIVATE, PUBLIC, SAVE, STATIC, VOLATILE

VOLATILE ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT, OPTIONAL,
POINTER, PRIVATE, PUBLIC, SAVE, STATIC, TARGET
5-5

5 Intel Fortran Language Reference
INTEGER, PARAMETER :: SMALLEST = SELECTED_REAL_KIND(6, 70)

REAL(KIND (0.0)) M

COMPLEX(KIND=8) :: D

TYPE(EMPLOYEE) :: MANAGER

REAL, INTRINSIC :: COS CHARACTER(15) PROMPT

CHARACTER*12, SAVE :: HELLO_MSG

INTEGER COUNT, MATRIX(4,4), SUM

LOGICAL*2 SWITCH

REAL :: X = 2.0

TYPE (NUM), POINTER :: FIRST => NULL()

See Also
• “Derived Data Types”
• “Implicit Typing Rules”
• “DATA Statement”
• “Initialization Expressions”
• “Intrinsic Data Types” for details on specific kind parameters of intrinsic data types

Declaration Statements for Noncharacter Types

Table 5-2 shows the data types that can appear in noncharacter type declaration statements.

Table 5-2 Noncharacter Data Types

BYTE1

LOGICAL2

LOGICAL(1) (or LOGICAL*1)

LOGICAL(2) (or LOGICAL*2)

LOGICAL(4) (or LOGICAL*4)

LOGICAL(8) (or LOGICAL*8)

INTEGER3

INTEGER(1) (or INTEGER*1)

INTEGER(2) (or INTEGER*2)

INTEGER(4) (or INTEGER*4)

INTEGER(8) (or INTEGER*8)

REAL4

REAL(4) (or REAL*4)
5-6

Specification Statements 5
In noncharacter type declaration statements, you can optionally specify the name of the data object
or function as v*n, where n is the length (in bytes) of v. The length specified overrides the length
implied by the data type.
The value for n must be a valid length for the type of v (see Table 15-2). The type specifiers
BYTE, DOUBLE PRECISION, and DOUBLE COMPLEX have one valid length, so the n
specifier is invalid for them.
For an array specification, the n must be placed immediately following the array name; for
example, in an INTEGER declaration statement, IVEC*2(10) is an INTEGER(2) array of 10
elements.

Examples

In a noncharacter type declaration statement, a subsequent kind parameter overrides any initial
kind parameter. For example, consider the following statements:
INTEGER(2) I, J, K, M12*4, Q, IVEC*4(10)

REAL(8) WX1, WXZ, WX3*4, WX5, WX6*4

REAL(8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification. In the second
statement, WX3*4 and WX6*4 override the KIND=8 specification. In the third statement,
QARRAY is initialized with implicit conversion of the REAL(4) constants to a REAL(8) data
type.

See Also
• “Type Declaration Statements” for details on the general form and rules for type declaration

statements

DOUBLE PRECISION (REAL(8) or REAL*8)

REAL(16) (or REAL*16)

COMPLEX5

COMPLEX(4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX(8) or COMPLEX*16)

COMPLEX(16) (or COMPLEX*32)

1. Same as INTEGER(1).

2. This is treated as default logical.

3. This is treated as default integer.

4. This is treated as default real.

5. This is treated as default complex.

Table 5-2 Noncharacter Data Types
5-7

5 Intel Fortran Language Reference
• Your user’s guide for details on compiler options that can affect the defaults for numeric and
logical data types

Declaration Statements for Character Types

A CHARACTER type specifier can be immediately followed by the length of the character object
or function. It takes one of the following forms:
Keyword Forms

CHARACTER [([LEN=]len)]
CHARACTER [([LEN=]len [, [KIND=]n])]
CHARACTER [(KIND=n [, LEN=len])]

Nonkeyword Form
CHARACTER*len[,]

len
Is one of the following:
• In keyword forms

The len is a specification expression or an asterisk (*). If no length is specified, the default
length is 1.
If the length evaluates to a negative value, the length of the character entity is zero.

• In nonkeyword form
The len is a specification expression or an asterisk enclosed in parentheses, or a scalar integer
literal constant (with no kind parameter). The comma is permitted only if no double colon (::)
appears in the type declaration statement.
This form can also (optionally) be specified following the name of the data object or function
(v*len). In this case, the length specified overrides any length following the CHARACTER
type specifier.

The largest valid value for len in both forms is 2**31–1 on IA-32 processors; 2**63–1 on Intel®
Itanium® processors. Negative values are treated as zero.
n
Is a scalar integer initialization expression specifying a valid kind parameter. Currently the only
kind available is 1.

Rules and Behavior

An automatic object can appear in a character declaration. The object cannot be a dummy
argument, and its length must be declared with a specification expression that is not a constant
expression.
5-8

Specification Statements 5

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.
When an asterisk length specification *(*) is used for a function name or dummy argument, it
assumes the length of the corresponding function reference or actual argument. Similarly, when an
asterisk length specification is used for a named constant, the name assumes the length of the
actual constant it represents. For example, STRING assumes a 9-byte length in the following
statements:
CHARACTER*(*) STRING

PARAMETER (STRING = ’VALUE IS:’)

A function name must not be declared with a * length if the function is an internal or module
function, or if it is array-valued, pointer-valued, recursive, or pure.
The form CHARACTER*(*) is an obsolescent feature in Fortran 95.

Examples

The following example declares an array NAMES containing 100 32-character elements, an array
SOCSEC containing 100 9-character elements, and a variable NAMETY that is 10 characters long
and has an initial value of 'ABCDEFGHIJ'.
CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /’ABCDEFGHIJ’/

The following example includes a CHARACTER statement declaring two 8-character variables,
LAST and FIRST.
INTEGER, PARAMETER :: LENGTH=4

CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array LETTER containing
26 one-character elements. It also declares a dummy argument BUBBLE that has a passed length
defined by the calling program.
SUBROUTINE S1(BUBBLE)

CHARACTER LETTER(26), BUBBLE*(*)

In the following example, NAME2 is an automatic object:
SUBROUTINE AUTO_NAME(NAME1)

 CHARACTER(LEN = *) NAME1

 CHARACTER(LEN = LEN(NAME1)) NAME2

See Also
• “Type Declaration Statements” for details on the general form and rules for type declaration

statements
• “Specification of Data Type” and “Assumed-Length Character Arguments” for details on

asterisk length specifications
5-9

5 Intel Fortran Language Reference
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent
features in Fortran 95

Declaration Statements for Derived Types

The derived-type (TYPE) declaration statement specifies the properties of objects and functions of
derived (user-defined) type.
The derived type must be defined before you can specify objects of that type in a TYPE type
declaration statement.
An object of derived type must not have the PUBLIC attribute if its type is PRIVATE.
A structure constructor specifies values for derived-type objects.

Examples

The following are examples of derived-type declaration statements:
TYPE(EMPLOYEE) CONTRACT

...

TYPE(SETS), DIMENSION(:,:), ALLOCATABLE :: SUBSET_1

The following example shows a public type with private components:
TYPE LIST_ITEMS

 PRIVATE

 ...

 TYPE(LIST_ITEMS), POINTER :: NEXT, PREVIOUS

END TYPE LIST_ITEMS

See Also
• “Derived Data Types”
• “Use and Host Association”
• “PRIVATE and PUBLIC Attributes and Statements”
• “Structure Constructors”
• “Type Declaration Statements” for details on the general form and rules for type declaration

statements

Declaration Statements for Arrays

An array declaration (or array declarator) declares the shape of an array. It takes the following
form:

(a-spec)
5-10

Specification Statements 5

a-spec
Is one of the following array specifications:
• “Explicit-Shape Specifications”
• “Assumed-Shape Specifications”
• “Assumed-Size Specifications”
• “Deferred-Shape Specifications”
The array specification can be appended to the name of the array when the array is declared.

Examples

The following examples show array declarations:
SUBROUTINE SUB(N, C, D, Z)

 REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array

 REAL C(:), D(0:) ! An assumed-shape array

 REAL, POINTER :: B(:,:) ! A deferred-shape array pointer

 REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array

 REAL :: Z(N,*) ! An assumed-size array

See Also

“Type Declaration Statements” for details on the general form and rules for type declaration
statements

Explicit-Shape Specifications

An explicit-shape array is declared with explicit values for the bounds in each dimension of the
array. An explicit-shape specification takes the following form:

([dl:] du[, [dl:] du]...)
dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.
If the lower bound is not specified, it is assumed to be 1.
du
Is a specification expression indicating the upper bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.
The bounds can be specified as constant or nonconstant expressions, as follows:
5-11

5 Intel Fortran Language Reference
• If the bounds are constant expressions, the subscript range of the array in a dimension is the
set of integer values between and including the lower and upper bounds. If the lower bound is
greater than the upper bound, the range is empty, the extent in that dimension is zero, and the
array has a size of zero.

• If the bounds are nonconstant expressions, the array must be declared in a procedure. The
bounds can have different values each time the procedure is executed, since they are
determined when the procedure is entered.
The bounds are not affected by any redefinition or undefinition of the variables in the
specification expression that occurs while the procedure is executing.
The following explicit-shape arrays can specify nonconstant bounds:
— An automatic array (the array is a local variable)
— An adjustable array (the array is a dummy argument to a subprogram)

The following are examples of explicit-shape specifications:
INTEGER I(3:8, -2:5) ! Rank-two array; range of dimension one is

... ! 3 to 8, range of dimension two is -2 to 5

SUBROUTINE SUB(A, B, C)

 INTEGER :: B, C

 REAL, DIMENSION(B:C) :: A ! Rank-one array; range is B to C

Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic arrays are only
allowed in function and subroutine subprograms, and are declared in the specification part of the
subprogram. At least one bound of an automatic array must be a nonconstant specification
expression. The bounds are determined when the subprogram is called.
The following example shows automatic arrays:
SUBROUTINE SUB1 (A, B)

 INTEGER A, B, LOWER

 COMMON /BOUND/ LOWER

 ...

 INTEGER AUTO_ARRAY1(B)

 ...

 INTEGER AUTO_ARRAY2(LOWER:B)

 ..

 INTEGER AUTO_ARRAY3(20, B*A/2)

END SUBROUTINE
5-12

Specification Statements 5

Adjustable Arrays

An adjustable array is an explicit-shape array that is a dummy argument to a subprogram. At least
one bound of an adjustable array must be a nonconstant specification expression. The bounds are
determined when the subprogram is called.
The array specification can contain integer variables that are either dummy arguments or variables
in a common block.
When the subprogram is entered, each dummy argument specified in the bounds must be
associated with an actual argument. If the specification includes a variable in a common block, the
variable must have a defined value. The array specification is evaluated using the values of the
actual arguments, as well as any constants or common block variables that appear in the
specification.
The size of the adjustable array must be less than or equal to the size of the array that is its
corresponding actual argument.
To avoid possible errors in subscript evaluation, make sure that the bounds expressions used to
declare multidimensional adjustable arrays match the bounds as declared by the caller.
In the following example, the function computes the sum of the elements of a rank-two array.
Notice how the dummy arguments M and N control the iteration:
FUNCTION THE_SUM(A, M, N)

 DIMENSION A(M, N)

 SUMX = 0.0

 DO J = 1, N

 DO I = 1, M

 SUMX = SUMX + A(I, J)

 END DO

 END DO

 THE_SUM = SUMX

END FUNCTION

The following are examples of calls on THE_SUM:
DIMENSION A1(10,35), A2(3,56)

SUM1 = THE_SUM(A1,10,35)

SUM2 = THE_SUM(A2,3,56)

The following example shows how the array bounds determined when the procedure is entered do
not change during execution:
DIMENSION ARRAY(9,5)

L = 9

M = 5
5-13

5 Intel Fortran Language Reference
CALL SUB(ARRAY,L,M)

END

SUBROUTINE SUB(X,I,J)

 DIMENSION X(-I/2:I/2,J)

 X(I/2,J) = 999

 J = 1

 I = 2

END

The assignments to I and J do not affect the declaration of adjustable array X as X(–4:4,5) on entry
to subroutine SUB.

See Also

“Specification Expressions”

Assumed-Shape Specifications

An assumed-shape array is a dummy argument array that assumes the shape of its associated
actual argument array. An assumed-shape specification takes the following form:

([dl]:[, [dl]:]...)
dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type.
If the lower bound is not specified, it is assumed to be 1.
The rank of the array is the number of colons (:) specified.
The value of the upper bound is the extent of the corresponding dimension of the associated actual
argument array + lower-bound – 1.
The following is an example of an assumed-shape specification:
INTERFACE

 SUBROUTINE SUB(M)

 INTEGER M(:, 1:, 5:)

 END SUBROUTINE

END INTERFACE

INTEGER L(20, 5:25, 10)

CALL SUB(L)
5-14

Specification Statements 5

SUBROUTINE SUB(M)

 INTEGER M(:, 1:, 5:)

END SUBROUTINE

Array M has the same extents as array L, but array M has bounds (1:20, 1:21, 5:14).
Note that an explicit interface is required when calling a routine that expects an assumed-shape or
pointer array.

Assumed-Size Specifications

An assumed-size array is a dummy argument array that assumes the size (only) of its associated
actual argument array; the rank and extents can differ for the actual and dummy arrays. An
assumed-size specification takes the following form:

([expli-shape-spec,] [expli-shape-spec,]... [dl:] *)
expli-shape-spec
Is an explicit-shape specification (see “Explicit-Shape Specifications”).
dl
Is a specification expression indicating the lower bound of the dimension. The expression can
have a positive, negative, or zero value. If necessary, the value is converted to integer type. <p> If
the lower bound is not specified, it is assumed to be 1.
*
Is the upper bound of the last dimension.
The rank of the array is the number of explicit-shape specifications plus 1.
The size of the array is assumed from the actual argument associated with the assumed-size
dummy array as follows:
• If the actual argument is an array of type other than default character, the size of the dummy

array is the size of the actual array.
• If the actual argument is an array element of type other than default character, the size of the

dummy array is a + 1 - s, where s is the subscript order value and a is the size of the
actual array.

• If the actual argument is a default character array, array element, or array element substring,
and it begins at character storage unit b of an array with n character storage units, the size of
the dummy array is as follows:

 MAX(INT((n + 1 - b)/y), 0)

The y is the length of an element of the dummy array.
An assumed-size array can only be used as a whole array reference in the following cases:
• When it is an actual argument in a procedure reference that does not require the shape
5-15

5 Intel Fortran Language Reference
• In the intrinsic function LBOUND
Because the actual size of an assumed-size array is unknown, an assumed-size array cannot be
used as any of the following in an I/O statement:
• An array name in the I/O list
• A unit identifier for an internal file
• A run-time format specifier
The following is an example of an assumed-size specification:
SUBROUTINE SUB(A, N)

 REAL A, N

 DIMENSION A(1:N, *)

 ...

See Also

“Array Elements” for details on array element order

Deferred-Shape Specifications

A deferred-shape array is an array pointer or an allocatable array.
The array specification contains a colon (:) for each dimension of the array. No bounds are
specified. The bounds (and shape) of allocatable arrays and array pointers are determined when
space is allocated for the array during program execution.
An array pointer is an array declared with the POINTER attribute. Its bounds and shape are
determined when it is associated with a target by pointer assignment, or when the pointer is
allocated by execution of an ALLOCATE statement.
In pointer assignment, the lower bound of each dimension of the array pointer is the result of the
LBOUND intrinsic function applied to the corresponding dimension of the target. The upper
bound of each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.
A pointer dummy argument can be associated only with a pointer actual argument. An actual
argument that is a pointer can be associated with a nonpointer dummy argument.
A function result can be declared to have the pointer attribute.
An allocatable array is declared with the ALLOCATABLE attribute. Its bounds and shape are
determined when the array is allocated by execution of an ALLOCATE statement.
The following are examples of deferred-shape specifications:
REAL, ALLOCATABLE :: A(:,:) ! Allocatable array

REAL, POINTER :: C(:), D (:,:,:) ! Array pointers
5-16

Specification Statements 5

See Also
• “POINTER Attribute and Statement”
• “ALLOCATABLE Attribute and Statement”
• “ALLOCATE Statement”
• “Pointer Assignments”
• “LBOUND”
• “UBOUND”

ALLOCATABLE Attribute and Statement
The ALLOCATABLE attribute specifies that an array is an allocatable array with a deferred shape.
The shape of an allocatable array is determined when an ALLOCATE statement is executed,
dynamically allocating space for the array.
The ALLOCATABLE attribute can be specified in a type declaration statement or an
ALLOCATABLE statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] ALLOCATABLE [, att-ls] :: a[(d-spec)] [, a[(d-spec)]]...
Statement:

ALLOCATABLE [::] a[(d-spec)] [, a[(d-spec)]]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
a
Is the name of the allocatable array; it must not be a dummy argument or function result.
d-spec
Is a deferred-shape specification (: [, :]...). Each colon represents a dimension of the array.

Rules and Behavior

If the array is given the DIMENSION attribute elsewhere in the program, it must be declared as a
deferred-shape array.
When the allocatable array is no longer needed, it can be deallocated by execution of a
DEALLOCATE statement.
5-17

5 Intel Fortran Language Reference
An allocatable array cannot be specified in a COMMON, EQUIVALENCE, DATA, or
NAMELIST statement.
Allocatable arrays are not saved by default. If you want to retain the values of an allocatable array
across procedure calls, you must specify the SAVE attribute for the array.

Examples

The following example shows a type declaration statement specifying the ALLOCATABLE
attribute:
REAL, ALLOCATABLE :: Z(:, :, :)

The following is an example of the ALLOCATABLE statement:
REAL A, B(:) ALLOCATABLE :: A(:,:), B

See Also
• “Type Declaration Statements”
• “ALLOCATE Statement”
• “DEALLOCATE Statement”
• “Allocation of Allocatable Arrays” for details on allocation status
• Table 5-1 for details on compatible attributes

AUTOMATIC and STATIC Attributes and Statements
The AUTOMATIC and STATIC attributes control the storage allocation of variables in
subprograms.
The AUTOMATIC and STATIC attributes can be specified in a type declaration statement or an
AUTOMATIC or STATIC statement, and take one of the following forms:
Type Declaration Statement:

type, [att-ls,] AUTOMATIC [, att-ls] :: v [, v]...
type, [att-ls,] STATIC [, att-ls] :: v [, v]...

Statement:
AUTOMATIC v [, v]...
STATIC v [, v]...

type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
5-18

Specification Statements 5

v
Is the name of a variable or an array specification. It can be of any type.

Rules and Behavior

AUTOMATIC and STATIC declarations only affect how data is allocated in storage, as follows:
• A variable declared as AUTOMATIC and allocated in memory resides in the stack storage

area.
• A variable declared as STATIC and allocated in memory resides in the static storage area.
If you want to retain definitions of variables upon reentry to subprograms, you must use the SAVE
attribute.
Automatic variables can reduce memory use because only the variables currently being used are
allocated to memory.
Automatic variables allow possible recursion. With recursion, a subprogram can call itself
(directly or indirectly), and resulting values are available upon a subsequent call or return to the
subprogram. For recursion to occur, RECURSIVE must be specified in one of the following ways:
• As a keyword in a FUNCTION or SUBROUTINE statement
• As a compiler option
• As an option in an OPTIONS statement
By default, the compiler allocates local variables of non-recursive subprograms, except for
allocatable arrays, in the static storage area. The compiler may choose to allocate a variable in
temporary (stack or register) storage if it notices that the variable is always defined before use.
Appropriate use of the SAVE attribute can prevent compiler warnings if a variable is used before it
is defined.
To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE (in
one of the ways mentioned above).
To override any compiler option that may affect variables, explicitly specify the variables as
AUTOMATIC or STATIC.

A variable cannot be specified as AUTOMATIC or STATIC more than once in the same scoping
unit.

NOTE. Variables that are data-initialized, and variables in COMMON and
SAVE statements are always static. This is regardless of whether a compiler
option specifies recursion.
5-19

5 Intel Fortran Language Reference
If the variable is a pointer, AUTOMATIC or STATIC apply only to the pointer itself, not to any
associated target.
Some variables cannot be specified as AUTOMATIC or STATIC. The following table shows these
restrictions:

A variable can be specified with both the STATIC and SAVE attributes.
If a variable is in a module’s outer scope, it can be specified as STATIC, but not as AUTOMATIC.

Examples

The following examples show type declaration statements specifying the AUTOMATIC and
STATIC attributes:
REAL, AUTOMATIC :: A, B, C

INTEGER, STATIC :: ARRAY_A

The following example shows an AUTOMATIC and a STATIC statement:
...

CONTAINS

 INTEGER FUNCTION REDO_FUNC

 INTEGER I, J(10), K

 REAL C, D, E(30)

 AUTOMATIC I, J, K(20)

 STATIC C, D, E

 ...

 END FUNCTION

...

See Also
• “Type Declaration Statements”
• “OPTIONS Statement”

Variable AUTOMATIC STATIC

Dummy argument No No

Automatic object No No

Common block item No Yes

Use-associated item No No

Function result No No

Component of a derived type No No
5-20

Specification Statements 5

• “SAVE Attribute and Statement”
• “Functions, Subroutines, and Statement Functions” for details on subprograms
• “Recursive Procedures” for details on specifying recursive subprograms
• Table 5-1 for details on compatible attributes
• “POINTER Attribute and Statement” for details on pointers
• “Modules and Module Procedures” for details on modules
• Your user’s guide for details on compiler options

COMMON Statement
A COMMON statement defines one or more contiguous areas, or blocks, of physical storage
(called common blocks) that can be accessed by any of the scoping units in an executable
program. COMMON statements also define the order in which variables and arrays are stored in
each common block, which can prevent misaligned data items.
Common blocks can be named or unnamed (a blank common).
The COMMON statement takes the following form:

COMMON [/[cname]/] var-list [[,] /[cname]/ var-list]...
cname
Is the name of the common block. The name can be omitted for blank common (//).
var-list
Is a list of variable names, separated by commas.
The variable must not be a dummy argument, allocatable array, automatic object, function,
function result, or entry to a procedure. It must not have the PARAMETER attribute. If an object
of derived type is specified, it must be a sequence type.

Rules and Behavior

A common block is a global entity, and must not have the same name as any other global entity in
the program, such as a subroutine or function.
Any common block name (or blank common) can appear more than once in one or more
COMMON statements in a program unit. The list following each successive appearance of the
same common block name is treated as a continuation of the list for the block associated with that
name.
A variable can appear in only one common block within a scoping unit.
5-21

5 Intel Fortran Language Reference
If an array is specified, it can be followed by an explicit-shape array specification, each bound of
which must be a constant specification expression. Such an array must not have the POINTER
attribute.
A pointer can only be associated with pointers of the same type and kind parameters, and rank.
An object with the TARGET attribute can only be associated with another object with the
TARGET attribute and the same type and kind parameters.
A nonpointer can only be associated with another nonpointer, but association depends on their
types, as follows:

So, variables can be associated if they are of different numeric type. For example, the following is
valid:
INTEGER A(20)

REAL Y(20)

COMMON /QUANTA/ A, Y

When common blocks from different program units have the same name, they share the same
storage area when the units are combined into an executable program.
Entities are assigned storage in common blocks on a one-for-one basis. So, the data type of entities
assigned by a COMMON statement in one program unit should agree with the data type of entities
placed in a common block by another program unit. For example:

When these program units are combined into an executable program, incorrect results can occur if
the 2-byte integer variable MONEY is made to correspond to the lower-addressed two bytes of the
real variable CENTS.

Type of Variable Type of Associated Variable

Intrinsic numeric1 or numeric sequence2

1. Default integer, default real, double precision real, default complex, double complex, or default logical.

2. If an object of numeric sequence or character sequence type appears in a common block, it is as if the individual components were
enumerated directly in the common list.

Can be of any of these types

Default character or character sequence2 Can be of either of these types

Any other intrinsic type Must have the same type and kind parameters

Any other sequence type Must have the same type

Program Unit A Program Unit B

COMMON CENTS INTEGER(2) MONEY

. . . COMMON MONEY

. . .
5-22

Specification Statements 5

Named common blocks must be declared to have the same size in each program unit. Blank
common can have different lengths in different program units.

Examples

In the following example, the COMMON statement in the main program puts HEAT and X in
blank common, and KILO and Q in a named common block, BLK1:

The COMMON statement in the subroutine makes ALFA and BET share the same storage
location as HEAT and X in blank common. It makes LIMA and R share the same storage location
as KILO and Q in BLK1.
The following example shows how a COMMON statement can be used to declare arrays:
COMMON / MIXED / SPOTTED(100), STRIPED(50,50)

See Also
• “Specification Expressions”
• “Storage Association”
• “Derived Data Types”
• “EQUIVALENCE Statement”
• “EQUIVALENCE and COMMON Interaction”
• Your user’s guide for details on alignment of data items in common blocks

NOTE. If a common block is initialized by a DATA statement, the module
containing the initialization must declare the common block to be its maximum
defined length. This limitation does not apply if you compile all source modules
together.

Main Program Subprogram

COMMON HEAT, X /BLK1/KILO, Q SUBROUTINE FIGURE

. . . COMMON /BLK1/LIMA, R / /ALFA,BET

. . .

CALL FIGURE RETURN

. . . END
5-23

5 Intel Fortran Language Reference
DATA Statement
The DATA statement assigns initial values to variables before program execution. It takes the
following form:

DATA var-list /c-list/[[,] var-list /c-list/]...
var-list
Is a list of variables or implied-DO lists, separated by commas.
Subscript expressions and expressions in substring references must be initialization expressions.
An implied-DO list in a DATA statement takes the following form:

(do-list, var = expr1, expr2 [, expr3])
do-list
Is a list of one or more array elements, substrings, scalar structure components, or implied-DO
lists, separated by commas. Any array elements or scalar structure components must not have a
constant parent.
var
Is the name of a scalar integer variable (the implied-DO variable).
expr
Are scalar integer expressions. The expressions can contain variables of other implied-DO lists
that have this implied-DO list within their ranges.
c-list
Is a list of constants (or names of constants), or for pointer objects, NULL(); constants must be
separated by commas. If the constant is a structure constructor, each component must be an
initialization expression. If the constant is in binary, octal, or hexadecimal form, the corresponding
object must be of type integer.
A constant can be specified in the form r*constant, where r is a repeat specification. It is a
nonnegative scalar integer constant (with no kind parameter). If it is a named constant, it must
have been declared previously in the scoping unit or made accessible through use or host
association. If r is omitted, it is assumed to be 1.

Rules and Behavior

A variable can be initialized only once in an executable program. A variable that appears in a
DATA statement and is typed implicitly can appear in a subsequent type declaration only if that
declaration confirms the implicit typing.
The number of constants in c-list must equal the number of variables in var-list. The constants are
assigned to the variables in the order in which they appear (from left to right).
5-24

Specification Statements 5

The following objects cannot be initialized in a DATA statement:
• A dummy argument
• A function
• A function result
• An automatic object
• An allocatable array
• A variable that is accessible by use or host association
• A variable in a named common block (unless the DATA statement is in a block data program

unit)
• A variable in blank common
Except for variables in named COMMON blocks, a named variable has the SAVE attribute if any
part of it is initialized in a DATA statement. You can confirm this property by specifying the
variable in a SAVE statement or a type declaration statement containing the SAVE attribute.
When an unsubscripted array name appears in a DATA statement, values are assigned to every
element of that array in the order of subscript progression. The associated constant list must
contain enough values to fill the array.
Array element values can be initialized in three ways: by name, by element, or by an implied-DO
list (interpreted in the same way as a DO construct).
The following conversion rules and restrictions apply to variable and constant list items:
• If the constant and the variable are both of numeric type, the following conversion occurs:

— The constant value is converted to the data type of the variable being initialized, if
necessary.

— When a binary, octal, or hexadecimal constant is assigned to a variable or array element,
the number of digits that can be assigned depends on the data type of the data item. If the
constant contains fewer digits than the capacity of the variable or array element, the
constant is extended on the left with zeros. If the constant contains more digits than can
be stored, the constant is truncated on the left.

• If the constant and the variable are both of character type, the following conversion occurs:
— If the length of the constant is less than the length of the variable, the rightmost character

positions of the variable are initialized with blank characters.
— If the length of the constant is greater than the length of the variable, the character

constant is truncated on the right.
• If the constant is of numeric type and the variable is of character type, the following

restrictions apply:
— The character variable must have a length of one character.
5-25

5 Intel Fortran Language Reference
— The constant must be an integer, binary, octal, or hexadecimal constant, and must have a
value in the range 0 through 255.

When the constant and variable conform to these restrictions, the variable is initialized with
the character that has the ASCII code specified by the constant. (This lets you initialize a
character object to any 8-bit ASCII code.)

• If the constant is a Hollerith or character constant, and the variable is a numeric variable or
numeric array element, the number of characters that can be assigned depends on the data
type of the data item.
If the Hollerith or character constant contains fewer characters than the capacity of the
variable or array element, the constant is extended on the right with blank characters. If the
constant contains more characters than can be stored, the constant is truncated on the right.

Examples

The following example shows the three ways that DATA statements can initialize array element
values:

DIMENSION A(10,10)

DATA A/100*1.0/ ! initialization by name

DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by element

DATA ((A(I,J), I=1,5,2), J=1,5) /15*1.0/ ! initialization by implied-DO list

The following example shows DATA statements containing structure components:
TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) MAN_NAME, CON_NAME

DATA MAN_NAME / EMPLOYEE(417, ’Henry Adams’) /

DATA CON_NAME%ID, CON_NAME%NAME /891, "David James "/

In the following example, the first DATA statement assigns zero to all 10 elements of array A, and
four asterisks followed by two blanks to the character variable STARS:
INTEGER A(10), B(10)

CHARACTER BELL, TAB, LF, FF, STARS*6

DATA A,STARS /10*0,’****’/

DATA BELL,TAB,LF,FF /7,9,10,12/

DATA (B(I), I=1,10,2) /5*1/

In this case, the second DATA statement assigns ASCII control character codes to the character
variables BELL, TAB, LF, and FF. The last DATA statement uses an implied-DO list to assign the
value 1 to the odd-numbered elements in the array B.
5-26

Specification Statements 5

As a Fortran 95 feature, a pointer can be initialized as disassociated by using a DATA statement.
For example:
INTEGER, POINTER :: P

DATA P/NULL()/

END

See Also
• “Initialization and Specification Expressions”
• “Type Declaration Statements”
• “I/O Lists” for details on implied-DO lists

DIMENSION Attribute and Statement
The DIMENSION attribute specifies that an object is an array, and defines the shape of the array.
The DIMENSION attribute can be specified in a type declaration statement or a DIMENSION
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] DIMENSION (a-spec) [, att-ls] :: a[(a-spec)] [, a[(a-spec)]]...
Statement:

DIMENSION [::] a(a-spec) [, a(a-spec)]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
a-spec
Is an array specification.
In a type declaration statement, any array specification following an array overrides any array
specification following DIMENSION.
a
Is the name of the array being declared.

Rules and Behavior

The DIMENSION attribute allocates a number of storage elements to each array named, one
storage element to each array element in each dimension. The size of each storage element is
determined by the data type of the array.
5-27

5 Intel Fortran Language Reference
The total number of storage elements assigned to an array is equal to the number produced by
multiplying together the number of elements in each dimension in the array specification. For
example, the following statement defines ARRAY as having 16 real elements of 4 bytes each and
defines MATRIX as having 125 integer elements of 4 bytes each:
DIMENSION ARRAY(4,4), MATRIX(5,5,5)

An array can also be declared in the following statements: ALLOCATABLE, POINTER,
TARGET, and COMMON.

Examples

The following examples show type declaration statements specifying the DIMENSION attribute:
REAL, DIMENSION(10, 10) :: A, B, C(10, 15) ! Specification following C

 ! overrides the one following

 ! DIMENSION

REAL, ALLOCATABLE, DIMENSION(:) :: E

The following are examples of the DIMENSION statement:
DIMENSION BOTTOM(12,24,10)

DIMENSION X(5,5,5), Y(4,85), Z(100)

DIMENSION MARK(4,4,4,4)

SUBROUTINE APROC(A1,A2,N1,N2,N3)

DIMENSION A1(N1:N2), A2(N3:*)

CHARACTER(LEN = 20) D

DIMENSION A(15), B(15, 40), C(-5:8, 7), D(15)

See Also
• “Type Declaration Statements”
• “Arrays”
• “ALLOCATABLE Attribute and Statement”
• “COMMON Statement”
• “POINTER Attribute and Statement”
• “TARGET Attribute and Statement”
• “Declaration Statements for Arrays” for details on array specifications
• Table 5-1 for details on compatible attributes
5-28

Specification Statements 5

EQUIVALENCE Statement

The EQUIVALENCE statement specifies that a storage area is shared by two or more objects in a
program unit. This causes total or partial storage association of the objects that share the storage
area.
The EQUIVALENCE statement takes the following form:

EQUIVALENCE (equiv-list) [, (equiv-list)]...
equiv-list
Is a list of two or more variables, array elements, or substrings, separated by commas (also called
an equivalence set). If an object of derived type is specified, it must be a sequence type. Objects
cannot have the TARGET attribute.
Each expression in a subscript or a substring reference must be an integer initialization expression.
A substring must not have a length of zero.

Rules and Behavior

The following objects cannot be specified in EQUIVALENCE statements:
• A dummy argument
• An allocatable array
• A pointer
• An object of nonsequence derived type
• An object of sequence derived type containing a pointer in the structure
• A function, entry, or result name
• A named constant
• A structure component
• A subobject of any of the above objects
The EQUIVALENCE statement causes all of the entities in one parenthesized list to be allocated
storage beginning at the same storage location.
Association of objects depends on their types, as follows:

Type of Object Type of Associated Object

Intrinsic numeric1 or numeric sequence Can be of any of these types

Default character or character sequence Can be of either of these types2

Any other intrinsic type Must have the same type and kind parameters
5-29

5 Intel Fortran Language Reference
So, objects can be associated if they are of different numeric type. For example, the following is
valid:
INTEGER A(20)

REAL Y(20)

EQUIVALENCE(A, Y)

Objects of default character do not need to have the same length. The following example
associates character variable D with the last 4 (of the 6) characters of character array F:
CHARACTER(LEN=4) D

CHARACTER(LEN=3) F(2)

EQUIVALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple components of one data
type can share storage with a single component of a higher-ranked data type. For example, if you
make an integer variable equivalent to a complex variable, the integer variable shares storage with
the real part of the complex variable.
The same storage unit cannot occur more than once in a storage sequence, and consecutive storage
units cannot be specified in a way that would make them nonconsecutive.

Examples

The following EQUIVALENCE statement is invalid because it specifies the same storage unit for
X(1) and X(2):
REAL, DIMENSION(2), :: X

REAL :: Y

EQUIVALENCE(X(1), Y), (X(2), Y)

The following EQUIVALENCE statement is invalid because A(1) and A(2) will not be
consecutive:
REAL A(2)

DOUBLE PRECISION D(2)

EQUIVALENCE(A(1), D(1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four elements of the integer
array IARR to share the same storage as that of the double-precision variable DVAR.
DOUBLE PRECISION DVAR

Any other sequence type Must have the same type

1. Default integer, default real, double precision real, default complex, double complex, or default logical.

2. The lengths do not have to be equal.

Type of Object Type of Associated Object
5-30

Specification Statements 5

INTEGER(KIND=2) IARR(4)

EQUIVALENCE(DVAR, IARR(1))

In the following example, the EQUIVALENCE statement causes the first character of the
character variables KEY and STAR to share the same storage location. The character variable
STAR is equivalent to the substring KEY(1:10).
CHARACTER KEY*16, STAR*10

EQUIVALENCE(KEY, STAR)

See Also
• “Initialization Expressions”
• “Derived Data Types”
• “Storage Association” for details on storage units, sequence, and association

Making Arrays Equivalent

When you make an element of one array equivalent to an element of another array, the
EQUIVALENCE statement also sets equivalences between the other elements of the two arrays.
Thus, if the first elements of two equal-sized arrays are made equivalent, both arrays share the
same storage. If the third element of a 7-element array is made equivalent to the first element of
another array, the last five elements of the first array overlap the first five elements of the second
array.
Two or more elements of the same array should not be associated with each other in one or more
EQUIVALENCE statements. For example, you cannot use an EQUIVALENCE statement to
associate the first element of one array with the first element of another array, and then attempt to
associate the fourth element of the first array with the seventh element of the other array.
Consider the following valid example:
DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

These statements cause the entire array TABLE to share part of the storage allocated to TRIPLE.
Table 5-3 shows how these statements align the arrays:

Table 5-3 Equivalence of Array Storage

Array TRIPLE Array TABLE

Array Elements Element Number Array Element Element Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3
5-31

5 Intel Fortran Language Reference
Each of the following statements also aligns the two arrays as shown in Table 5-3:
EQUIVALENCE(TABLE, TRIPLE(2,2,1))

EQUIVALENCE(TRIPLE(1,1,2), TABLE(2,1))

You can also make arrays equivalent with nonunity lower bounds. For example, an array defined
as A(2:3,4) is a sequence of eight values. A reference to A(2,2) refers to the third element in the
sequence. To make array A(2:3,4) share storage with array B(2:4,4), you can use the following
statement:
EQUIVALENCE(A(3,4), B(2,4))

The entire array A shares part of the storage allocated to array B. Table 5-4 shows how these
statements align the arrays. The arrays can also be aligned by the following statements:
EQUIVALENCE(A, B(4,1)) EQUIVALENCE(B(3,2), A(2,2))

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

Table 5-4 Equivalence of Arrays with Nonunity Lower Bounds

Array B Array A

Array Element Element Number Array Element Element Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3

B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5

B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

Table 5-3 Equivalence of Array Storage

Array TRIPLE Array TABLE

Array Elements Element Number Array Element Element Number
5-32

Specification Statements 5
Only in the EQUIVALENCE statement can you identify an array element with a single subscript
(the linear element number), even though the array was defined as multidimensional. For example,
the following statements align the two arrays as shown in Table 5-4:
DIMENSION B(2:4,1:4), A(2:3,1:4)

EQUIVALENCE(B(6), A(4))

Making Substrings Equivalent

When you make one character substring equivalent to another character substring, the
EQUIVALENCE statement also sets associations between the other corresponding characters in
the character entities; for example:
CHARACTER NAME*16, ID*9

EQUIVALENCE(NAME(10:13), ID(2:5))

These statements cause character variables NAME and ID to share space (see Figure 5-1). The
arrays can also be aligned by the following statement:
EQUIVALENCE(NAME(9:9), ID(1:1))

B(4,4) 12

Table 5-4 Equivalence of Arrays with Nonunity Lower Bounds

Array B Array A

Array Element Element Number Array Element Element Number
5-33

5 Intel Fortran Language Reference

If the character substring references are array elements, the EQUIVALENCE statement sets
associations between the other corresponding characters in the complete arrays.
Character elements of arrays can overlap at any character position. For example, the following
statements cause character arrays FIELDS and STAR to share storage (see Figure 5-2).

Figure 5-1 Equivalence of Substrings

ID

NAME

Character
Position

Character
Position

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

9

8

7

6

5

4

3

2

1

ZK−0618−GE
5-34

Specification Statements 5

CHARACTER FIELDS(100)*4, STAR(5)*5

EQUIVALENCE(FIELDS(1)(2:4), STAR(2)(3:5))

The EQUIVALENCE statement cannot assign the same storage location to two or more substrings
that start at different character positions in the same character variable or character array. The
EQUIVALENCE statement also cannot assign memory locations in a way that is inconsistent with
the normal linear storage of character variables and arrays.

EQUIVALENCE and CO MMON Interaction

A common block can extend beyond its original boundaries if variables or arrays are associated
with entities stored in the common block. However, a common block can only extend beyond its
last element; the extended portion cannot precede the first element in the block.

Examples

Figure 5-3 and Figure 5-4 show valid and invalid extensions of the common block, respectively.
5-35

5 Intel Fortran Language Reference
Figure 5-2 Equivalence of Character Arrays

Character
Position

1

2

3

4

5Character
Position 1

2

3

4

5

5

4

3

2

1

5

4

3

2

1

1

2

3

4

5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

3

4

1

2

1

2

Subscript

1

2

3

4

5

1

2

3

4

5

6

7

FIELDS

STAR

Subscript

1

2

3

4

100

ZK−0619−GE
5-36

Specification Statements 5
The second example is invalid because the extended portion, B(1), precedes the first element of
the common block.
The following example shows a valid EQUIVALENCE statement and an invalid EQUIVALENCE
statement in the context of a common block.
COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE(B, D(1)) ! Valid, because common block is extended

 ! from the end.

Figure 5-3 A Valid Extension of a Common Block

Figure 5-4 An Invalid Extension of a Common Block

A (1) A (2) A (3) A (4)

B (1) B (2) B (3) B (4) B (5) B (6)EQUIVALENCE (A (2), B (1))
COMMON A
DIMENSION A (4), B (6)

Valid

Extended
Portion

ZK−1944−GE

Existing
Common

A (1) A (2) A (3) A (4)

B (1) B (2) B (3) B (4) B (5) B (6)EQUIVALENCE (A (2), B (3))
COMMON A
DIMENSION A (4), B (6)

Invalid

ZK−1945−GE

Common
Existing Extended

Portion
Extended
Portion
5-37

5 Intel Fortran Language Reference
COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE(B, D(3)) ! Invalid, because D(1) would extend common

 ! block to precede A’s location.

EXTERNAL Attribute and Statement
The EXTERNAL attribute allows an external or dummy procedure to be used as an actual
argument. (To specify intrinsic procedures as actual arguments, use the INTRINSIC attribute.)
The EXTERNAL attribute can be specified in a type declaration statement or an EXTERNAL
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] EXTERNAL [, att-ls] :: ex-pro [, ex-pro]...
Statement:

EXTERNAL ex-pro [, ex-pro]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
ex-pro
Is the name of an external (user-supplied) procedure or dummy procedure.

Rules and Behavior

In a type declaration statement, only functions can be declared EXTERNAL. However, you can
use the EXTERNAL statement to declare subroutines and block data program units, as well as
functions, to be external.
The name declared EXTERNAL is assumed to be the name of an external procedure, even if the
name is the same as that of an intrinsic procedure. For example, if SIN is declared with the
EXTERNAL attribute, all subsequent references to SIN are to a user-supplied function named
SIN, not to the intrinsic function of the same name.
You can include the name of a block data program unit in the EXTERNAL statement to force a
search of the object module libraries for the block data program unit at link time. However, the
name of the block data program unit must not be used in a type declaration statement.
5-38

Specification Statements 5

Examples

The following example shows type declaration statements specifying the EXTERNAL attribute:
PROGRAM TEST

...

INTEGER, EXTERNAL :: BETA

LOGICAL, EXTERNAL :: COS

 ...

CALL SUB(BETA) ! External function BETA is an actual argument

You can use a name specified in an EXTERNAL statement as an actual argument to a subprogram,
and the subprogram can then use the corresponding dummy argument in a function reference or a
CALL statement; for example:
EXTERNAL FACET

CALL BAR(FACET)

SUBROUTINE BAR(F)

EXTERNAL F

CALL F(2)

Used as an argument, a complete function reference represents a value, not a subprogram; for
example, FUNC(B) represents a value in the following statement:
CALL SUBR(A, FUNC(B), C)

See Also
• “Type Declaration Statements”
• Chapter 9, “Intrinsic Procedures”
• “INTRINSIC Attribute and Statement”
• Table 5-1 for details on compatible attributes

IMPLICIT Statement
The IMPLICIT statement overrides the default implicit typing rules for names. (The default data
type is INTEGER for names beginning with the letters I through N, and REAL for names
beginning with any other letter.)
 The IMPLICIT statement takes one of the following forms:

IMPLICIT type (a[, a]...)[, type (a[, a]...)]...
IMPLICIT NONE
5-39

5 Intel Fortran Language Reference
type
Is a data type specifier (CHARACTER*(*) is not allowed).
a
Is a single letter, a dollar sign ($), or a range of letters in alphabetical order. The form for a range
of letters is a1-a2, where the second letter follows the first alphabetically (for example, A-C).
The dollar sign can be used at the end of a range of letters, since IMPLICIT interprets the dollar
sign to alphabetically follow the letter Z. For example, a range of X–$ would apply to identifiers
beginning with the letters X, Y, Z, or $.

Rules and Behavior

The IMPLICIT statement assigns the specified data type (and kind parameter) to all names that
have no explicit data type and begin with the specified letter or range of letters. It has no effect on
the default types of intrinsic procedures.
When the data type is CHARACTER*len, len is the length for character type. The len is an
unsigned integer constant or an integer initialization expression enclosed in parentheses. The
range for len is 1 to 2**31–1 on IA-32 processors; 1 to 2**63–1 on Intel Itanium processors.
Names beginning with a dollar sign ($) are implicitly INTEGER.
The IMPLICIT NONE statement disables all implicit typing defaults. When IMPLICIT NONE is
used, all names in a program unit must be explicitly declared. An IMPLICIT NONE statement
must precede any PARAMETER statements, and there must be no other IMPLICIT statements in
the scoping unit.

The following IMPLICIT statement represents the default typing for names when they are not
explicitly typed:
IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

Examples

The following are examples of the IMPLICIT statement:
IMPLICIT DOUBLE PRECISION (D)

IMPLICIT COMPLEX (S,Y), LOGICAL(1) (L,A-C)

IMPLICIT CHARACTER*32 (T-V)

IMPLICIT CHARACTER*2 (W)

NOTE. To receive diagnostic messages when variables are used but not
declared, you can specify a compiler option instead of using IMPLICIT NONE.
5-40

Specification Statements 5

IMPLICIT TYPE(COLORS) (E-F), INTEGER (G-H)

See Also

Your user’s guide for details on compiler options

INTENT Attribute and Statement
The INTENT attribute specifies the intended use of one or more dummy arguments.
The INTENT attribute can be specified in a type declaration statement or an INTENT statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] INTENT (intent-spec) [, att-ls] :: d-arg [, d-arg]...
Statement:

INTENT (intent-spec) [::] d-arg [, d-arg]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
intent-spec
Is one of the following specifiers:
• IN

Specifies that the dummy argument will be used only to provide data to the procedure. The
dummy argument must not be redefined (or become undefined) during execution of the
procedure.
Any associated actual argument must be an expression.

• OUT
Specifies that the dummy argument will be used to pass data from the procedure back to the
calling program. The dummy argument is undefined on entry and must be defined before it is
referenced in the procedure.
Any associated actual argument must be definable.

• INOUT
Specifies that the dummy argument can both provide data to the procedure and return data to
the calling program.
Any associated actual argument must be definable.
5-41

5 Intel Fortran Language Reference
d-arg
Is the name of a dummy argument. It cannot be a dummy procedure or dummy pointer.

Rules and Behavior

The INTENT statement can only appear in the specification part of a subprogram or interface
body.
If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of
the associated actual argument.
If a function specifies a defined operator, the dummy arguments must have intent IN.
If a subroutine specifies defined assignment, the first argument must have intent OUT or INOUT,
and the second argument must have intent IN.
A dummy argument with intent IN (or a subobject of such a dummy argument) must not appear as
any of the following:
• A DO variable or implied-DO variable
• The variable of an assignment statement
• The pointer-object of a pointer assignment statement
• An object or STAT variable in an ALLOCATE or DEALLOCATE statement
• An input item in a READ statement
• A variable name in a NAMELIST statement if the namelist group name appears in a NML

specifier in a READ statement
• An internal file unit in a WRITE statement
• A definable variable in an INQUIRE statement
• An IOSTAT or SIZE specifier in an I/O statement
• An actual argument in a reference to a procedure with an explicit interface if the associated

dummy argument has intent OUT or INOUT
If an actual argument is an array section with a vector subscript, it cannot be associated with a
dummy array that is defined or redefined (has intent OUT or INOUT).

Examples

The following example shows type declaration statements specifying the INTENT attribute:
SUBROUTINE TEST(I, J)

 INTEGER, INTENT(IN) :: I

 INTEGER, INTENT(OUT), DIMENSION(I) :: J

The following are examples of the INTENT statement:
SUBROUTINE TEST(A, B, X)
5-42

Specification Statements 5

 INTENT(INOUT) :: A, B

 ...

SUBROUTINE CHANGE(FROM, TO)

 USE EMPLOYEE_MODULE

 TYPE(EMPLOYEE) FROM, TO

 INTENT(IN) FROM

 INTENT(OUT) TO

 ...

See Also
• “Type Declaration Statements”
• “Argument Association”
• Table 5-1 for details on compatible attributes

INTRINSIC Attribute and Statement
The INTRINSIC attribute allows the specific name of an intrinsic procedure to be used as an
actual argument. (Not all specific names can be used as actual arguments. For more information,
see Table 9-1.)
The INTRINSIC attribute can be specified in a type declaration statement or an INTRINSIC
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] INTRINSIC [, att-ls] :: in-pro [, in-pro]...
Statement:

INTRINSIC in-pro [, in-pro]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
in-pro
Is the name of an intrinsic procedure.

Rules and Behavior

In a type declaration statement, only functions can be declared INTRINSIC. However, you can use
the INTRINSIC statement to declare subroutines, as well as functions, to be intrinsic.
5-43

5 Intel Fortran Language Reference
The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If a generic
intrinsic function name is given the INTRINSIC attribute, the name retains its generic properties.

Examples

The following example shows a type declaration statement specifying the INTRINSIC attribute:
PROGRAM EXAMPLE

...

REAL(8), INTRINSIC :: DACOS

...

CALL TEST(X, DACOS) ! Intrinsic function DACOS is an actual argument

The following example shows an INTRINSIC statement:

Note that when TRIG is called with a second argument of SIN or COS, the function reference
F(X) references the Fortran 95/90 library functions SIN and COS; but when TRIG is called with a
second argument of CTN, F(X) references the user function CTN.

See Also
• “Type Declaration Statements”
• “References to Generic Intrinsic Functions”
• “References to Elemental Intrinsic Procedures”
• Chapter 9, “Intrinsic Procedures”, for details on specific intrinsic procedures
• Table 5-1 for details on compatible attributes

Main Program Subprogram

EXTERNAL CTN SUBROUTINE TRIG(X,F,Y)

INTRINSIC SIN, COS Y = F(X)

. . . RETURN

END

CALL TRIG(ANGLE,SIN,SINE)

. . . FUNCTION CTN(X)

CTN = COS(X)/SIN(X)

CALL TRIG(ANGLE,COS, COSINE) RETURN

. . . END

CALL TRIG(ANGLE,CTN,COTANGENT)
5-44

Specification Statements 5

NAMELIST Statement

The NAMELIST statement associates a name with a list of variables. This group name can be
referenced in some input/output operations.
A NAMELIST statement takes the following form:

NAMELIST /group/var-list [[,] /group/var-list]...
group
Is the name of the group.
var-list
Is a list of variables (separated by commas) that are to be associated with the preceding group
name. The variables can be of any data type.

Rules and Behavior

The namelist group name is used by namelist I/O statements instead of an I/O list. The unique
group name identifies a list whose entities can be modified or transferred.
A variable can appear in more than one namelist group.
Each variable in var-list must be accessed by use or host association, or it must have its type, type
parameters, and shape explicitly or implicitly specified in the same scoping unit. If the variable is
implicitly typed, it can appear in a subsequent type declaration only if that declaration confirms
the implicit typing.
The following variables cannot be specified in a namelist group:
• An array dummy argument with nonconstant bounds
• A variable with assumed character length
• An allocatable array
• An automatic object
• A pointer
• A variable of a type that has a pointer as an ultimate component
• A subobject of any of the above objects
Only the variables specified in the namelist can be read or written in namelist I/O. It is not
necessary for the input records in a namelist input statement to define every variable in the
associated namelist.
The order of variables in the namelist controls the order in which the values appear on namelist
output. Input of namelist values can be in any order.
If the group name has the PUBLIC attribute, no item in the variable list can have the PRIVATE
attribute.
5-45

5 Intel Fortran Language Reference
The group name can be specified in more than one NAMELIST statement in a scoping unit. The
variable list following each successive appearance of the group name is treated as a continuation
of the list for that group name.

Examples

In the following example, D and E are added to the variables A, B, and C for group name LIST:
NAMELIST /LIST/ A, B, C

NAMELIST /LIST/ D, E

In the following example, two group names are defined:
CHARACTER*30 NAME(25)

NAMELIST /INPUT/ NAME, GRADE, DATE /OUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group name OUTPUT
contains variables TOTAL and NAME.

See Also
• “Rules for Namelist Sequential READ Statements” for details on namelist input
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output

OPTIONAL Attribute and Statement
The OPTIONAL attribute permits dummy arguments to be omitted in a procedure reference.
The OPTIONAL attribute can be specified in a type declaration statement or an OPTIONAL
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] OPTIONAL [, att-ls] :: d-arg [, d-arg]...
Statement:

OPTIONAL [::] d-arg [, d-arg]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
d-arg
Is the name of a dummy argument.
5-46

Specification Statements 5

Rules and Behavior

The OPTIONAL attribute can only appear in the scoping unit of a subprogram or an interface
body, and can only be specified for dummy arguments.
A dummy argument is "present " if it associated with an actual argument. A dummy argument that
is not optional must be present. You can use the PRESENT intrinsic function to determine whether
an optional dummy argument is associated with an actual argument.
To call a procedure that has an optional argument, you must use an explicit interface.

Examples

The following example shows a type declaration statement specifying the OPTIONAL attribute:
SUBROUTINE TEST(A)

 REAL, OPTIONAL, DIMENSION(-10:2) :: A

END SUBROUTINE

The following is an example of the OPTIONAL statement:
SUBROUTINE TEST(A, B, L, X)

 OPTIONAL :: B

 INTEGER A, B, L, X

 IF (PRESENT(B)) THEN ! Printing of B is conditional

 PRINT *, A, B, L, X ! on its presence

 ELSE

 PRINT *, A, L, X

 ENDIF

END SUBROUTINE

INTERFACE

 SUBROUTINE TEST(ONE, TWO, THREE, FOUR)

 INTEGER ONE, TWO, THREE, FOUR

 OPTIONAL :: TWO

 END SUBROUTINE

END INTERFACE

INTEGER I, J, K, L

I = 1

J = 2

K = 3

L = 4

CALL TEST(I, J, K, L) ! Prints: 1 2 3 4

CALL TEST(I, THREE=K, FOUR=L) ! Prints: 1 3 4 END
5-47

5 Intel Fortran Language Reference
Note that in the second call to subroutine TEST, the second positional (optional) argument is
omitted. In this case, all following arguments must be keyword arguments.

See Also
• “Type Declaration Statements”
• “PRESENT”
• “Optional Arguments”
• Table 5-1 for details on compatible attributes

PARAMETER Attribute and Statement
The PARAMETER attribute defines a named constant.
The PARAMETER attribute can be specified in a type declaration statement or a PARAMETER
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] PARAMETER [, att-ls] :: c = expr [, c = expr]...
Statement:

PARAMETER [(] c = expr [, c = expr]...[)]
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
c
Is the name of the constant.
expr
Is an initialization expression. It can be of any data type.

Rules and Behavior

The type, type parameters, and shape of the named constant are determined in one of the following
ways:
• By an explicit type declaration statement in the same scoping unit.
• By the implicit typing rules in effect for the scoping unit. If the named constant is implicitly

typed, it can appear in a subsequent type declaration only if that declaration confirms the
implicit typing.
5-48

Specification Statements 5

 For example, consider the following statement:
PARAMETER (MU=1.23)

According to implicit typing, MU is of integer type, so MU=1. For MU to equal 1.23, it should
previously be declared REAL in a type declaration or be declared in an IMPLICIT statement.
A named constant must not appear in a format specification or as the character count for Hollerith
constants. For compilation purposes, writing the name is the same as writing the value.
If the named constant is used as the length specifier in a CHARACTER declaration, it must be
enclosed in parentheses.
The name of a constant cannot appear as part of another constant, although it can appear as either
the real or imaginary part of a complex constant.
You can only use the named constant within the scoping unit containing the defining
PARAMETER statement.
Any named constant that appears in the initialization expression must have been defined
previously in the same type declaration statement (or in a previous type declaration statement or
PARAMETER statement), or made accessible by use or host association.

Examples

The following example shows a type declaration statement specifying the PARAMETER attribute:
REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

The following is an example of the PARAMETER statement:
REAL(4) PI, PIOV2

REAL(8) DPI, DPIOV2

LOGICAL FLAG

CHARACTER*(*) LONGNAME

PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)

PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)

PARAMETER (FLAG=.TRUE., LONGNAME=’A STRING OF 25 CHARACTERS’)

See Also
• “Type Declaration Statements”
• “Initialization Expressions”
• “IMPLICIT Statement”
• “Alternative Syntax for the PARAMETER Statement”
• Table 5-1 for details on compatible attributes
5-49

5 Intel Fortran Language Reference
POINTER Attribute and Statement
The POINTER attribute specifies that an object is a pointer (a dynamic variable). A pointer does
not contain data, but points to a scalar or array variable where data is stored. A pointer has no
initial storage set aside for it; memory storage is created for the pointer as a program runs.
The POINTER attribute can be specified in a type declaration statement or a POINTER statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] POINTER [, att-ls] :: ptr [(d-spec)] [, ptr [(d-spec)]]...
Statement:

POINTER [::] ptr [(d-spec)] [, ptr [(d-spec)]]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
ptr
Is the name of the pointer. The pointer cannot be declared with the INTENT or PARAMETER
attributes.
d-spec
Is a deferred-shape specification (: [,:]...). Each colon represents a dimension of the array.

Rules and Behavior

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until
it is assigned to a allocated target. A pointer must not be referenced or defined until memory is
associated with it.
Each pointer has an association status, which tells whether the pointer is currently associated with
a target object. When a pointer is initially declared, its status is undefined. You can use the
ASSOCIATED intrinsic function to find the association status of a pointer.
If the pointer is an array, and it is given the DIMENSION attribute elsewhere in the program, it
must be declared as a deferred-shape array.
A pointer cannot be specified in a DATA, EQUIVALENCE, or NAMELIST statement.
Fortran 95/90 pointers are not the same as integer pointers. For more information, see the
“Integer POINTER Statement”.
5-50

Specification Statements 5

Examples

The following example shows type declaration statements specifying the POINTER attribute:
TYPE(SYSTEM), POINTER :: CURRENT, LAST

REAL, DIMENSION(:,:), POINTER :: I, J, REVERSE

The following is an example of the POINTER statement:
TYPE(SYSTEM) :: TODAYS

POINTER :: TODAYS, A(:,:)

See Also
• “Type Declaration Statements”
• “Pointer Assignments”
• “ALLOCATE Statement”
• “Pointer Association”
• “Pointer Arguments”
• “ASSOCIATED”
• “Deferred-Shape Specifications” for details on deferred-shape arrays
• “NULL”, which can be used to disassociate a pointer
• Table 5-1 for details on compatible attributes

PRIVATE and PUBLIC Attributes and Statements
The PRIVATE and PUBLIC attributes specify the accessibility of entities in a module. (These
attributes are also called accessibility attributes.)
The PRIVATE and PUBLIC attributes can be specified in a type declaration statement or a
PRIVATE or PUBLIC statement, and take one of the following forms:
Type Declaration Statement:

type, [att-ls,] PRIVATE [, att-ls] :: entity [, entity]...
type, [att-ls,] PUBLIC [, att-ls] :: entity [, entity]...

Statement:
PRIVATE [[::] entity [, entity]...]
PUBLIC [[::] entity [, entity]...]

type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
5-51

5 Intel Fortran Language Reference
entity
Is one of the following:
• A variable name
• A procedure name
• A derived type name
• A named constant
• A namelist group name
In statement form, an entity can also be a generic identifier (a generic name, defined operator, or
defined assignment).

Rules and Behavior

The PRIVATE and PUBLIC attributes can only appear in the scoping unit of a module.
Only one PRIVATE or PUBLIC statement without an entity list is permitted in the scoping unit of
a module; it sets the default accessibility of all entities in the module.
If no PUBLIC or PRIVATE statements are specified in a module, the default is PUBLIC
accessibility. Entities with PUBLIC accessibility can be accessed from outside the module by
means of a USE statement.
If a derived type is declared PRIVATE in a module, its components are also PRIVATE. The
derived type and its components are accessible to any subprograms within the defining module
through host association, but they are not accessible from outside the module.
If the derived type is declared PUBLIC in a module, but its components are declared PRIVATE,
any scoping unit accessing the module though use association (or host association) can access the
derived-type definition, but not its components.
If a module procedure has a dummy argument or a function result of a type that has PRIVATE
accessibility, the module procedure must have PRIVATE accessibility. If the module has a generic
identifier, it must also be declared PRIVATE.
If a procedure has a generic identifier, the accessibility of the procedure’s specific name is
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the
other PUBLIC.

Examples

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:
REAL, PRIVATE :: A, B, C

INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:
5-52

Specification Statements 5

MODULE SOME_DATA

 REAL ALL_B

 PUBLIC ALL_B

 TYPE RESTRICTED_DATA

 REAL LOCAL_C

 DIMENSION LOCAL_C(50)

 END TYPE RESTRICTED_DATA

 PRIVATE RESTRICTED_DATA

END MODULE

The following derived-type declaration statement indicates that the type is restricted to the
module:
TYPE, PRIVATE :: DATA

 ...

END TYPE DATA

The following example shows a PUBLIC type with PRIVATE components:
MODULE MATTER

 TYPE ELEMENTS

 PRIVATE

 INTEGER C, D

 END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

See Also
• “Type Declaration Statements”
• “Derived Data Types”
• “USE Statement”
• “Use and Host Association”
• “Defining Generic Names for Procedures” for details on generic identifiers
• “Modules and Module Procedures” for details on modules
• Table 5-1 for details on compatible attributes
5-53

5 Intel Fortran Language Reference
SAVE Attribute and Statement
The SAVE attribute causes the values and definition of objects to be retained after execution of a
RETURN or END statement in a subprogram.
The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and
takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] SAVE [, att-ls] :: [object [, object]...]
Statement:

SAVE [object [, object]...]
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
object
Is the name of an object, or the name of a common block enclosed in slashes
(/common-block-name/).

Rules and Behavior

In Intel® Fortran, certain variables are given the SAVE attribute, or not, by default:
• The following variables are saved by default:

— COMMON variables
— Local variables of non-recursive subprograms
— Data initialized by DATA statements

• The following variables are not saved by default:
— Variables that are declared AUTOMATIC
— Local variables that are allocatable arrays
— Derived-type variables that are data initialized by default initialization of any of their

components
— RECORD variables that are data initialized by default initialization specified in its

STRUCTURE declaration
• Local variables that are not described in the preceding two lists are saved by default.
To enhance portability and avoid possible compiler warning messages, Intel® recommends that
you use the SAVE statement to name variables whose values you want to preserve between
subprogram invocations.
5-54

Specification Statements 5

When a SAVE statement does not explicitly contain a list, all allowable items in the scoping unit
are saved.
A SAVE statement cannot specify the following (their values cannot be saved):
• A blank common
• An object in a common block
• A procedure
• A dummy argument
• A function result
• An automatic object
• A PARAMETER (named) constant
Even though a common block can be included in a SAVE statement, individual variables within
the common block can become undefined (or redefined) in another scoping unit.
If a common block is saved in any scoping unit of a program (other than the main program), it
must be saved in every scoping unit in which the common block appears.
A SAVE statement has no effect in a main program.

Examples

The following example shows a type declaration statement specifying the SAVE attribute:
SUBROUTINE TEST()

 REAL, SAVE :: X, Y

The following is an example of the SAVE statement:
SAVE A, /BLOCK_B/, C, /BLOCK_D/, E

See Also
• “Type Declaration Statements”
• “DATA Statement”
• “COMMON Statement” for details on common blocks
• “Recursive Procedures” for details on recursive program units
• “Modules and Module Procedures” for details on modules.
• Table 5-1 for details on compatible attributes

TARGET Attribute and Statement
The TARGET attribute specifies that an object can become the target of a pointer (it can be
pointed to).
5-55

5 Intel Fortran Language Reference
The TARGET attribute can be specified in a type declaration statement or a TARGET statement,
and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] TARGET [, att-ls] :: object [(a-spec)] [, object [(a-spec)]]...
Statement:

TARGET [::] object [(a-spec)] [, object [(a-spec)]]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
object
Is the name of the object. The object must not be declared with the PARAMETER attribute.
a-spec
Is an array specification.

Rules and Behavior

A pointer is associated with a target by pointer assignment or by an ALLOCATE statement.
If an object does not have the TARGET attribute or has not been allocated (using an ALLOCATE
statement), no part of it can be accessed by a pointer.

Examples

The following example shows type declaration statements specifying the TARGET attribute:
TYPE(SYSTEM), TARGET :: FIRST

REAL, DIMENSION(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:
TARGET :: C(50, 50), D

See Also
• “Type Declaration Statements”
• “ALLOCATE Statement”
• “Pointer Assignments”
• “Pointer Association”
• Table 5-1 for details on compatible attributes
5-56

Specification Statements 5

VOLATILE Attribute and Statement

The VOLATILE attribute specifies that the value of an object is entirely unpredictable, based on
information local to the current program unit. It prevents objects from being optimized during
compilation.
The VOLATILE attribute can be specified in a type declaration statement or a VOLATILE
statement, and takes one of the following forms:
Type Declaration Statement:

type, [att-ls,] VOLATILE [, att-ls] :: object [, object]...
Statement:

VOLATILE object [, object]...
type
Is a data type specifier.
att-ls
Is an optional list of attribute specifiers.
object
Is the name of an object, or the name of a common block enclosed in slashes.

Rules and Behavior

A variable or COMMON block must be declared VOLATILE if it can be read or written in a way
that is not visible to the compiler. For example:
• If an operating system feature is used to place a variable in shared memory (so that it can be

accessed by other programs), the variable must be declared VOLATILE.
• If a variable is accessed or modified by a routine called by the operating system when an

asynchronous event occurs, the variable must be declared VOLATILE.
If an array is declared VOLATILE, each element in the array becomes volatile. If a common block
is declared VOLATILE, each variable in the common block becomes volatile.
If an object of derived type is declared VOLATILE, its components become volatile.
If a pointer is declared VOLATILE, the pointer itself becomes volatile.
A VOLATILE statement cannot specify the following:
• A procedure
• A function result
• A namelist group
5-57

5 Intel Fortran Language Reference
Examples

The following example shows a type declaration statement specifying the VOLATILE attribute:
INTEGER, VOLATILE :: D, E

The following example shows a VOLATILE statement:
PROGRAM TEST

LOGICAL(1) IPI(4)

INTEGER(4) A, B, C, D, E, ILOOK

INTEGER(4) P1, P2, P3, P4

COMMON /BLK1/A, B, C

VOLATILE /BLK1/, D, E

EQUIVALENCE(ILOOK, IPI)

EQUIVALENCE(A, P1)

EQUIVALENCE(P1, P4)

The named common block, BLK1, and the variables D and E are volatile. Variables P1 and P4
become volatile because of the direct equivalence of P1 and the indirect equivalence of P4.

See Also
• “Type Declaration Statements”
• Table 5-1 for details on compatible attributes
• Your user’s guide for details on optimizations performed by the compiler

5-58

Dynamic Allocation
 6

Data objects can be static or dynamic. If a data object is static, a fixed amount of memory storage
is created for it at compile time and is not freed until the program exits. If a data object is dynamic,
memory storage for the object can be created (allocated), altered, or freed (deallocated) as a
program executes.
In Fortran 95/90, pointers, allocatable arrays, and automatic arrays are dynamic data objects.
No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until
it is assigned to a allocated target. A pointer can be dynamically disassociated from a target by
using a NULLIFY statement.
An ALLOCATE statement can also be used to create storage for an allocatable array. A
DEALLOCATE statement is used to free the storage space reserved in a previous ALLOCATE
statement.
Automatic arrays differ from allocatable arrays in that they are automatically allocated and
deallocated whenever you enter or leave a procedure, respectively.
This chapter contains information on the following topics:
• The “ALLOCATE Statement”
• The “DEALLOCATE Statement”
• The “NULLIFY Statement”

See Also
• “Pointer Assignments”
• “Explicit-Shape Specifications” for details on automatic arrays
• “NULL”, which can also be used to disassociate a pointer
6-1

6 Intel Fortran Language Reference
ALLOCATE Statement
The ALLOCATE statement dynamically creates storage for allocatable arrays and pointer targets.
The storage space allocated is uninitialized.
The ALLOCATE statement takes the following form:

ALLOCATE (object [(s-spec[, s-spec...])] [, object[(s-spec[, s-spec...])]]...[, STAT=sv])
object
Is the object to be allocated. It is a variable name or structure component, and must be a pointer or
allocatable array. The object can be of type character with zero length.
s-spec
Is a shape specification in the form [lower-bound:]upper-bound. Each bound must be a scalar
integer expression. The number of shape specifications must be the same as the rank of the object.
sv
Is a scalar integer variable in which the status of the allocation is stored.

Rules and Behavior

A bound in s-spec must not be an expression containing an array inquiry function whose argument
is any allocatable object in the same ALLOCATE statement; for example, the following is not
permitted:
INTEGER ERR

INTEGER, ALLOCATABLE :: A(:), B(:)

...

ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an argument

 ! to function SIZE

If a STAT variable is specified, it must not be allocated in the ALLOCATE statement in which it
appears. If the allocation is successful, the variable is set to zero. If the allocation is not successful,
an error condition occurs, and the variable is set to a positive integer value (representing the
run-time error). If no STAT variable is specified and an error condition occurs, program execution
terminates.

Examples

The following is an example of the ALLOCATE statement:
INTEGER J, N, ALLOC_ERR

REAL, ALLOCATABLE :: A(:), B(:,:)

...

ALLOCATE(A(0:80), B(-3:J+1, N), STAT = ALLOC_ERR)
6-2

Dynamic Allocation 6

See Also
• “ALLOCATABLE Attribute and Statement” for details on allocatable arrays
• “POINTER Attribute and Statement” for details on pointers
• Your user’s guide or online documentation for details on run-time error messages

Allocation of Allocatable Arrays

The bounds (and shape) of an allocatable array are determined when it is allocated. Subsequent
redefinition or undefinition of any entities in the bound expressions does not affect the array
specification.
If the lower bound is greater than the upper bound, that dimension has an extent of zero, and the
array has a size of zero. If the lower bound is omitted, it is assumed to be 1.
When an array is allocated, it is definable. If you try to allocate a currently allocated allocatable
array, an error occurs.
The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
REAL, ALLOCATABLE :: E(:,:)

...

IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status

During program execution, the allocation status of an allocatable array is one of the following:
• Not currently allocated

The array was never allocated or the last operation on it was a deallocation. Such an array
must not be referenced or defined.

• Currently allocated
The array was allocated by an ALLOCATE statement. Such an array can be referenced,
defined, or deallocated.

If an allocatable array has the SAVE attribute, it has an initial status of "not currently allocated". If
the array is then allocated, its status changes to "currently allocated". It keeps that status until the
array is deallocated.
If an allocatable array does not have the SAVE attribute, it has the status of "not currently
allocated" at the beginning of each invocation of the procedure. If the array’s status changes to
"currently allocated", it is deallocated if the procedure is terminated by execution of a RETURN or
END statement.
6-3

6 Intel Fortran Language Reference
Examples

Example 6-1 shows a program that performs virtual memory allocation. This program uses
Fortran 95/90 standard-conforming statements instead of calling an operating system memory
allocation routine.

See Also

“ALLOCATED”

Allocation of Pointer Targets

When a pointer is allocated, the pointer is associated with a target and can be used to reference or
define the target. (The target can be an array or a scalar, depending on how the pointer was
declared.)
Other pointers can become associated with the pointer target (or part of the pointer target) by
pointer assignment.

Example 6-1 Allocating Virtual Memory

! Program accepts an integer and displays square root values

 INTEGER(4) :: N

 READ (5,*) N ! Reads an integer value

 CALL MAT(N)

 END

! Subroutine MAT uses the typed integer value to display the square

! root values of numbers from 1 to N (the number read)

 SUBROUTINE MAT(N)

 REAL(4), ALLOCATABLE :: SQR(:) ! Declares SQR as a one-dimensional

 ! allocatable array

 ALLOCATE (SQR(N)) ! Allocates array SQR

 DO J=1,N

 SQR(J) = SQRT(FLOATJ(J)) ! FLOATJ converts integer to REAL

 ENDDO

 WRITE (6,*) SQR ! Displays calculated values

 DEALLOCATE (SQR) ! Deallocates array SQR

 END SUBROUTINE MAT
6-4

Dynamic Allocation 6

In contrast to allocatable arrays, a pointer can be allocated a new target even if it is currently
associated with a target. The previous association is broken and the pointer is then associated with
the new target.
If the previous target was created by allocation, it becomes inaccessible unless it can still be
referred to by other pointers that are currently associated with it.
The intrinsic function ASSOCIATED can be used to determine whether a pointer is currently
associated with a target. (The association status of the pointer must be defined.) For example:
REAL, TARGET :: TAR(0:50)

REAL, POINTER :: PTR(:)

PTR => TAR

...

IF (ASSOCIATED(PTR,TAR))...

See Also
• “Pointer Assignments”
• “ASSOCIATED”
• “POINTER Attribute and Statement” for details on pointers

DEALLOCATE Statement
The DEALLOCATE statement frees the storage allocated for allocatable arrays and pointer targets
(and causes the pointers to become disassociated). It takes the following form:

DEALLOCATE (object [, object]...[, STAT=sv])
object
Is a structure component or the name of a variable, and must be a pointer or allocatable array.
sv
Is a scalar integer variable in which the status of the deallocation is stored.

Rules and Behavior

If a STAT variable is specified, it must not be deallocated in the DEALLOCATE statement in
which it appears. If the deallocation is successful, the variable is set to zero. If the deallocation is
not successful, an error condition occurs, and the variable is set to a positive integer value
(representing the run-time error). If no STAT variable is specified and an error condition occurs,
program execution terminates.
It is recommended that all explicitly allocated storage be explicitly deallocated when it is no
longer needed.
6-5

6 Intel Fortran Language Reference
Examples

The following example shows deallocation of an allocatable array:
INTEGER ALLOC_ERR

REAL, ALLOCATABLE :: A(:), B(:,:)

...

ALLOCATE (A(10), B(-2:8,1:5))

...

DEALLOCATE(A, B, STAT = ALLOC_ERR)

See Also

Your user’s guide or online documentation for details on run-time error messages

Deallocation of Allocatable Arrays

If the DEALLOCATE statement specifies an array that is not currently allocated, an error occurs.
If an allocatable array with the TARGET attribute is deallocated, the association status of any
pointer associated with it becomes undefined.
If a RETURN or END statement terminates a procedure, an allocatable array has one of the
following allocation statuses:
• It keeps its previous allocation and association status if the following is true:

— It has the SAVE attribute.
— It is in the scoping unit of a module that is accessed by another scoping unit which is

currently executing.
— It is accessible by host association.

• It remains allocated if it is accessed by use association.
• Otherwise, its allocation status is deallocated.
The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
SUBROUTINE TEST

 REAL, ALLOCATABLE, SAVE :: F(:,:)

 REAL, ALLOCATABLE :: E(:,:,:)

 ...

 IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))

END SUBROUTINE TEST
6-6

Dynamic Allocation 6

Note that when subroutine TEST is exited, the allocation status of F is maintained because F has
the SAVE attribute. Since E does not have the SAVE attribute, it is deallocated. On the next
invocation of TEST, E will have the status of "not currently allocated".

See Also
• “Use and Host Association”
• “TARGET Attribute and Statement”
• “RETURN Statement”
• “END Statement”
• “SAVE Attribute and Statement”

Deallocation of Pointer Targets

A pointer must not be deallocated unless it has a defined association status. If the DEALLOCATE
statement specifies a pointer that has undefined association status, or a pointer whose target was
not created by allocation, an error occurs.
A pointer must not be deallocated if it is associated with an allocatable array, or it is associated
with a portion of an object (such as an array element or an array section).
If a pointer is deallocated, the association status of any other pointer associated with the target (or
portion of the target) becomes undefined.
Execution of a RETURN or END statement in a subprogram causes the pointer association status
of any pointer declared (or accessed) in the procedure to become undefined, unless any of the
following applies to the pointer:
• It has the SAVE attribute.
• It is in the scoping unit of a module that is accessed by another scoping unit which is currently

executing.
• It is accessible by host association.
• It is in blank common.
• It is in a named common block that appears in another scoping unit that is currently

executing.
• It is the return value of a function declared with the POINTER attribute.
If the association status of a pointer becomes undefined, it cannot subsequently be referenced or
defined.

Examples

The following example shows deallocation of a pointer:
INTEGER ERR
6-7

6 Intel Fortran Language Reference
REAL, POINTER :: PTR_A(:)

...

ALLOCATE (PTR_A(10), STAT=ERR)

...

DEALLOCATE(PTR_A)

See Also
• “Use and Host Association”
• “RETURN Statement”
• “END Statement”
• “SAVE Attribute and Statement”
• “POINTER Attribute and Statement” for details on pointers
• “COMMON Statement” for details on common blocks
• “NULL”, which can be used to disassociate a pointer

NULLIFY Statement
The NULLIFY statement disassociates a pointer from its target. It takes the following form:

NULLIFY (pointer-object [, pointer-object]...)
pointer-object
Is a structure component or the name of a variable; it must be a pointer (have the POINTER
attribute).

Rules and Behavior

The initial association status of a pointer is undefined. You can use NULLIFY to initialize an
undefined pointer, giving it disassociated status. Then the pointer can be tested using the intrinsic
function ASSOCIATED.

Examples

The following is an example of the NULLIFY statement:
REAL, TARGET :: TAR(0:50)

REAL, POINTER :: PTR_A(:), PTR_B(:)

PTR_A => TAR

PTR_B => TAR

...

NULLIFY(PTR_A)
6-8

Dynamic Allocation 6

After these statements are executed, PTR_A will have disassociated status, while PTR_B will
continue to be associated with variable TAR.

See Also
• “POINTER Attribute and Statement”
• “Pointer Assignments”
• “ASSOCIATED”
• “NULL”, which can be used to disassociate a pointer
6-9

6 Intel Fortran Language Reference
6-10

Execution Control
 7

A program normally executes statements in the order in which they are written. Executable control
constructs and statements modify this normal execution by transferring control to another
statement in the program, or by selecting blocks (groups) of constructs and statements for
execution or repetition.
In Fortran 95/90, control constructs (CASE, DO, and IF) can be named. The name must be a
unique identifier in the scoping unit, and must appear on the initial line and terminal line of the
construct. On the initial line, the name is separated from the statement keyword by a colon (:).
A block can contain any executable Fortran statement except an END statement. You can transfer
control out of a block, but you cannot transfer control into another block.
DO loops cannot partially overlap blocks. The DO statement and its terminal statement must
appear together in a statement block.
This chapter contains information on the following topics:
• The “Branch Statements”
• The “CALL Statement”
• The “CASE Constructs”
• The “CONTINUE Statement”
• The “DO Constructs”
• The “END Statement”
• The “IF Construct and Statement”
• The “PAUSE Statement”
• The “RETURN Statement”
• The “STOP Statement”
7-1

7 Intel Fortran Language Reference
Branch Statements
Branching affects the normal execution sequence by transferring control to a labeled statement in
the same scoping unit. The transfer statement is called the branch statement, while the statement
to which the transfer is made is called the branch target statement.
Any executable statement can be a branch target statement, except for the following:
• CASE statement
• ELSE statement
• ELSE IF statement
Certain restrictions apply to the following statements:

The following branch statements are described in this section:
• “Unconditional GO TO Statement”
• “Computed GO TO Statement”
• “The ASSIGN and Assigned GO TO Statements”
• “Arithmetic IF Statement”

See Also
• “IF Construct and Statement”
• “CASE Constructs”
• “DO Constructs”

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same branch target statement every
time it executes. It takes the following form:

GO TO label

Statement Restriction

DO terminal statement The branch must be taken from within its nonblock DO construct.1

1. If the terminal statement is shared by more than one nonblock DO construct, the branch can only be taken from within the
innermost DO construct.

END DO The branch must be taken from within its block DO construct.

END IF The branch should be taken from within its IF construct.2

2. You can branch to an END IF statement from outside the IF construct; this is a deleted feature in Fortran 95. Intel® Fortran fully
supports features deleted in Fortran 95.

END SELECT The branch must be taken from within its CASE construct.
7-2

Execution Control 7

label
Is the label of a valid branch target statement in the same scoping unit as the GO TO statement.
The unconditional GO TO statement transfers control to the branch target statement identified by
the specified label.
The following are examples of GO TO statements:
GO TO 7734

GO TO 99999

Computed GO TO Statement

The computed GO TO statement transfers control to one of a set of labeled branch target
statements based on the value of an expression. It is an obsolescent feature in Fortran 95.
The computed GO TO statement takes the following form:

GO TO (label-list)[,] expr
label-list
Is a list of labels (separated by commas) of valid branch target statements in the same scoping unit
as the computed GO TO statement. (Also called the transfer list.) The same label can appear more
than once in this list.
expr
Is a scalar numeric expression in the range 1 to n, where n is the number of statement labels in
label-list. If necessary, it is converted to integer data type.

Rules and Behavior

When the computed GO TO statement is executed, the expression is evaluated first. The value of
the expression represents the ordinal position of a label in the associated list of labels. Control is
transferred to the statement identified by the label. For example, if the list contains (30,20,30,40)
and the value of the expression is 2, control is transferred to the statement identified with label 20.
If the value of the expression is less than 1 or greater than the number of labels in the list, control
is transferred to the next executable statement or construct following the computed GO TO
statement.

Examples

The following example shows valid computed GO TO statements:
GO TO (12,24,36), INDEX

GO TO (320,330,340,350,360), SITU(J,K) + 1
7-3

7 Intel Fortran Language Reference
See Also

Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent features in
Fortran 95

The ASSIGN and Assigned GO TO Statements

The ASSIGN statement assigns a label to an integer variable. Subsequently, this variable can be
used as a branch target statement by an assigned GO TO statement or as a format specifier in a
formatted input/output statement.
The ASSIGN and assigned GO TO statements are deleted features in Fortran 95; they were
obsolescent features in Fortran 90. Intel Fortran fully supports features deleted in Fortran 95.

See Also

Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent features in
Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

ASSIGN Statement

The ASSIGN statement assigns a statement label value to an integer variable. It takes the
following form:

ASSIGN label TO var
label
Is the label of a branch target or FORMAT statement in the same scoping unit as the ASSIGN
statement.
var
Is a scalar integer variable.

Rules and Behavior

When an ASSIGN statement is executed, the statement label is assigned to the integer variable.
The variable is then undefined as an integer variable and can only be used as a label (unless it is
later redefined with an integer value).
The ASSIGN statement must be executed before the statements in which the assigned variable is
used.

Examples

The following example shows ASSIGN statements:
INTEGER ERROR
7-4

Execution Control 7

...

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR must be previously
declared as an integer variable.
The following statement associates the variable NUMBER with the statement label 100:
ASSIGN 100 TO NUMBER

If an arithmetic operation is subsequently performed on variable NUMBER (such as follows), the
run-time behavior is unpredictable:
NUMBER = NUMBER + 1

To return NUMBER to the status of an integer variable, you can use the following statement:
NUMBER = 10

This statement dissociates NUMBER from statement 100 and assigns it an integer value of 10.
Once NUMBER is returned to its integer variable status, it can no longer be used in an assigned
GO TO statement.

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement whose label was most recently
assigned to a variable. The assigned GO TO statement takes the following form:

GO TO var [[,] (label-list)]
var
Is a scalar integer variable.
label-list
Is a list of labels (separated by commas) of valid branch target statements in the same scoping unit
as the assigned GO TO statement. The same label can appear more than once in this list.

Rules and Behavior

The variable must have a statement label value assigned to it by an ASSIGN statement (not an
arithmetic assignment statement) before the GO TO statement is executed.
If a list of labels appears, the statement label assigned to the variable must be one of the labels in
the list.
Both the assigned GO TO statement and its associated ASSIGN statement must be in the same
scoping unit.
7-5

7 Intel Fortran Language Reference
Examples

The following example is equivalent to GO TO 200:
ASSIGN 200 TO IGO

GO TO IGO

The following example is equivalent to GO TO 450:
ASSIGN 450 TO IBEG

GO TO IBEG, (300,450,1000,25)

The following example shows an invalid use of an assigned variable:
ASSIGN 10 TO I

J = I

GO TO J

In this case, variable J is not the variable assigned to, so it cannot be used in the assigned GO TO
statement.

Arithmetic IF Statement

The arithmetic IF statement conditionally transfers control to one of three statements, based on the
value of an arithmetic expression. It is an obsolescent feature in Fortran 95 and Fortran 90.
The arithmetic IF statement takes the following form:

IF (expr) label1, label2, label3
expr
Is a scalar numeric expression of type integer or real (enclosed in parentheses).
label1, label2, label3
Are the labels of valid branch target statements that are in the same scoping unit as the arithmetic
IF statement.

Rules and Behavior

All three labels are required, but they do not need to refer to three different statements. The same
label can appear more than once in the same arithmetic IF statement.
During execution, the expression is evaluated first. Depending on the value of the expression,
control is then transferred as follows:

If the Value of expr is: Control Transfers To:

Less than 0 Statement label1

Equal to 0 Statement label2
7-6

Execution Control 7
Examples

The following example transfers control to statement 50 if the real variable THETA is less than or
equal to the real variable CHI. Control passes to statement 100 only if THETA is greater than CHI.
IF (THETA-CHI) 50,50,100

The following example transfers control to statement 40 if the value of the integer variable
NUMBER is even. It transfers control to statement 20 if the value is odd.
IF (NUMBER / 2*2 - NUMBER) 20,40,20

See Also

Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent features in
Fortran 95 and Fortran 90

CALL Statement
The CALL statement transfers control to a subroutine subprogram. It takes the following form:

CALL sub [([a-arg [, a-arg]...])]
sub
Is the name of the subroutine subprogram or other external procedure, or a dummy argument
associated with a subroutine subprogram or other external procedure.
a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is the name of a dummy
argument in the explicit interface for the subroutine. The keyword is assigned a value when the
procedure is invoked.
Each actual argument must be a variable, an expression, the name of a procedure, or an alternate
return specifier. (It must not be the name of an internal procedure, statement function, or the
generic name of a procedure.)
An alternate return specifier is an asterisk (*), or ampersand (&), followed by the label of an
executable branch target statement in the same scoping unit as the CALL statement. (An alternate
return is an obsolescent feature in Fortran 95 and Fortran 90.)

Greater than 0 Statement label3

If the Value of expr is: Control Transfers To:
7-7

7 Intel Fortran Language Reference
Rules and Behavior

When the CALL statement is executed, any expressions in the actual argument list are evaluated,
then control is passed to the first executable statement or construct in the subroutine. When the
subroutine finishes executing, control returns to the next executable statement following the
CALL statement, or to a statement identified by an alternate return label (if any).
If an argument list appears, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.
If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.
If a dummy argument is optional, the actual argument can be omitted.
An actual argument associated with a dummy procedure must be the specific name of a procedure,
or be another dummy procedure. Certain specific intrinsic function names must not be used as
actual arguments (see Table 9-1).
You can use a CALL statement to invoke a function as long as the function is not one of the
following types:
• REAL(8)
• REAL(16)
• COMPLEX(8)
• COMPLEX(16)
• CHARACTER

Examples

The following example shows valid CALL statements:
CALL CURVE(BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT(A,N,’ABCD’)

CALL EXIT

CALL MULT(A,B,*10,*20,C) ! The asterisks and ampersands denote

CALL SUBA(X,&30,&50,Y) ! alternate returns

The following example shows a subroutine with argument keywords:
PROGRAM KEYWORD_EXAMPLE

 INTERFACE

 SUBROUTINE TEST_C(I, L, J, KYWD2, D, F, KYWD1)

 INTEGER I, L(20), J, KYWD1
7-8

Execution Control 7

 REAL, OPTIONAL :: D, F

 COMPLEX KYWD2

 ...

 END SUBROUTINE TEST_C

 END INTERFACE

INTEGER I, J, K

INTEGER L(20)

COMPLEX Z1

CALL TEST_C(I, L, J, KYWD1 = K, KYWD2 = Z1)

...

The first three actual arguments are associated with their corresponding dummy arguments by
position. The argument keywords are associated by keyword name, so they can appear in any
order.
Note that the interface to subroutine TEST has two optional arguments that have been omitted in
the CALL statement.
The following is another example of a subroutine call with argument keywords:
CALL TEST(X, Y, N, EQUALITIES = Q, XSTART = X0)

The first three arguments are associated by position.

See Also
• “Subroutines”
• “Argument Association” for details on procedure arguments
• “OPTIONAL Attribute and Statement” for details on optional arguments
• “Dummy Procedure Arguments” for details on dummy arguments
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 95 and Fortran 90

CASE Constructs
The CASE construct conditionally executes one block of constructs or statements depending on
the value of a scalar expression in a SELECT CASE statement.
The CASE construct takes the following form:
7-9

7 Intel Fortran Language Reference
[name:] SELECT CASE (expr)
[CASE (case-value [, case-value]...) [name]

block]...
[CASE DEFAULT [name]

block]
END SELECT [name]

name
Is the name of the CASE construct.
expr
Is a scalar expression of type integer, logical, or character (enclosed in parentheses). Evaluation of
this expression results in a value called the case index.
case-value
Is one or more scalar integer, logical, or character initialization expressions enclosed in
parentheses. Each expr must be of the same type and kind parameter as expr. If the type is
character, case-value and expr can be of different lengths, but their kind parameter must be the
same.
Integer and character expressions can be expressed as a range of case values, taking one of the
following forms:

low:high

low:

:high

Case values must not overlap.
block
Is a sequence of zero or more statements or constructs.

Rules and Behavior

If a construct name is specified in a SELECT CASE statement, the same name must appear in the
corresponding END SELECT statement. The same construct name can optionally appear in any
CASE statement in the construct. The same construct name must not be used for different named
constructs in the same scoping unit.
The case expression (expr) is evaluated first. The resulting case index is compared to the case
values to find a matching value (there can only be one). When a match occurs, the block following
the matching case value is executed and the construct terminates.
The following rules determine whether a match occurs:
7-10

Execution Control 7

• When the case value is a single value (no colon appears), a match occurs as follows:

• When the case value is a range of values (a colon appears), a match depends on the range
specified, as follows:

The following are all valid case values:
CASE (1, 4, 7, 11:14, 22) ! Individual values as specified:

 ! 1, 4, 7, 11, 12, 13, 14, 22

CASE (:-1) ! All values less than zero

CASE (0) ! Only zero

CASE (1:) ! All values above zero

If no match occurs but a CASE DEFAULT statement is present, the block following that statement
is executed and the construct terminates.
If no match occurs and no CASE DEFAULT statement is present, no block is executed, the
construct terminates, and control passes to the next executable statement or construct following
the END SELECT statement.
Figure 7-1 shows the flow of control in a CASE construct.

Data Type A Match Occurs If:

Logical case-index .EQV. case- value

Integer or character case-index = = case-value

Range A Match Occurs If:

low: case-index >= low

:high case-index <= high

low:high low <= case-index <= high
7-11

7 Intel Fortran Language Reference
Figure 7-1 Flow of Control in CASE Constructs

Construct Flow of Control

SELECT CASE (TEST 1)

END SELECT

CASE (1)

CASE (2)

block 1

block 2

ZK−6515A−GE

Yes

No

Execute
block 1

Execute
block 2

Execute
block 3

Execute
block 4

Evaluate Test 1

Matches
CASE (1)

Matches
CASE (1)

Matches
CASE (2)

Matches
CASE (3)

Matches
CASE (2)

Execute
block 2

Execute
block 1

Yes

No

Yes

Yes

Yes

No

No

No

SELECT CASE (TEST 2)

CASE (1)

CASE (2)

CASE (3)

CASE DEFAULT

END SELECT

block 1

block 2

block 3

block 4
7-12

Execution Control 7

You cannot use branching statements to transfer control to a CASE statement. However, branching
to a SELECT CASE statement is allowed. Branching to the END SELECT statement is allowed
only from within the CASE construct.

Examples

The following are examples of CASE constructs:
INTEGER FUNCTION STATUS_CODE (I)

 INTEGER I

 CHECK_STATUS: SELECT CASE (I)

 CASE (:-1)

 STATUS_CODE = -1

 CASE (0)

 STATUS_CODE = 0

 CASE (1:)

 STATUS_CODE = 1

 END SELECT CHECK_STATUS

END FUNCTION STATUS_CODE

SELECT CASE (J)

CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9

 CALL SUB_A

CASE DEFAULT

 CALL SUB_B

END SELECT

The following three examples are equivalent:
1. SELECT CASE (ITEST .EQ. 1)

 CASE (.TRUE.)

 CALL SUB1 ()

 CASE (.FALSE.)

 CALL SUB2 ()

 END SELECT

2. SELECT CASE (ITEST)

 CASE DEFAULT

 CALL SUB2 ()

 CASE (1)

 CALL SUB1 ()

 END SELECT
7-13

7 Intel Fortran Language Reference
3. IF (ITEST .EQ. 1) THEN

 CALL SUB1 ()

 ELSE

 CALL SUB2 ()

 END IF

CONTINUE Statement
The CONTINUE statement is primarily used to terminate a labeled DO construct when the
construct would otherwise end improperly with either a GO TO, arithmetic IF, or other prohibited
control statement.
The CONTINUE statement takes the following form:

CONTINUE
The statement by itself does nothing and has no effect on program results or execution sequence.
The following example shows a CONTINUE statement:
 DO 150 I = 1,40

40 Y = Y + 1

 Z = COS(Y)

 PRINT *, Z

 IF (Y .LT. 30) GO TO 150

 GO TO 40

150 CONTINUE

DO Constructs
The DO construct controls the repeated execution of a block of statements or constructs. (This
repeated execution is called a loop.)
The number of iterations of a loop can be specified in the initial DO statement in the construct, or
the number of iterations can be left indefinite by a simple DO ("DO forever") construct or DO
WHILE statement.
The EXIT and CYCLE statements modify the execution of a loop. An EXIT statement terminates
execution of a loop, while a CYCLE statement terminates execution of the current iteration of a
loop. For example:
DO

 READ (EUNIT, IOSTAT=IOS) Y

 IF (IOS /= 0) EXIT

 IF (Y <0) CYCLE
7-14

Execution Control 7

 CALL SUB_A(Y)

END DO

If an error or end-of-file occurs, the DO construct terminates. If a negative value for Y is read, the
program skips to the next READ statement.

See Also
• “CYCLE Statement”
• “EXIT Statement”
• “FORALL Statement and Construct” for details on DO loops in FORALL constructs

Forms for DO Constructs

A DO construct takes one of the following forms:
Block Form:

[name:] DO [label][,] [loop-control]
block

[label] term-stmt
Nonblock Form:

DO label[,] [loop-control]
block

[label] ex-term-stmt
name
Is the name of the DO construct.
label
Is a statement label identifying the terminal statement.
loop-control
Is a DO iteration (see “Iteration Loop Control”) or a (DO) WHILE statement (see “DO WHILE
Statement”).
block
Is a sequence of zero or more statements or constructs.
term-stmt
Is the terminal statement for the block form of the construct.
ex-term-stmt
Is the terminal statement for the nonblock form of the construct.
7-15

7 Intel Fortran Language Reference
Rules and Behavior

The terminal statement (term-stmt) for a block DO construct is an END DO or CONTINUE
statement. If the block DO statement contains a label, the terminal statement must be identified
with the same label. If no label appears, the terminal statement must be an END DO statement.
If a construct name is specified in a block DO statement, the same name must appear in the
terminal END DO statement. If no construct name is specified in the block DO statement, no name
can appear in the terminal END DO statement.
The terminal statement (ex-term-stmt) for a nonblock DO construct is an executable statement (or
construct) that is identified by the label specified in the nonblock DO statement. A nonblock DO
construct can share a terminal statement with another nonblock DO construct. A block DO
construct cannot share a terminal statement.
The following cannot be terminal statements for nonblock DO constructs:
• CONTINUE (allowed if it is a shared terminal statement)
• CYCLE
• END (for a program or subprogram)
• EXIT
• GO TO (unconditional or assigned)
• Arithmetic IF
• RETURN
• STOP
The nonblock DO construct is an obsolescent feature in Fortran 95 and Fortran 90.

Examples

The following example shows equivalent block DO and nonblock DO constructs:
 DO I = 1, N ! Block DO

 TOTAL = TOTAL + B(I)

 END DO

 DO 20 I = 1, N ! Nonblock DO

20 TOTAL = TOTAL + B(I)

The following example shows a simple block DO construct (contains no iteration count or DO
WHILE statement):
DO

 READ *, N

 IF (N == 0) STOP

 CALL SUBN
7-16

Execution Control 7

END DO

The DO block executes repeatedly until the value of zero is read. Then the DO construct
terminates.
The following example shows a named block DO construct:
LOOP_1: DO I = 1, N

 A(I) = C * B(I)

 END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal statement:
 DO 20 I = 1, N

 DO 20 J = 1 + I, N

 20 RESULT(I,J) = 1.0 / REAL(I + J)

See Also

Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent features in
Fortran 95 and Fortran 90

Execution of DO Constructs

The range of a DO construct includes all the statements and constructs that follow the DO
statement, up to and including the terminal statement. If the DO construct contains another
construct, the inner (nested) construct must be entirely contained within the DO construct.
Execution of a DO construct differs depending on how the loop is controlled, as follows:
• For simple DO constructs, there is no loop control. Statements in the DO range are repeated

until the DO statement is terminated explicitly by a statement within the range.
• For iterative DO statements, loop control is specified as do-var = expr1, expr2

[, expr3]. An iteration count specifies the number of times the DO range is executed. (For
more information on iteration loop control, see “Iteration Loop Control”.)

• For DO WHILE statements, loop control is specified as a DO range. The DO range is
repeated as long as a specified condition remains true. Once the condition is evaluated as
false, the DO construct terminates. (For more information on the DO WHILE statement, see
“DO WHILE Statement”.)

Iteration Loop Control

DO iteration loop control takes the following form:
do-var = expr1, expr2 [, expr3]
7-17

7 Intel Fortran Language Reference
do-var
Is the name of a scalar variable of type integer or real. It cannot be the name of an array element or
structure component.
expr
Is a scalar numeric expression of type integer or real. If it is not the same type as do-var, it is
converted to that type.

Rules and Behavior

A DO variable or expression of type real is a deleted feature in Fortran 95; it was obsolescent in
Fortran 90. Intel Fortran fully supports features deleted in Fortran 95.
The following steps are performed in iteration loop control:

1. The expressions expr1, expr2, and expr3 are evaluated to respectively determine the
initial, terminal, and increment parameters.
The increment parameter (expr3) is optional and must not be zero. If an increment
parameter is not specified, it is assumed to be of type default integer with a value of 1.

2. The DO variable (do-var) becomes defined with the value of the initial parameter
(expr1).

3. The iteration count is determined as follows:
 MAX(INT((expr2 - expr1 + expr3)/expr3), 0)

The iteration count is zero if either of the following is true:
 expr1 > expr2 and expr3 > 0

 expr1 < expr2 and expr3 < 0

4. The iteration count is tested. If the iteration count is zero, the loop terminates and the DO
construct becomes inactive. (A compiler option can affect this, see your user’s guide for
more information.) If the iteration count is nonzero, the range of the loop is executed.

5. The iteration count is decremented by one, and the DO variable is incremented by the
value of the increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when the iteration count
was tested and found to be zero).
The DO variable must not be redefined or become undefined during execution of the DO range.
If you change variables in the initial, terminal, or increment expressions during execution of the
DO construct, it does not affect the iteration count. The iteration count is fixed each time the DO
construct is entered.

Examples

The following example specifies 25 iterations:
7-18

Execution Control 7

DO 100 K=1,50,2

K = 49 during the final iteration, K = 51 after the loop.
The following example specifies 27 iterations:
DO 350 J=50,-2,-2

J = –2 during the final iteration, J = –4 after the loop.
The following example specifies 9 iterations:
DO NUMBER=5,40,4

NUMBER = 37 during the final iteration, NUMBER = 41 after the loop. The terminating
statement of this DO loop must be END DO.

See Also

Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent features in
Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

Nested DO Constructs

A DO construct can contain one or more complete DO constructs (loops). The range of an inner
nested DO construct must lie completely within the range of the next outer DO construct. Nested
nonblock DO constructs can share a labeled terminal statement.
Figure 7-2 shows correctly and incorrectly nested DO constructs.
7-19

7 Intel Fortran Language Reference
Figure 7-2 Nested DO Constructs

CONTINUE

.

.

DO 45 M=1,20

.

.

CONTINUE

DO 15 K=1,10
.
.

DO 25 L=1,20

DO 30 M=1,15

35

45

.

.

CONTINUE25

.

.

CONTINUE

.

.

15

.

.

CONTINUE30

DO 45 K=1,10
.
.

DO 35 L=2,50,2

.

.

.

.

DO 10 I=1,20

.

.

CONTINUE10

DO J=1,5

.

.

DO K=1,10

.

.

END DO

.

.

END DO

DO 10 I=1,5

.

.

DO J=1,10

.

.

CONTINUE

.

.

END DO

.

.
.
.

10

ZK−7969−GE

Correctly Nested
DO Loops

Incorrectly Nested
DO loops
7-20

Execution Control 7

In a nested DO construct, you can transfer control from an inner construct to an outer construct.
However, you cannot transfer control from an outer construct to an inner construct.
If two or more nested DO constructs share the same terminal statement, you can transfer control to
that statement only from within the range of the innermost construct. Any other transfer to that
statement constitutes a transfer from an outer construct to an inner construct, because the shared
statement is part of the range of the innermost construct.

Extended Range

A DO construct has an extended range if both of the following are true:
• The DO construct contains a control statement that transfers control out of the construct.
• Another control statement returns control back into the construct after execution of one or

more statements.
The range of the construct is extended to include all executable statements between the destination
statement of the first transfer and the statement that returns control to the construct.
The following rules apply to a DO construct with extended range:
• A transfer into the range of a DO statement is permitted only if the transfer is made from the

extended range of that DO statement.
• The extended range of a DO statement must not change the control variable of the DO

statement.
Figure 7-3 illustrates valid and invalid extended range control transfers.
7-21

7 Intel Fortran Language Reference
Figure 7-3 Control Transfers and Extended Range

15

35

50

30

20

GO TO 20

DO 35 K=1,10

DO 35 M=1,15

DO 15 L=2,20

A = B + C

X = A * D

CONTINUE

CONTINUE

D = E/F

GO TO 50

GO TO 30

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

40

45

50

GO TO 40

CONTINUE

X = A * D

DO 45 M=1,15

GO TO 30

CONTINUE

CONTINUE

DO 50 K=1,10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

GO TO 20

20 A = B + C

D = E/F

.

.

DO 35 L=2,20

.

.

DO
Loop

Extended
Range

Valid
Control Transfers

Invalid
Control Transfers

35

30
7-22

ZK−4761−GE

Execution Control 7

DO WHILE Statement

The DO WHILE statement executes the range of a DO construct while a specified condition
remains true. The statement takes the following form:

DO [label][,] WHILE (expr)
label
Is a label specifying an executable statement in the same program unit.
expr
Is a scalar logical expression enclosed in parentheses.

Rules and Behavior

Before each execution of the DO range, the logical expression is evaluated. If it is true, the
statements in the body of the loop are executed. If it is false, the DO construct terminates and
control transfers to the statement following the loop.
If no label appears in a DO WHILE statement, the DO WHILE loop must be terminated with an
END DO statement.
You can transfer control out of a DO WHILE loop but not into a loop from elsewhere in the
program.

Examples

The following example shows a DO WHILE statement:
CHARACTER*132 LINE

...

I = 1

DO WHILE (LINE(I:I) .EQ. ' ')

 I = I + 1

END DO

The following examples show required and optional END DO statements:
Required Optional

DO WHILE (I .GT. J) DO 10 WHILE (I .GT. J)

 ARRAY(I,J) = 1.0 ARRAY(I,J) = 1.0

 I = I - 1 I = I - 1

END DO 10 END DO
7-23

7 Intel Fortran Language Reference
CYCLE Statement

The CYCLE statement interrupts the current execution cycle of the innermost (or named) DO
construct.
The CYCLE statement takes the following form:

CYCLE [name]
name
Is the name of the DO construct.

Rules and Behavior

When a CYCLE statement is executed, the following occurs:
1. The current execution cycle of the named (or innermost) DO construct is terminated.

If a DO construct name is specified, the CYCLE statement must be within the range of
that construct.

2. The iteration count (if any) is decremented by 1.
3. The DO variable (if any) is incremented by the value of the increment parameter (if any).
4. A new iteration cycle of the DO construct begins.

Any executable statements following the CYCLE statement (including a labeled terminal
statement) are not executed.
A CYCLE statement can be labeled, but it cannot be used to terminate a DO construct.

Examples

The following example shows a CYCLE statement:
DO I =1, 10

 A(I) = C + D(I)

 IF (D(I) < 0) CYCLE ! If true, the next statement is omitted

 A(I) = 0 ! from the loop and the loop is tested again.

END DO

EXIT Statement

The EXIT statement terminates execution of a DO construct. It takes the following form:
EXIT [name]

name
Is the name of the DO construct.
7-24

Execution Control 7

Rules and Behavior

The EXIT statement causes execution of the named (or innermost) DO construct to be terminated.
If a DO construct name is specified, the EXIT statement must be within the range of that construct.
Any DO variable present retains its last defined value.
An EXIT statement can be labeled, but it cannot be used to terminate a DO construct.

Examples

The following example shows an EXIT statement:
LOOP_A : DO I = 1, 15

 N = N + 1

 IF (N > I) EXIT LOOP_A

END DO LOOP_A

END Statement
The END statement marks the end of a program unit. It takes one of the following forms:

END [PROGRAM [program-name]]
END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]
END [MODULE [module-name]]
END [BLOCK DATA [block-data-name]]

For internal procedures and module procedures, you must specify the FUNCTION and
SUBROUTINE keywords in the END statement; otherwise, the keywords are optional.
In main programs, function subprograms, and subroutine subprograms, END statements are
executable and can be branch target statements. If control reaches the END statement in these
program units, the following occurs:
• In a main program, execution of the program terminates.
• In a function or subroutine subprogram, a RETURN statement is implicitly executed.
The END statement cannot be continued in a program unit, and no other statement in the program
unit can have an initial line that appears to be the program unit END statement.
The END statements in a module or block data program unit are nonexecutable.

See Also
• Chapter 8, “Program Units and Procedures”
• “Branch Statements” for details on branch target statements
7-25

7 Intel Fortran Language Reference
IF Construct and Statement
The IF construct conditionally executes one block of statements or constructs.
The IF statement conditionally executes one statement.
The decision to transfer control or to execute the statement or block is based on the evaluation of a
logical expression within the IF statement or construct.

See Also

“Arithmetic IF Statement”

IF Construct

The IF construct conditionally executes one block of constructs or statements depending on the
evaluation of a logical expression. (This construct was called a block IF statement in FORTRAN
77.)
The IF construct takes the following form:

[name:] IF (expr) THEN
block

[ELSE IF (expr) THEN [name]
block]...

[ELSE [name]
block]

END IF [name]
name
Is the name of the IF construct.
expr
Is a scalar logical expression enclosed in parentheses.
block
Is a sequence of zero or more statements or constructs.

Rules and Behavior

If a construct name is specified at the beginning of an IF THEN statement, the same name must
appear in the corresponding END IF statement. The same construct name must not be used for
different named constructs in the same scoping unit.
7-26

Execution Control 7

Depending on the evaluation of the logical expression, one block or no block is executed. The
logical expressions are evaluated in the order in which they appear, until a true value is found or an
ELSE or END IF statement is encountered.
Once a true value is found or an ELSE statement is encountered, the block immediately following
it is executed and the construct execution terminates.
If none of the logical expressions evaluate to true and no ELSE statement appears in the construct,
no block in the construct is executed and the construct execution terminates.

You cannot use branching statements to transfer control to an ELSE IF statement or ELSE
statement. However, you can branch to an END IF statement from within the IF construct.
Figure 7-4 shows the flow of control in IF constructs.

NOTE. No additional statement can be placed after the IF THEN statement in
a block IF construct. For example, the following statement is invalid in the
block IF construct:
IF (e) THEN I = J
This statement is translated as the following logical IF statement:
IF (e) THENI = J
7-27

7 Intel Fortran Language Reference
Figure 7-4 Flow of Control in IF Constructs

1 2

3

4

e
Test

e
Test

block
Execute

False

block
Execute

e
Test

e
Test

e
Test

e
Test

e
Test

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

False

False

False False False

3

2

2

1

1

False

True

True

True True

True True True

Flow of Control

ZK−0617−GE

2

2

1

1

Construct

IF (e) THEN

block

END IF

IF (e) THEN

block 1
ELSE

block 2

END IF

IF (e) THEN1
block 1

ELSE IF (e) THEN2
block 2

END IF

1IF (e) THEN

block 1
ELSE IF (e) THEN2

block 2
ELSE IF (e) THEN3

block3
ELSE

block 4
END IF
7-28

Execution Control 7

You can include an IF construct in the statement block of another IF construct, if the nested IF
construct is completely contained within a statement block. It cannot overlap statement blocks.

Examples

The following example shows the simplest form of an IF construct:

This construct conditionally executes the block of statements between the IF THEN and the END
IF statements.
The following example shows an IF construct containing an ELSE statement:

Block1 consists of all the statements between the IF THEN and ELSE statements. Block2 consists
of all the statements between the ELSE and the END IF statements.
If the value of the character variable NAME is less than 'N', block1 is executed. If the value of
NAME is greater than or equal to 'N', block2 is executed.
The following example shows an IF construct containing an ELSE IF THEN statement:

Form Example

IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN

 block TOTERR = TOTERR + ABS(ADJU)

 QUEST = ADJU/FNDVAL

END IF END IF

Form Example

IF (expr) THEN IF (NAME .LT. 'N') THEN

 block 1 IFRONT = IFRONT + 1

 FRLET(IFRONT) = NAME(1:2)

ELSE ELSE

 block 2 IBACK = IBACK + 1

END IF END IF

Form Example

IF (expr) THEN IF (A .GT. B) THEN

 block 1 D = B

 F = A – B

ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN

 block 2 D = B/2.
7-29

7 Intel Fortran Language Reference
If A is greater than B, block1 is executed. If A is not greater than B, but A is greater than B/2,
block2 is executed. If A is not greater than B and A is not greater than B/2, neither block1 nor
block2 is executed. Control transfers directly to the next executable statement after the END IF
statement.
The following example shows an IF construct containing several ELSE IF THEN statements and
an ELSE statement:

If A is greater than B, block1 is executed. If A is not greater than B but is greater than C, block2 is
executed. If A is not greater than B or C but is greater than Z, block3 is executed. If A is not
greater than B, C, or Z, block4 is executed.
The following example shows a nested IF construct:

 F = A – B/2.

END IF END IF

Form Example

IF (expr) THEN IF (A .GT. B) THEN

 block1 D = B

 F = A – B

ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN

 block2 D = C

 F = A – C

ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN

 block3 D = Z

 F = A – Z

ELSE ELSE

 block4 D = 0.0

 F = A

END IF END IF

Form Example

IF (expr) THEN IF (A .LT. 100) THEN

 block1 INRAN = INRAN + 1

 IF (expr2) THEN IF (ABS(A – AVG) .LE. 5.) THEN

Form Example
7-30

Execution Control 7
If A is less than 100, the code immediately following the IF is executed. This code contains a
nested IF construct. If the absolute value of A minus AVG is less than or equal to 5, block1a is
executed. If the absolute value of A minus AVG is greater than 5, block1b is executed.
If A is greater than or equal to 100, block2 is executed, and the nested IF construct (in block1) is
not executed.
The following example shows a named IF construct:
BLOCK_A: IF (D > 0.0) THEN ! Initial statement for named construct

 RADIANS = ACOS(D) ! These two statements

 DEGREES = ACOSD(D) ! form a block

END IF BLOCK_A ! Terminal statement for named construct

IF Statement

The IF statement conditionally executes one statement based on the value of a logical expression.
(This statement was called a logical IF statement in FORTRAN 77.)
The IF statement takes the following form:

IF (expr) stmt
expr
Is a scalar logical expression enclosed in parentheses.
stmt
Is any complete, unlabeled, executable Fortran statement, except for the following:
• A CASE, DO, IF, FORALL, or WHERE construct
• Another IF statement
• The END statement for a program, function, or subroutine

 block1a INAVG = INAVG + 1

 ELSE ELSE

 block1b OUTAVG = OUTAVG + 1

 END IF END IF

ELSE ELSE

 block2 OUTRAN = OUTRAN + 1

END IF END IF

Form Example
7-31

7 Intel Fortran Language Reference
When an IF statement is executed, the logical expression is evaluated first. If the value is true, the
statement is executed. If the value is false, the statement is not executed and control transfers to
the next statement in the program.

Examples

The following examples show valid IF statements:
IF (J.GT.4 .OR. J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)

IF (ENDRUN) CALL EXIT

PAUSE Statement
The PAUSE statement temporarily suspends program execution until the user or system resumes
execution. The PAUSE statement is a deleted feature in Fortran 95; it was obsolescent in Fortran
90. Intel Fortran fully supports features deleted in Fortran 95.
The PAUSE statement takes the following form:

PAUSE [pause-code]
pause-code
Is an optional message. It can be either of the following:
• A scalar character constant of type default character.
• A string of up to six digits; leading zeros are ignored. (Fortran 90 and FORTRAN 77 limit

digits to five.)

Rules and Behavior

If you specify pause-code, the PAUSE statement displays the specified message and then displays
the default prompt.
If you do not specify pause-code, the system displays the following default message:

FORTRAN PAUSE

The following prompt is then displayed:
• On Linux* systems:

PAUSE prompt>

• On Windows* systems:
Fortran Pause - Enter command<CR> or <CR> to continue.
7-32

Execution Control 7

Effect on Linux* Systems

The effect of PAUSE differs depending on whether the program is a foreground or background
process, as follows:
• If a program is a foreground process, the program is suspended until you enter the

CONTINUE command. Execution then resumes at the next executable statement.
Any other command terminates execution.

• If a program is a background process, the behavior depends on stdin, as follows:
— If stdin is redirected from a file, the system displays the following (after the pause

code and prompt):
To continue from background, execute 'kill -15 n'

In this message, n is the process id of the program.
— If stdin is not redirected from a file, the program becomes a suspended background

job, and you must specify fg to bring the job into the foreground. You can then enter a
command to resume or terminate processing.

Effect on Windows* Systems

The program waits for input on stdin. If you enter a blank line, execution resumes at the next
executable statement.
Anything else is treated as a DOS command and is executed by a system()call. The program
loops, letting you execute multiple DOS commands, until a blank line is entered. Execution then
resumes at the next executable statement.

Examples

The following examples show valid PAUSE statements:
PAUSE 701

PAUSE 'ERRONEOUS RESULT DETECTED'

See Also
• Your user’s guide for details on stdin
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 95 and Fortran 90, as well as features deleted in Fortran 95

RETURN Statement
The RETURN statement transfers control from a subprogram to the calling program unit.
The RETURN statement takes the following form:

RETURN [expr]
7-33

7 Intel Fortran Language Reference
expr
Is a scalar expression that is converted to an integer value if necessary.
The expr is only allowed in subroutines; it indicates an alternate return. (An alternate return is an
obsolescent feature in Fortran 95 and Fortran 90.)

Rules and Behavior

When a RETURN statement is executed in a function subprogram, control is transferred to the
referencing statement in the calling program unit.
When a RETURN statement is executed in a subroutine subprogram, control is transferred to the
first executable statement following the CALL statement that invoked the subroutine, or to the
alternate return (if one is specified).

Examples
The following shows how alternate returns can be used in a subroutine:

 CALL CHECK(A, B, *10, *20, C)

 ...

10 ...

20 ...

 SUBROUTINE CHECK(X, Y, *, *, C)

 ...

50 IF (X) 60, 70, 80

60 RETURN

70 RETURN 1

80 RETURN 2

 END

The value of X determines the return, as follows:
• If X < 0, a normal return occurs and control is transferred to the first executable statement

following CALL CHECK in the calling program.
• If X = = 0, the first alternate return (RETURN 1) occurs and control is transferred to the

statement identified with label 10.
• If X > 0, the second alternate return (RETURN 2) occurs and control is transferred to the

statement identified with label 20.
Note that an asterisk (*) specifies the alternate return. An ampersand (&) can also specify an
alternate return in a CALL statement, but not in a subroutine’s dummy argument list.

See Also
• “CALL Statement”
7-34

Execution Control 7

• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 95 and Fortran 90

STOP Statement
The STOP statement terminates program execution before the end of the program unit. It takes the
following form:

STOP [stop-code]
stop-code
Is an optional message. It can be either of the following:
• A scalar character constant of type default character.
• A string of up to six digits; leading zeros are ignored. (Fortran 95/90 and FORTRAN 77 limit

digits to five.)

Effect on Linux* Systems

If you specify stop-code, the STOP statement writes the specified message to the standard error
device and terminates program execution. The program returns a status of zero to the operating
system.
If you do not specify stop-code, no message is output.

Effect on Windows* Systems

If you specify stop-code, the effect differs depending on its form, as follows:
• If stop-code is specified as a character constant, the STOP statement writes the specified

message to the standard error device and terminates program execution. The program returns
a status of zero to the operating system.

• If stop-code is specified as a string of digits, the STOP statement writes the following to the
standard error device and terminates program execution:
Return code stop-code

In QuickWin programs, the following is displayed in a message box:
Program terminated with Exit Code stop-code

In both cases, the program returns a status of stop-code to the operating system as an integer.
If you do not specify stop-code, the STOP statement writes the following default message to the
standard error device and terminates program execution:
Stop - Program terminated.

The program returns a status of zero to the operating system.
7-35

7 Intel Fortran Language Reference
Examples

The following examples show valid STOP statements:
STOP 98

STOP 'END OF RUN'

DO

 READ *, X, Y

 IF (X > Y) STOP 5555

END DO
7-36

Program Units and
Procedures
8
A Fortran 95/90 program consists of one or more program units. There are four types of program
units:
• Main program

The program unit that denotes the beginning of execution. It may or may not have a
PROGRAM statement as its first statement.

• External procedures
Program units that are either user-written functions or subroutines.

• Modules
Program units that contain declarations, type definitions, procedures, or interfaces that can
be shared by other program units.

• Block data program units
Program units that provide initial values for variables in named common blocks.

A program unit does not have to contain executable statements; for example, it can be a module
containing interface blocks for subroutines.
A procedure can be invoked during program execution to perform a specific task.
There are several kinds of procedures, as follows:

Kind of Procedure Description

External procedure A procedure that is not part of any other program unit

Module procedure A procedure defined within a module

Internal procedure1 A procedure (other than a statement function) contained within a
main program, function, or subroutine

Intrinsic procedure A procedure defined by the Fortran language

Dummy procedure An actual argument specified as a procedure or appearing in a
procedure reference
8-1

8 Intel Fortran Language Reference
A function is invoked in an expression using the name of the function or a defined operator. It
returns a single value (function result) that is used to evaluate the expression.
A subroutine is invoked in a CALL statement or by a defined assignment statement. It does not
directly return a value, but values can be passed back to the calling program unit through
arguments (or variables) known to the calling program.
Recursion (direct or indirect) is permitted for functions and subroutines.
A procedure interface refers to the properties of a procedure that interact with or are of concern to
the calling program. A procedure interface can be explicitly defined in interface blocks. All
program units, except block data program units, can contain interface blocks.
This chapter contains information on the following topics:
• “Main Program”
• “Modules and Module Procedures”
• “Block Data Program Units”
• “Functions, Subroutines, and Statement Functions”
• “External Procedures”
• “Internal Procedures”
• “Argument Association”
• “Procedure Interfaces”
• The “CONTAINS Statement”
• The “ENTRY Statement”

See Also
• Chapter 9, “Intrinsic Procedures”
• “Program Structure” for an overview of program structure
• “Scope” for details on the scope of program entities
• “Recursive Procedures” for details on recursion

Main Program
A Fortran program must include one main program. It takes the following form:

Statement function A computing procedure defined by a single statement

1. The program unit that contains an internal procedure is called its host .

Kind of Procedure Description
8-2

Program Units and Procedures 8

[PROGRAM name]

[specification-part]
[execution-part]

[CONTAINS
internal-subprogram-part]

END [PROGRAM [name]]
name
Is the name of the program.
specification-part
Is one or more specification statements, except for the following:
• INTENT (or its equivalent attribute)
• OPTIONAL (or its equivalent attribute)
• PUBLIC and PRIVATE (or their equivalent attributes)
An automatic object must not appear in a specification statement. If a SAVE statement is
specified, it has no effect.
execution-part
Is one or more executable constructs or statements, except for ENTRY or RETURN statements.
internal-subprogram-part
Is one or more internal subprograms (defining internal procedures). The internal-subprogram-part
is preceded by a CONTAINS statement.

Rules and Behavior

The PROGRAM statement is optional. Within a program unit, a PROGRAM statement can be
preceded only by comment lines or an OPTIONS statement.
The END statement is the only required part of a program. If a name follows the END statement, it
must be the same as the name specified in the PROGRAM statement.
The program name is considered global and must be unique. It cannot be the same as any local
name in the main program or the name of any other program unit, external procedure, or common
block in the executable program.
A main program must not reference itself (either directly or indirectly).

Examples

The following is an example of a main program:
8-3

8 Intel Fortran Language Reference
PROGRAM TEST

 INTEGER C, D, E(20,20) ! Specification part

 CALL SUB_1 ! Executable part

...

CONTAINS

 SUBROUTINE SUB_1 ! Internal subprogram

 ...

 END SUBROUTINE SUB_1

END PROGRAM TEST

See Also

Your user’s guide for details on the default name for a main program

Modules and Module Procedures
A module contains specifications and definitions that can be used by one or more program units.
For the module to be accessible, the other program units must reference its name in a USE
statement, and the module entities must be public.
A module takes the following form:

MODULE name
[specification-part]

[CONTAINS
module-subprogram
[module-subprogram]...]

END [MODULE [name]]
name
Is the name of the module.
specification-part
Is one or more specification statements, except for the following:
• ENTRY
• FORMAT
• AUTOMATIC (or its equivalent attribute)
• INTENT (or its equivalent attribute)
• OPTIONAL (or its equivalent attribute)
• Statement functions
8-4

Program Units and Procedures 8

An automatic object must not appear in a specification statement.
module-subprogram
Is a function or subroutine subprogram that defines the module procedure. A function must end
with END FUNCTION and a subroutine must end with END SUBROUTINE.
A module subprogram can contain internal procedures.

Rules and Behavior

If a name follows the END statement, it must be the same as the name specified in the MODULE
statement.
The module name is considered global and must be unique. It cannot be the same as any local
name in the main program or the name of any other program unit, external procedure, or common
block in the executable program.
A module is host to any module procedures it contains, and entities in the module are accessible to
the module procedures through host association.
A module must not reference itself (either directly or indirectly).
You can use the PRIVATE attribute to restrict access to procedures or variables within a module.
Although ENTRY statements, FORMAT statements, and statement functions are not allowed in
the specification part of a module, they are allowed in the specification part of a module
subprogram.
Any executable statements in a module can only be specified in a module subprogram.
A module can contain one or more procedure interface blocks, which let you specify an explicit
interface for an external subprogram or dummy subprogram.

Examples

The following example shows a simple module that can be used to provide global data:
MODULE MOD_A

 INTEGER :: B, C

 REAL E(25,5)

END MODULE MOD_A

...

SUBROUTINE SUB_Z

 USE MOD_A ! Makes scalar variables B and C, and array

 ... ! E available to this subroutine

END SUBROUTINE SUB_Z

The following example shows a module procedure:
8-5

8 Intel Fortran Language Reference
MODULE RESULTS

...

CONTAINS

 FUNCTION MOD_RESULTS(X,Y) ! A module procedure

 ...

 END FUNCTION MOD_RESULTS

END MODULE RESULTS

The following example shows a module containing a derived type:
MODULE EMPLOYEE_DATA

 TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=40) NAME

 END TYPE EMPLOYEE

END MODULE

The following example shows a module containing an interface block:
MODULE ARRAY_CALCULATOR

 INTERFACE

 FUNCTION CALC_AVERAGE(D)

 REAL :: CALC_AVERAGE

 REAL, INTENT(IN) :: D(:)

 END FUNCTION

 END INTERFACE

END MODULE ARRAY_CALCULATOR

The following example shows a derived-type definition that is public with components that are
private:
MODULE MATTER

 TYPE ELEMENTS

 PRIVATE

 INTEGER C, D

 END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.
This design allows you to change components of a type without affecting other program units that
use the module.
8-6

Program Units and Procedures 8

If a derived type is needed in more than one program unit, the definition should be placed in a
module and accessed by a USE statement whenever it is needed, as follows:
MODULE STUDENTS

 TYPE STUDENT_RECORD

 ...

 END TYPE

CONTAINS

 SUBROUTINE COURSE_GRADE(...)

 TYPE(STUDENT_RECORD) NAME

 ...

 END SUBROUTINE

END MODULE STUDENTS

...

PROGRAM SENIOR_CLASS

 USE STUDENTS

 TYPE(STUDENT_RECORD) ID

 ...

END PROGRAM

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it uses module
STUDENTS. Module procedure COURSE_GRADE also has access to type
STUDENT_RECORD, because the derived-type definition appears in its host.

See Also
• “Procedure Interfaces”
• “PRIVATE and PUBLIC Attributes and Statements”

Module References

A program unit references a module in a USE statement. This module reference lets the program
unit access the public definitions, specifications, and procedures in the module.
Entities in a module are public by default, unless the USE statement specifies otherwise or the
PRIVATE attribute is specified for the module entities.
A module reference causes use association between the using program unit and the entities in the
module.

See Also
• “USE Statement”
8-7

8 Intel Fortran Language Reference
• “PRIVATE and PUBLIC Attributes and Statements”
• “Use and Host Association” for details on use association

USE Statement

The USE statement gives a program unit accessibility to public entities in a module. It takes one of
the following forms:

USE name [, rename-list]
USE name, ONLY : [only-list]

name
Is the name of the module.
rename-list
Is one or more items having the following form:

local-name => mod-name
local-name
Is the name of the entity in the program unit using the module.
mod-name
Is the name of a public entity in the module.
only-list
Is the name of a public entity in the module or a generic identifier (a generic name, defined
operator, or defined assignment).
An entity in the only-list can also take the form:

[local-name =>] mod-name

Rules and Behavior

If the USE statement is specified without the ONLY option, the program unit has access to all
public entities in the named module.
If the USE statement is specified with the ONLY option, the program unit has access to only those
entities following the option.
If more than one USE statement for a given module appears in a scoping unit, the following rules
apply:
• If one USE statement does not have the ONLY option, all public entities in the module are

accessible, and any rename-lists and only-lists are interpreted as a single, concatenated
rename-list.
8-8

Program Units and Procedures 8

• If all the USE statements have ONLY options, all the only-lists are interpreted as a single,

concatenated only-list. Only those entities named in one or more of the only-lists are
accessible.

If two or more generic interfaces that are accessible in a scoping unit have the same name, the
same operator, or are both assignments, they are interpreted as a single generic interface.
Otherwise, multiple accessible entities can have the same name only if no reference to the name is
made in the scoping unit.
The local names of entities made accessible by a USE statement must not be respecified with any
attribute other than PUBLIC or PRIVATE. The local names can appear in namelist group lists, but
not in a COMMON or EQUIVALENCE statement.

Examples

The following shows examples of the USE statement:
MODULE MOD_A

 INTEGER :: B, C

 REAL E(25,5), D(100)

END MODULE MOD_A

...

SUBROUTINE SUB_Y

 USE MOD_A, DX => D, EX => E ! Array D has been renamed DX and array E

 ... ! has been renamed EX. Scalar variables B

END SUBROUTINE SUB_Y ! and C are also available to this subrou-

... ! tine (using their module names).

SUBROUTINE SUB_Z

 USE MOD_A, ONLY: B, C ! Only scalar variables B and C are

 ... ! available to this subroutine

END SUBROUTINE SUB_Z

...

The following example shows a module containing common blocks:
MODULE COLORS

 COMMON /BLOCKA/ C, D(15)

 COMMON /BLOCKB/ E, F

 ...

END MODULE COLORS

...

FUNCTION HUE(A, B)

 USE COLORS
8-9

8 Intel Fortran Language Reference
 ...

END FUNCTION HUE

The USE statement makes all of the variables in the common blocks in module COLORS
available to the function HUE.
To provide data abstraction, a user-defined data type and operations to be performed on values of
this type can be packaged together in a module. The following example shows such a module:
MODULE CALCULATION

 TYPE ITEM

 REAL :: X, Y

 END TYPE ITEM

 INTERFACE OPERATOR (+)

 MODULE PROCEDURE ITEM_CALC

 END INTERFACE

CONTAINS

 FUNCTION ITEM_CALC (A1, A2)

 TYPE(ITEM) A1, A2, ITEM_CALC

 ...

 END FUNCTION ITEM_CALC

 ...

END MODULE CALCULATION

PROGRAM TOTALS

USE CALCULATION

TYPE(ITEM) X, Y, Z

 ...

 X = Y + Z

 ...

END

The USE statement allows program TOTALS access to both the type ITEM and the extended
intrinsic operator + to perform calculations.

Block Data Program Units
A block data program unit provides initial values for nonpointer variables in named common
blocks. It takes the following form:
8-10

Program Units and Procedures 8

BLOCK DATA [name]

[specification-part]
END [BLOCK DATA [name]]

name
Is the name of the block data program unit.
specification-part
Is one or more of the following statements:

Rules and Behavior

A block data program unit need not be named, but there can only be one unnamed block data
program unit in an executable program.
If a name follows the END statement, it must be the same as the name specified in the BLOCK
DATA statement.
An interface block must not appear in a block data program unit and a block data program unit
must not contain any executable statements.
If a DATA statement initializes any variable in a named common block, the block data program
unit must have a complete set of specification statements establishing the common block.
However, all of the variables in the block do not have to be initialized.
A block data program unit can establish and define initial values for more than one common
block, but a given common block can appear in only one block data program unit in an executable
program.
The name of a block data program unit can appear in the EXTERNAL statement of a different
program unit to force a search of object libraries for the block data program unit at link time.

COMMON INTRINSIC STATIC
DATA PARAMETER TARGET
Derived-type definition POINTER Type declaration1

1. Can only contain attributes: DIMENSION, INTRINSIC, PARAMETER, POINTER, SAVE, STATIC, or TARGET.

DIMENSION RECORD2

2. For more information on the RECORD statement and record structure declarations, see “Record Structures”.

USE3

3. Allows access to only named constants.

EQUIVALENCE Record structure declaration2
IMPLICIT SAVE
8-11

8 Intel Fortran Language Reference
Examples

The following is an example of a block data program unit:
BLOCK DATA BLKDAT

 INTEGER S,X

 LOGICAL T,W

 DOUBLE PRECISION U

 DIMENSION R(3)

 COMMON /AREA1/R,S,U,T /AREA2/W,X,Y

 DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/

END

See Also
• “DATA Statement”
• “EXTERNAL Attribute and Statement”
• “COMMON Statement” for details on common blocks

Functions, Subroutines, and Statement Functions
Functions, subroutines, and statement functions are user-written subprograms that perform
computing procedures. The computing procedure can be either a series of arithmetic operations or
a series of Fortran statements. A single subprogram can perform a computing procedure in several
places in a program, to avoid duplicating a series of operations or statements in each place.
The following table shows the statements that define these subprograms, and how control is
transferred to the subprogram:

A function reference is used in an expression to invoke a function; it consists of the function name
and its actual arguments. The function reference returns a value to the calling expression that is
used to evaluate the expression.
The following topics are described in this section:
• “General Rules for Function and Subroutine Subprograms”

Subprogram Defining Statements Control Transfer Method

Function FUNCTION or ENTRY Function reference1

1. A function can also be invoked by a defined operation (see “Defining Generic Operators”).

Subroutine SUBROUTINE or ENTRY CALL statement2

2. A subroutine can also be invoked by a defined assignment (see “Defining Generic Assignment”).

Statement function Statement function definition Function reference
8-12

Program Units and Procedures 8

• “Functions”
• “Subroutines”
• “Statement Functions”

See Also
• “ENTRY Statement”
• “CALL Statement”

General Rules for Function an d Subroutine Subprograms

A subprogram can be an external, module, or internal subprogram. The END statement for an
internal or module subprogram must be END SUBROUTINE [name] for a subroutine, or END
FUNCTION [name] for a function. In an external subprogram, the SUBROUTINE and
FUNCTION keywords are optional.
If a subprogram name appears after the END statement, it must be the same as the name specified
in the SUBROUTINE or FUNCTION statement.
Function and subroutine subprograms can change the values of their arguments, and the calling
program can use the changed values.
A SUBROUTINE or FUNCTION statement can be optionally preceded by an OPTIONS
statement.
Dummy arguments (except for dummy pointers or dummy procedures) can be specified with an
intent and can be made optional.
The following sections describe recursion, pure procedures, and user-defined elemental
procedures.

See Also
• “Modules and Module Procedures”
• “Internal Procedures”
• “External Procedures”
• “Optional Arguments”
• “INTENT Attribute and Statement” for details on argument intent

Recursive Procedures

A recursive procedure can reference itself directly or indirectly. Recursion is permitted if the
keyword RECURSIVE is specified in a FUNCTION or SUBROUTINE statement, or if
RECURSIVE is specified as a compiler option or in an OPTIONS statement.
8-13

8 Intel Fortran Language Reference
If a function is directly recursive and array valued, the keywords RECURSIVE and RESULT must
both be specified in the FUNCTION statement.
The procedure interface is explicit within the subprogram in the following cases:
• When RECURSIVE is specified for a subroutine
• When RECURSIVE and RESULT are specified for a function
The keyword RECURSIVE must be specified if any of the following applies (directly or
indirectly):
• The subprogram invokes itself.
• The subprogram invokes a subprogram defined by an ENTRY statement in the same

subprogram.
• An ENTRY procedure in the same subprogram invokes one of the following:

— Itself
— Another ENTRY procedure in the same subprogram
— The subprogram defined by the FUNCTION or SUBROUTINE statement

See Also
• “OPTIONS Statement”
• “Functions” for details on the FUNCTION statement
• “Subroutines” for details on the SUBROUTINE statement
• Your user’s guide for details on compiler options

Pure Procedures

A pure procedure is a user-defined procedure that is specified by using the prefix PURE (or
ELEMENTAL) in a FUNCTION or SUBROUTINE statement. Pure procedures are a feature of
Fortran 95.
A pure procedure has no side effects. It has no effect on the state of the program, except for the
following:
• For functions: It returns a value.
• For subroutines: It modifies INTENT(OUT) and INTENT(INOUT) parameters.
The following intrinsic and library procedures are implicitly pure:
• All intrinsic functions
• The elemental intrinsic subroutine MVBITS
A statement function is pure only if all functions that it references are pure.
8-14

Program Units and Procedures 8

Rules and Behavior

Except for procedure arguments and pointer arguments, the following intent must be specified for
all dummy arguments in the specification part of the procedure:
• For functions: INTENT(IN)
• For subroutines: any INTENT (IN, OUT, or INOUT)
A local variable declared in a pure procedure (including variables declared in any internal
procedure) must not:
• Specify the SAVE attribute
• Be initialized in a type declaration statement or a DATA statement
The following variables have restricted use in pure procedures (and any internal procedures):
• Global variables
• Dummy arguments with INTENT(IN) (or no declared intent)
• Objects that are storage associated with any part of a global variable
They must not be used in any context that does either of the following:
• Causes their value to change. For example, they must not be used as:

— The left side of an assignment statement or pointer assignment statement
— An actual argument associated with a dummy argument with INTENT(OUT),

INTENT(INOUT), or the POINTER attribute
— An index variable in a DO or FORALL statement, or an implied-DO clause
— The variable in an ASSIGN statement
— An input item in a READ statement
— An internal file unit in a WRITE statement
— An object in an ALLOCATE, DEALLOCATE, or NULLIFY statement
— An IOSTAT or SIZE specifier in an I/O statement, or the STAT specifier in a

ALLOCATE or DEALLOCATE statement
• Creates a pointer to that variable. For example, they must not be used as:

— The target in a pointer assignment statement
— The right side of an assignment to a derived-type variable (including a pointer to a

derived type) if the derived type has a pointer component at any level
A pure procedure must not contain the following:
• Any external I/O statement (including a READ or WRITE statement whose I/O unit is an

external file unit number or *)
• A PAUSE statement
• A STOP statement
A pure procedure can be used in contexts where other procedures are restricted; for example:
8-15

8 Intel Fortran Language Reference
• It can be called directly in a FORALL statement or be used in the mask expression of a
FORALL statement.

• It can be called from a pure procedure. Pure procedures can only call other pure procedures.
• It can be passed as an actual argument to a pure procedure.
If a procedure is used in any of these contexts, its interface must be explicit and it must be declared
pure in that interface.

Examples

The following shows a pure function:
PURE INTEGER FUNCTION MANDELBROT(X)

 COMPLEX, INTENT(IN) :: X

 COMPLEX :: XTMP

 INTEGER :: K

 ! Assume SHARED_DEFS includes the declaration

 ! INTEGER ITOL

 USE SHARED_DEFS

 K = 0

 XTMP = -X

 DO WHILE (ABS(XTMP)<2.0 .AND. K<ITOL)

 XTMP = XTMP**2 - X

 K = K + 1

 END DO

 ITER = K

END FUNCTION

The following shows the preceding function used in an interface block:
INTERFACE

 PURE INTEGER FUNCTION MANDELBROT(X)

 COMPLEX, INTENT(IN) :: X

 END FUNCTION MANDELBROT

END INTERFACE

The following shows a FORALL construct calling the MANDELBROT function to update all the
elements of an array:
FORALL (I = 1:N, J = 1:M)

 A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1))

END FORALL
8-16

Program Units and Procedures 8

See Also
• “Elemental Procedures”
• “Functions” for details on the FUNCTION statement
• “Subroutines” for details on the SUBROUTINE statement
• “FORALL Statement and Construct” for details on pure procedures in FORALLs
• “Defining Explicit Interfaces” for details on pure procedures in interface blocks
• Your user’s guide for details on how to use pure procedures

Elemental Procedures

An elemental procedure is a user-defined procedure that is a restricted form of pure procedure. An
elemental procedure can be passed an array, which is acted upon one element at a time. Elemental
procedures are a feature of Fortran 95.
To specify an elemental procedure, use the prefix ELEMENTAL in a FUNCTION or
SUBROUTINE statement.
An explicit interface must be visible to the caller of an ELEMENTAL procedure.
For functions, the result must be scalar; it cannot have the POINTER or ALLOCATABLE
attribute.
Dummy arguments have the following restrictions:
• They must be scalar.
• They cannot have the POINTER or ALLOCATABLE attribute.
• They (or their subobjects) cannot appear in a specification expression, except as an argument

to one of the intrinsic functions BIT_SIZE, LEN, KIND, or the numeric inquiry functions.
• They cannot be *.
• They cannot be dummy procedures.
If the actual arguments are all scalar, the result is scalar. If the actual arguments are array-valued,
the values of the elements (if any) of the result are the same as if the function or subroutine had
been applied separately, in any order, to corresponding elements of each array actual argument.
Elemental procedures are pure procedures and all rules that apply to pure procedures also apply to
elemental procedures.

Examples

Consider the following:
MIN (A, 0, B) ! A and B are arrays of shape (S, T)

In this case, the elemental reference to the MIN intrinsic function is an array expression whose
elements have the following values:
8-17

8 Intel Fortran Language Reference
MIN (A(I,J), 0, B(I,J)), I = 1, 2, ..., S, J = 1, 2, ..., T

See Also
• “Determining When Procedures Require Explicit Interfaces”
• “Pure Procedures”
• “Optional Arguments”
• “Functions” for details on the FUNCTION statement
• “Subroutines” for details on the SUBROUTINE statement

Functions

A function subprogram is invoked in an expression and returns a single value (a function result)
that is used to evaluate the expression.
The FUNCTION statement is the initial statement of a function subprogram. It takes the following
form:

[prefix] FUNCTION name [([d-arg-list])] [RESULT (r-name)]
prefix
Is one of the following:

type [keyword]
keyword [type]

type
Is a data type specifier.
keyword
Is one of the following:

name
Is the name of the function. If RESULT is specified, the function name must not appear in any
specification statement in the scoping unit of the function subprogram.

Keyword Meaning

RECURSIVE Permits direct recursion to occur. If a function is directly recursive and
array valued, RESULT must also be specified (see “Recursive
Procedures”).

PURE Asserts that the procedure has no side effects (see “Pure Procedures”).

ELEMENTAL A restricted form of pure procedure that acts on one array element at a
time (see “Elemental Procedures”).
8-18

Program Units and Procedures 8

The function name can be followed by the length of the data type. The length is specified by an
asterisk (*) followed by any unsigned, nonzero integer that is a valid length for the function’s
type. For example, REAL FUNCTION LGFUNC*8 (Y, Z) specifies the function result as
REAL(8) (or REAL*8).
This optional length specification is not permitted if the length has already been specified
following the keyword CHARACTER.
d-arg-list
Is a list of one or more dummy arguments. If there are no dummy arguments and no RESULT
variable, the parentheses can be omitted. For example, the following is valid:

FUNCTION F

r-name
Is the name of the function result. This name must not be the same as the function name. A
function result can be declared with the POINTER or ALLOCATABLE attribute.

Rules and Behavior

The type and kind parameters (if any) of the function’s result can be defined in the FUNCTION
statement or in a type declaration statement within the function subprogram, but not both. If no
type is specified, the type is determined by implicit typing rules in effect for the function
subprogram.
Execution begins with the first executable construct or statement following the FUNCTION
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.
If you specify CHARACTER*(*), the function assumes the length declared for it in the program
unit that invokes it. This type of character function can have different lengths when it is invoked
by different program units; it is an obsolescent feature in Fortran 95.
If the length is specified as an integer constant, the value must agree with the length of the
function specified in the program unit that invokes the function. If no length is specified, a length
of 1 is assumed.
If the function is an array, allocatable, or a pointer, the declarations within the function must state
these attributes for the function result name. The specification of the function result attributes,
dummy argument attributes, and the information in the procedure heading collectively define the
interface of the function.
The value of the result variable is returned by the function when it completes execution. Certain
rules apply depending on whether the result is a pointer, as follows:
8-19

8 Intel Fortran Language Reference
• If the result is a pointer, its allocation status must be determined before the function completes
execution. (The function must associate a target with the pointer, or cause the pointer to be
explicitly disassociated from a target.)
The shape of the value returned by the function is determined by the shape of the result
variable when the function completes execution.

• If the result is not a pointer, its value must be defined before the function completes
execution. If the result is an array, all the elements must be defined; if the result is a
derived-type structure, all the components must be defined.

A function subprogram cannot contain a SUBROUTINE statement, a BLOCK DATA statement, a
PROGRAM statement, or another FUNCTION statement. ENTRY statements can be included to
provide multiple entry points to the subprogram.
You can use a CALL statement to invoke a function as long as the function is not one of the
following types:
• REAL(8)
• REAL(16)
• COMPLEX(8)
• COMPLEX(16)
• CHARACTER

Examples

The following example uses the Newton-Raphson iteration method (F(X) = cosh(X) +
cos(X) - A = 0) to get the root of the function:
FUNCTION ROOT(A)

 X = 1.0

 DO

 EX = EXP(X)

 EMINX = 1./EX

 ROOT = X - ((EX+EMINX)*.5+COS(X)-A)/((EX-EMINX)*.5-SIN(X))

 IF (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN

 X = ROOT

 END DO

END

In the preceding example, the following formula is calculated repeatedly until the difference
between Xi and Xi+1 is less than 1.0E–6:

Xi 1+ Xi
Xi() Xi()cos+ A–cos
Xi() Xi()sin–sinh

--–=
8-20

Program Units and Procedures 8

The following example shows an assumed-length character function:
CHARACTER*(*) FUNCTION REDO(CARG)

 CHARACTER*1 CARG

 DO I=1,LEN(REDO)

 REDO(I:I) = CARG

 END DO

 RETURN

END FUNCTION

This function returns the value of its argument, repeated to fill the length of the function.
Within any given program unit, all references to an assumed-length character function must have
the same length. In the following example, the REDO function has a length of 1000:
CHARACTER*1000 REDO, MANYAS, MANYZS

MANYAS = REDO('A')

MANYZS = REDO('Z')

Another program unit within the executable program can specify a different length. For example,
the following REDO function has a length of 2:
CHARACTER HOLD*6, REDO*2

HOLD = REDO('A')//REDO('B')//REDO('C')

The following example shows a dynamic array-valued function:
FUNCTION SUB (N)

 REAL, DIMENSION(N) :: SUB

 ...

END FUNCTION

The following example shows an allocatable function with allocatable arguments:
MODULE AP

CONTAINS

 FUNCTION ADD_VEC(P1,P2)

 ! Function to add two allocatable arrays of possibly differing lengths.

 ! The arrays may be thought of as polynomials (coefficients)

 REAL, ALLOCATABLE :: ADD_VEC(:), P1(:), P2(:)

 ! This function returns an allocatable array whose length is set to

 ! the length of the larger input array.

 ALLOCATE(ADD_VEC(MAX(SIZE(P1), SIZE(P2))))

 M = MIN(SIZE(P1), SIZE(P2))

 ! Add up to the shorter input array size
8-21

8 Intel Fortran Language Reference
 ADD_VEC(:M) = P1(:M) + P2(:M)

 ! Use the larger input array elements afterwards (from P1 or P2)

 IF(SIZE(P1) > M) THEN

 ADD_VEC(M+1:) = P1(M+1:)

 ELSE IF(SIZE(P2) > M) THEN

 ADD_VEC(M+1:) = P2(M+1:)

 ENDIF

 END FUNCTION

END MODULE

PROGRAM TEST

 USE AP

 REAL, ALLOCATABLE :: P(:), Q(:), R(:), S(:)

 ALLOCATE(P(3))

 ALLOCATE(Q(2))

 ALLOCATE(R(3))

 ALLOCATE(S(3))

 ! Notice that P and Q differ in length

 P = (/4,2,1/) ! P = X**2 + 2X + 4

 Q = (/-1,1/) ! Q = X - 1

 PRINT *,' Result should be: 3.000000 3.000000 1.000000'

 PRINT *,' Coefficients are: ', ADD_VEC(P, Q) ! X**2 + 3X + 3

 P = (/1,1,1/) ! P = X**2 + X + 1

 R = (/2,2,2/) ! R = 2X**2 + 2X + 2

 S = (/3,3,3/) ! S = 3X**2 + 3X + 3

 PRINT *,' Result should be: 6.000000 6.000000 6.000000'

 PRINT *,' Coefficients are: ', ADD_VEC(ADD_VEC(P,R), S)

END

See Also
• “RESULT Keyword”
• “General Rules for Function and Subroutine Subprograms”
• “ENTRY Statement”
• “RETURN Statement”
• “Function References” for details on argument keywords in function references
8-22

Program Units and Procedures 8

RESULT Keyword

Normally, a function result is returned in the function’s name, and all references to the function
name are references to the function result.
However, if you use the RESULT keyword in a FUNCTION statement, you can specify a local
variable name for the function result. In this case, all references to the function name are recursive
calls, and the function name must not appear in specification statements.
The RESULT name must be different from the name of the function.
The following shows an example of a recursive function specifying a RESULT variable:
RECURSIVE FUNCTION FACTORIAL(P) RESULT(L)

 INTEGER, INTENT(IN) :: P

 INTEGER L

 IF (P == 1) THEN

 L = 1

 ELSE

 L = P * FACTORIAL(P - 1)

 END IF

END FUNCTION

Function References

Functions are invoked by a function reference in an expression or by a defined operation.
A function reference takes the following form:

fun ([a-arg [, a-arg]...])
fun
Is the name of the function subprogram.
a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is the name of a dummy
argument in the explicit interface for the function. The keyword is assigned a value when the
procedure is invoked.
Each actual argument must be a variable, an expression, or the name of a procedure. (It must not
be the name of an internal procedure, statement function, or the generic name of a procedure.)

Rules and Behavior

When a function is referenced, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments must
agree in type and kind parameters.
8-23

8 Intel Fortran Language Reference
Execution of the function produces a result that is assigned to the function name or to the result
name, depending on whether the RESULT keyword was specified.
The program unit uses the result value to complete the evaluation of the expression containing the
function reference.
If positional arguments and argument keywords are specified, the argument keywords must appear
last in the actual argument list.
If a dummy argument is optional, the actual argument can be omitted.
If a dummy argument is specified with the INTENT attribute, its use may be limited. A dummy
argument whose intent is not specified is subject to the limitations of its associated actual
argument.
An actual argument associated with a dummy procedure must be the specific name of a procedure,
or be another dummy procedure. Certain specific intrinsic function names must not be used as
actual arguments (see Table 9-1).

Examples

Consider the following example:
X = 2.0

NEW_COS = COS(X) ! A function reference

Intrinsic function COS calculates the cosine of 2.0. The value –0.4161468 is returned (in place of
COS(X)) and assigned to NEW_COS.

See Also
• “INTENT Attribute and Statement”
• “Optional Arguments”
• “Defining Generic Operators” for details on defined operations
• “Argument Association” for details on procedure arguments
• “Dummy Procedure Arguments” for details on dummy arguments
• Chapter 9, “Intrinsic Procedures”, for details on intrinsic functions
• “RESULT Keyword” for details on using the keyword in FUNCTION statements
• “Functions” for details on the FUNCTION statement

Subroutines

A subroutine subprogram is invoked in a CALL statement or by a defined assignment statement,
and does not return a particular value.
8-24

Program Units and Procedures 8

The SUBROUTINE statement is the initial statement of a subroutine subprogram. It takes the
following form:

[prefix] SUBROUTINE name [([d-arg-list])]
prefix
Is one of the following:

name
Is the name of the subroutine.
d-arg-list
Is a list of one or more dummy arguments or alternate return specifiers (*).

Rules and Behavior

A subroutine is invoked by a CALL statement or defined assignment. When a subroutine is
invoked, dummy arguments (if present) become associated with the corresponding actual
arguments specified in the call.
Execution begins with the first executable construct or statement following the SUBROUTINE
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.
A subroutine subprogram cannot contain a FUNCTION statement, a BLOCK DATA statement, a
PROGRAM statement, or another SUBROUTINE statement. ENTRY statements can be included
to provide multiple entry points to the subprogram.

Examples

The following example shows a subroutine:

Keyword Meaning

RECURSIVE Permits direct recursion to occur. If a function is directly recursive and
array valued, RESULT must also be specified (see “Recursive
Procedures”).

PURE Asserts that the procedure has no side effects (see “Pure Procedures”).

ELEMENTAL A restricted form of pure procedure that acts on one array element at a
time (see “Elemental Procedures”).

Main Program Subroutine

CALL HELLO_WORLD SUBROUTINE HELLO_WORLD

. . . PRINT *, "Hello World"
8-25

8 Intel Fortran Language Reference
The following example uses alternate return specifiers to determine where control transfers on
completion of the subroutine:

The SUBROUTINE statement argument list contains two dummy alternate return arguments
corresponding to the actual arguments *10 and *20 in the CALL statement argument list.
The value of Z determines the return, as follows:
• If Z < zero, a normal return occurs and control is transferred to the first executable statement

following CALL CHECK in the main program.
• If Z = = zero, the return is to statement label 10 in the main program.
• If Z > zero, the return is to statement label 20 in the main program.
An alternate return is an obsolescent feature in Fortran 90 and Fortran 95.

See Also
• “General Rules for Function and Subroutine Subprograms”
• “RETURN Statement”
• “ENTRY Statement”
• “CALL Statement” for details on argument keywords in subroutine references
• “Defining Generic Assignment” for details on defined assignment
• “Argument Association” for details on procedure arguments
• Chapter 9, “Intrinsic Procedures”, for details on intrinsic subroutines
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 90 and Fortran 95

END END SUBROUTINE

Main Program Subroutine

 CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*.*.Q)

 TYPE *, 'VALUE LESS THAN ZERO' . . .

 GO TO 30 50 IF(Z) 60,70,80

10 TYPE*, 'VALUE EQUALS ZERO' 60 RETURN

 GO TO 30 70 RETURN

20 TYPE*, 'VALUE MORE THAN ZERO' 80 RETURN

30 CONTINUE END

 . . .

Main Program Subroutine
8-26

Program Units and Procedures 8

Statement Functions

A statement function is a procedure defined by a single statement in the same program unit in
which the procedure is referenced. It takes the following form:

fun ([d-arg [, d-arg]...]) = expr
fun
Is the name of the statement function.
d-arg
Is a dummy argument. A dummy argument can appear only once in any list of dummy arguments,
and its scope is local to the statement function.
expr
Is a scalar expression defining the computation to be performed.
Named constants and variables used in the expression must have been declared previously in the
specification part of the scoping unit or made accessible by use or host association.
If the expression contains a function reference, the function must have been defined previously in
the same program unit.
A statement function reference takes the following form:

fun ([a-arg [, a-arg]...])
fun
Is the name of the statement function.
a-arg
Is an actual argument.

Rules and Behavior

When a statement function reference appears in an expression, the values of the actual arguments
are associated with the dummy arguments in the statement function definition. The expression in
the definition is then evaluated. The resulting value is used to complete the evaluation of the
expression containing the function reference.
The data type of a statement function can be explicitly defined in a type declaration statement. If
no type is specified, the type is determined by implicit typing rules in effect for the program unit.
Actual arguments must agree in number, order, and data type with their corresponding dummy
arguments.
Except for the data type, declarative information associated with an entity is not associated with
dummy arguments in the statement function; for example, declaring an entity to be an array or to
be in a common block does not affect a dummy argument with the same name.
8-27

8 Intel Fortran Language Reference
The name of the statement function cannot be the same as the name of any other entity within the
same program unit.
Any reference to a statement function must appear in the same program unit as the definition of
that function.
A statement function reference must appear as (or be part of) an expression. The reference cannot
appear on the left side of an assignment statement.
A statement function must not be provided as a procedure argument.

Examples

The following are examples of statement functions:
REAL VOLUME, RADIUS

VOLUME(RADIUS) = 4.189*RADIUS**3

CHARACTER*10 CSF,A,B

CSF(A,B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:
AVG(A,B,C) = (A+B+C)/3.

...

GRADE = AVG(TEST1,TEST2,XLAB) I

F (AVG(P,D,Q) .LT. AVG(X,Y,Z)) STOP

FINAL = AVG(TEST3,TEST4,LAB2) ! Invalid reference; implicit

... ! type of third argument does not

... ! match implicit type of dummy argument

Implicit typing problems can be avoided if all arguments are explicitly typed.
The following statement function definition is invalid because it contains a constant, which cannot
be used as a dummy argument:
REAL COMP, C, D, E

COMP(C,D,E,3.) = (C + D - E)/3.

See Also
• “Use and Host Association”
• “Argument Association” for details on procedure arguments

External Procedures
External procedures are user-written functions or subroutines. They are located outside of the
main program and can’t be part of any other program unit.
8-28

Program Units and Procedures 8

External procedures can be invoked by the main program or any procedure of an executable
program.
In Fortran 95/90, external procedures can include internal subprograms (defining internal
procedures). An internal subprogram begins with a CONTAINS statement.
An external procedure can reference itself (directly or indirectly).
The interface of an external procedure is implicit unless an interface block is supplied for the
procedure.

See Also
• “Procedure Interfaces”
• “Functions, Subroutines, and Statement Functions” for details on function and subroutine

subprograms
• Your user’s guide for details on passing arguments

Internal Procedures
Internal procedures are functions or subroutines that follow a CONTAINS statement in a program
unit. The program unit in which the internal procedure appears is called its host.
Internal procedures can appear in the main program, in an external subprogram, or in a module
subprogram.
An internal procedure takes the following form:

CONTAINS
internal-subprogram
[internal-subprogram]...

internal-subprogram
Is a function or subroutine subprogram that defines the procedure. An internal subprogram must
not contain any other internal subprograms.

Rules and Behavior

Internal procedures are the same as external procedures, except for the following:
• Only the host program unit can use an internal procedure.
• An internal procedure has access to host entities by host association; that is, names declared

in the host program unit are useable within the internal procedure.
• In Fortran 95/90, the name of an internal procedure must not be passed as an argument to

another procedure. However, Intel® Fortran allows an internal procedure name to be passed
as an actual argument to another procedure.
8-29

8 Intel Fortran Language Reference
• An internal procedure must not contain an ENTRY statement.
An internal procedure can reference itself (directly or indirectly); it can be referenced in the
execution part of its host and in the execution part of any internal procedure contained in the same
host (including itself).
The interface of an internal procedure is always explicit.

Examples

The following example shows an internal procedure:
PROGRAM COLOR_GUIDE

...

CONTAINS

 FUNCTION HUE(BLUE) ! An internal procedure

 ...

 END FUNCTION HUE

END PROGRAM

See Also
• “Use and Host Association”
• “Procedure Interfaces”
• “Functions, Subroutines, and Statement Functions” for details on function and subroutine

subprograms

Argument Association
Procedure arguments provide a way for different program units to access the same data.
When a procedure is referenced in an executable program, the program unit invoking the
procedure can use one or more actual arguments to pass values to the procedure’s dummy
arguments. The dummy arguments are associated with their corresponding actual arguments when
control passes to the subprogram.
In general, when control is returned to the calling program unit, the last value assigned to a
dummy argument is assigned to the corresponding actual argument.
An actual argument can be a variable, expression, or procedure name. The type and kind
parameters, and rank of the actual argument must match those of its associated dummy argument.
A dummy argument is either a dummy data object, a dummy procedure, or an alternate return
specifier (*). Except for alternate return specifiers, dummy arguments can be optional.
8-30

Program Units and Procedures 8

If argument keywords are not used, argument association is positional. The first dummy argument
becomes associated with the first actual argument, and so on. If argument keywords are used,
arguments are associated by the keyword name, so actual arguments can be in a different order
than dummy arguments.
A keyword is required for an argument only if a preceding optional argument is omitted or if the
argument sequence is changed.
A scalar dummy argument can be associated with only a scalar actual argument.
If a dummy argument is an array, it must be no larger than the array that is the actual argument.
You can use adjustable arrays to process arrays of different sizes in a single subprogram.
An actual argument associated with a dummy argument that is allocatable or a pointer must have
the same type parameters as the dummy argument.
A dummy argument referenced as a subprogram must be associated with an actual argument that
has been declared EXTERNAL or INTRINSIC in the calling routine.
If a scalar dummy argument is of type character, its length must not be greater than the length of
its associated actual argument.
If the character dummy argument’s length is specified as *(*) (assumed length), it uses the length
of the associated actual argument.
Once an actual argument has been associated with a dummy argument, no action can be taken that
affects the value or availability of the actual argument, except indirectly through the dummy
argument. For example, if the following statement is specified:
CALL SUB_A (B(2:6), B(4:10))

B(4:6) must not be defined, redefined, or become undefined through either dummy argument,
since it is associated with both arguments. However, B(2:3) is definable through the first
argument, and B(7:10) is definable through the second argument.
Similarly, if any part of the actual argument is defined through a dummy argument, the actual
argument can only be referenced through that dummy argument during execution of the
procedure. For example, if the following statements are specified:
MODULE MOD_A

 REAL :: A, B, C, D

END MODULE MOD_A

PROGRAM TEST

 USE MOD_A

 CALL SUB_1 (B)

 ...

END PROGRAM TEST
8-31

8 Intel Fortran Language Reference
SUBROUTINE SUB_1 (F)

 USE MOD_A

 ...

 WRITE (*,*) F

END SUBROUTINE SUB_1

Variable B must not be directly referenced during the execution of SUB_1 because it is being
defined through dummy argument F. However, B can be indirectly referenced through F (and
directly referenced when SUB_1 completes execution).
The following sections provide more details on arguments:
• “Optional Arguments”
• The different kinds of arguments:

— “Array Arguments”
— “Pointer Arguments”
— “Assumed-Length Character Arguments”
— “Character Constant and Hollerith Arguments”
— “Alternate Return Arguments”
— “Dummy Procedure Arguments”

• “References to Generic Procedures”
• “References to Non-Fortran Procedures”

See Also
• “CALL Statement” for details on argument keywords in subroutine references
• “Function References” for details on argument keywords in function references
• “%REF and %VAL Argument List Functions” for details on built-in functions to pass actual

arguments

Optional Arguments

Dummy arguments can be made optional if they are declared with the OPTIONAL attribute. In
this case, an actual argument does not have to be supplied for it in a procedure reference.
Positional arguments (if any) must appear first in an actual argument list, followed by keyword
arguments (if any). If an optional argument is the last positional argument, it can simply be
omitted if desired.
However, if the optional argument is to be omitted but it is not the last positional argument,
keyword arguments must be used for any subsequent arguments in the list.
8-32

Program Units and Procedures 8

Optional arguments must have explicit procedure interfaces so that appropriate argument
associations can be made.
The PRESENT intrinsic function can be used to determine if an actual argument is associated with
an optional dummy argument in a particular reference.
The following example shows optional arguments:
PROGRAM RESULT

TEST_RESULT = LGFUNC(A, B=D)

...

CONTAINS

 FUNCTION LGFUNC(G, H, B)

 OPTIONAL H, B

 ...

 END FUNCTION

END

In the function reference, A is a positional argument associated with required dummy argument G.
The second actual argument D is associated with optional dummy argument B by its keyword
name (B). No actual argument is associated with optional argument H.

See Also
• “Argument Association”
• “OPTIONAL Attribute and Statement”
• “PRESENT”
• “CALL Statement” for details on argument keywords in subroutine references
• “Function References” for details on argument keywords in function references

Array Arguments

Arrays are sequences of elements. Each element of an actual array is associated with the element
of the dummy array that has the same position in array element order.
If the dummy argument is an explicit-shape or assumed-size array, the size of the dummy
argument array must not exceed the size of the actual argument array.
The type and kind parameters of an explicit-shape or assumed-size dummy argument must match
the type and kind parameters of the actual argument, but their ranks need not match.
If the dummy argument is an assumed-shape array, the size of the dummy argument array is equal
to the size of the actual argument array. The associated actual argument must not be an
assumed-size array or a scalar (including a designator for an array element or an array element
substring).
8-33

8 Intel Fortran Language Reference
If the actual argument is an array section with a vector subscript, the associated dummy argument
must not be defined.
The declaration of an array used as a dummy argument can specify the lower bound of the array.
If a dummy argument is allocatable, the actual argument must be allocatable and the type
parameters and ranks must agree. An example of an allocatable function with allocatable arrays
appears in “Functions”.
Dummy argument arrays declared as assumed-shape, deferred-shape, or pointer arrays require an
explicit interface visible to the caller.

See Also
• “Argument Association”
• “Arrays”
• “Array Association”
• “Assumed-Shape Specifications” for details on assumed-shape arrays
• “Array Elements” for details on array element order
• “Explicit-Shape Specifications” for details on explicit-shape arrays
• “Assumed-Size Specifications” for details on assumed-size arrays

Pointer Arguments

An argument is a pointer if it is declared with the POINTER attribute.
When a procedure is invoked, the dummy argument pointer receives the pointer association status
of the actual argument. If the actual argument is currently associated, the dummy argument
becomes associated with the same target.
The pointer association status of the dummy argument can change during the execution of the
procedure, and any such changes are reflected in the actual argument.
If both the dummy and actual arguments are pointers, an explicit interface is required.
A dummy argument that is a pointer can be associated only with an actual argument that is a
pointer. However, an actual argument that is a pointer can be associated with a nonpointer dummy
argument. In this case, the actual argument is associated with a target and the dummy argument,
through argument association, also becomes associated with that target.
If the dummy argument does not have the TARGET or POINTER attribute, any pointers
associated with the actual argument do not become associated with the corresponding dummy
argument when the procedure is invoked.
8-34

Program Units and Procedures 8

If the dummy argument has the TARGET attribute, and is either a scalar or assumed-shape array,
and the corresponding actual argument has the TARGET attribute but is not an array section with a
vector subscript, the following occurs:
• Any pointer associated with the actual argument becomes associated with the corresponding

dummy argument when the procedure is invoked.
• Any pointers associated with the dummy argument remain associated with the actual

argument when execution of the procedure completes.
If the dummy argument has the TARGET attribute, and is an explicit-shape or assumed-size array,
and the corresponding actual argument has the TARGET attribute but is not an array section with a
vector subscript, association of actual and corresponding dummy arguments when the procedure is
invoked or when execution is completed is processor dependent.
If the dummy argument has the TARGET attribute and the corresponding actual argument does
not have that attribute or is an array section with a vector subscript, any pointer associated with the
dummy argument becomes undefined when execution of the procedure completes.

See Also
• “Argument Association”
• “Pointer Assignments”
• “TARGET Attribute and Statement”
• “POINTER Attribute and Statement” for details on pointers
• Your user’s guide for details on passing pointers as arguments

Assumed-Length Character Arguments

An assumed-length character argument is a dummy argument that assumes the length attribute of
its corresponding actual argument. An asterisk (*) specifies the length of the dummy character
argument.
A character array dummy argument can also have an assumed length. The length of each element
in the dummy argument is the length of the elements in the actual argument. The assumed length
and the array declarator together determine the size of the assumed-length character array.
The following example shows an assumed-length character argument:
INTEGER FUNCTION ICMAX(CVAR)

 CHARACTER*(*) CVAR

 ICMAX = 1

 DO I=2,LEN(CVAR)

 IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX=I

 END DO
8-35

8 Intel Fortran Language Reference
 RETURN

END

The function ICMAX finds the position of the character with the highest ASCII code value. It uses
the length of the assumed-length character argument to control the iteration. Intrinsic function
LEN determines the length of the argument.
The length of the dummy argument is determined each time control transfers to the function. The
length of the actual argument can be the length of a character variable, array element, substring, or
expression. Each of the following function references specifies a different length for the dummy
argument:
CHARACTER VAR*10, CARRAY(3,5)*20

...

I1 = ICMAX(VAR)

I2 = ICMAX(CARRAY(2,2))

I3 = ICMAX(VAR(3:8))

I4 = ICMAX(CARRAY(1,3)(5:15))

I5 = ICMAX(VAR(3:4)//CARRAY(3,5))

See Also
• “LEN”
• “Argument Association”

Character Constant and Hollerith Arguments

If an actual argument is a character constant (for example, 'ABCD'), the corresponding dummy
argument must be of type character. If an actual argument is a Hollerith constant (for example,
4HABCD), the corresponding dummy argument must have a numeric data type.
The following example shows character and Hollerith constants being used as actual arguments:
SUBROUTINE S(CHARSUB, HOLLSUB, A, B)

EXTERNAL CHARSUB, HOLLSUB

...

CALL CHARSUB(A, 'STRING')

CALL HOLLSUB(B, 6HSTRING)

The subroutines CHARSUB and HOLLSUB are themselves dummy arguments of the subroutine
S. Therefore, the actual argument 'STRING' in the call to CHARSUB must correspond to a
character dummy argument, and the actual argument 6HSTRING in the call to HOLLSUB must
correspond to a numeric dummy argument.
8-36

Program Units and Procedures 8

See Also

“Argument Association”

Alternate Return Arguments

Alternate return (dummy) arguments can appear in a subroutine argument list. They cause
execution to transfer to a labeled statement rather than to the statement immediately following the
statement that called the routine. The alternate return is indicated by an asterisk (*). (An alternate
return is an obsolescent feature in Fortran 90 and Fortran 95.)
There can be any number of alternate returns in a subroutine argument list, and they can be in any
position in the list.
An actual argument associated with an alternate return dummy argument is called an alternate
return specifier; it is indicated by an asterisk (*) or ampersand (&) followed by the label of an
executable branch target statement in the same scoping unit as the CALL statement.
Alternate returns cannot be declared optional.
In Fortran 90, you can also use the RETURN statement to specify alternate returns.
The following example shows alternate return actual and dummy arguments:
CALL MINN(X, Y, *300, *250, Z)

...

SUBROUTINE MINN(A, B, *, *, C)

See Also
• “Argument Association”
• “Subroutines”
• “CALL Statement”
• “RETURN Statement”
• Appendix A, “Deleted and Obsolescent Language Features”, for details on obsolescent

features in Fortran 90 and Fortran 95

Dummy Procedure Arguments

If an actual argument is a procedure, its corresponding dummy argument is a dummy procedure.
Dummy procedures can appear in function or subroutine subprograms.
The actual argument must be the specific name of an external, module, intrinsic, or another
dummy procedure. If the specific name is also a generic name, only the specific name is associated
with the dummy argument. Not all specific intrinsic procedures can appear as actual arguments.
(For more information, see Table 9-1.)
8-37

8 Intel Fortran Language Reference
The actual argument and corresponding dummy procedure must both be subroutines or both be
functions.
If the interface of the dummy procedure is explicit, the type and kind parameters, and rank of the
associated actual procedure must be the same as that of the dummy procedure.
If the interface of the dummy procedure is implicit and the procedure is referenced as a subroutine,
the actual argument must be a subroutine or a dummy procedure.
If the interface of the dummy procedure is implicit and the procedure is referenced as a function or
is explicitly typed, the actual argument must be a function or a dummy procedure.
Dummy procedures can be declared optional, but they must not be declared with an intent.
The following is an example of a procedure used as an argument:
REAL FUNCTION LGFUNC(BAR)

 INTERFACE

 REAL FUNCTION BAR(Y)

 REAL, INTENT(IN) :: Y

 END

 END INTERFACE

 ...

 LGFUNC = BAR(2.0)

 ...

END FUNCTION LGFUNC

See Also

“Argument Association”

References to Generic Procedures

Generic procedures are procedures with different specific names that can be accessed under one
generic (common) name. In FORTRAN 77, generic procedures were limited to intrinsic
procedures. In Fortran 90, you can use generic interface blocks to specify generic properties for
intrinsic and user-defined procedures.
If you refer to a procedure by using its generic name, the selection of the specific routine is based
on the number of arguments and the type and kind parameters, and rank of each argument.
All procedures given the same generic name must be subroutines, or all must be functions. Any
two must differ enough so that any invocation of the procedure is unambiguous.
The following sections describe references to generic intrinsic functions and show an example of
using intrinsic function names.
8-38

Program Units and Procedures 8

See Also
• “Unambiguous Generic Procedure References”
• Chapter 9, “Intrinsic Procedures”
• “Defining Generic Names for Procedures” for details on user-defined generic procedures
• “Resolving Procedure References” for details on the rules for resolving ambiguous references

References to Generic Intrinsic Functions

The generic intrinsic function name COS lists six specific intrinsic functions that calculate
cosines: COS, DCOS, QCOS, CCOS, CDCOS, and CQCOS. These functions return different
values: REAL(4), REAL(8), REAL(16), COMPLEX(4), COMPLEX(8), and COMPLEX(16)
respectively.
If you invoke the cosine function by using the generic name COS, the compiler selects the
appropriate routine based on the arguments that you specify. For example, if the argument is
REAL(4), COS is selected; if it is REAL(8), DCOS is selected; and if it is COMPLEX(4), CCOS
is selected.
You can also explicitly refer to a particular routine. For example, you can invoke the
double-precision cosine function by specifying DCOS.
Procedure selection occurs independently for each generic reference, so you can use a generic
reference repeatedly in the same program unit to access different intrinsic procedures.
You cannot use generic function names to select intrinsic procedures if you use them as follows:
• The name of a statement function
• A dummy argument name, a common block name, or a variable or array name
When an intrinsic function is passed as an actual argument to a procedure, its specific name must
be used, and when called, its arguments must be scalar. Not all specific intrinsic functions can
appear as actual arguments. (For more information, see Table 9-1.)
Generic procedure names are local to the program unit that refers to them, so they can be used for
other purposes in other program units.
Normally, an intrinsic procedure name refers to the Fortran 90 library procedure with that name.
However, the name can refer to a user-defined procedure when the name appears in an
EXTERNAL statement.
8-39

8 Intel Fortran Language Reference

Except when used in an EXTERNAL statement, intrinsic procedure names are local to the
program unit that refers to them, so they can be used for other purposes in other program units.
The data type of an intrinsic procedure does not change if you use an IMPLICIT statement to
change the implied data type rules.
Intrinsic and user-defined procedures cannot have the same name if they appear in the same
program unit.

Examples

Example 8-1 shows the local and global properties of an intrinsic function name. It uses intrinsic
function SIN as follows:
• The name of a statement function
• The generic name of an intrinsic function
• The specific name of an intrinsic function
• The name of a user-defined function

NOTE. If you call an intrinsic procedure by using the wrong number of
arguments or an incorrect argument type, the compiler assumes you are
referring to an external procedure. For example, intrinsic procedure SIN
requires one argument; if you specify two arguments, such as SIN(10,4), the
compiler assumes SIN is external and not intrinsic.

Example 8-1 Using and Redefining an Intrinsic Function Name

! Compare ways of computing sine

 PROGRAM SINES

 DOUBLE PRECISION X, PI

 PARAMETER (PI=3.141592653589793238D0)

 COMMON V(3)

1 ! Define SIN as a statement function
 SIN(X) = COS(PI/2-X)

 DO X = -PI, PI, 2*PI/100

2 ! Reference the statement function SIN
 WRITE (6,100) X, V, SIN(X)

 END DO

 CALL COMPUT(X)
8-40

Program Units and Procedures 8
1 The statement function named SIN is defined in terms of the generic function name COS.
Because the argument of COS is double precision, the double-precision cosine function is
evaluated. The statement function SIN is itself single precision.

 100 FORMAT (5F10.7)

 END

 SUBROUTINE COMPUT(Y)

 DOUBLE PRECISION Y

3 ! Use intrinsic function SIN as an actual argument
 INTRINSIC SIN

 COMMON V(3)

4 ! Define generic reference to double-precision sine
 V(1) = SIN(Y)

5 ! Use intrinsic SIN as an actual argument
 CALL SUB(REAL(Y),SIN)

 END

 SUBROUTINE SUB(A,S)

6 ! Declare SIN as the name of a user function
 EXTERNAL SIN

7 ! Declare SIN as type DOUBLE PRECISION
 DOUBLE PRECISION SIN

 COMMON V(3)

8 ! Evaluate intrinsic function SIN
 V(2) = S(A)

9 ! Evaluate user-defined SIN function
 V(3) = SIN(A)

 END

10 ! Define the user SIN function
 DOUBLE PRECISION FUNCTION SIN(X)

 INTEGER FACTOR

 SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

 - X**7/FACTOR(7)

 END

Example 8-1 Using and Redefining an Intrinsic Function Name
8-41

8 Intel Fortran Language Reference
2 The statement function SIN is called.
3 The name SIN is declared intrinsic so that the single-precision intrinsic sine function can be
passed as an actual argument at 5.
4 The generic function name SIN is used to refer to the double-precision sine function.
5 The single-precision intrinsic sine function is used as an actual argument.
6 The name SIN is declared a user-defined function name.
7 The type of SIN is declared double precision.
8 The single-precision sine function passed at 5 is evaluated.
9 The user-defined SIN function is evaluated.
10 The user-defined SIN function is defined as a simple Taylor series using a user-defined
function FACTOR to compute the factorial function.

See Also
• “EXTERNAL Attribute and Statement”
• “INTRINSIC Attribute and Statement”
• “Names” for details on the scope of names
• Chapter 9, “Intrinsic Procedures”, for details on generic and specific intrinsic functions

References to Elemental Intrinsic Procedures

An elemental intrinsic procedure has scalar dummy arguments that can be called with scalar or
array actual arguments. If actual arguments are array-valued, they must have the same shape.
There are many elemental intrinsic functions, but only one elemental intrinsic subroutine
(MVBITS).
If the actual arguments are scalar, the result is scalar. If the actual arguments are array-valued, the
scalar-valued procedure is applied element-by-element to the actual argument, resulting in an
array that has the same shape as the actual argument.
The values of the elements of the resulting array are the same as if the scalar-valued procedure had
been applied separately to the corresponding elements of each argument.
For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) is an array expression of shape
(5,6) whose elements have the value MAX(A (i, j), 0.0, B (i, j)), where i = 1, 2,..., 5, and j = 1, 2,...,
6.
A reference to an elemental intrinsic procedure is an elemental reference if one or more actual
arguments are arrays and all array arguments have the same shape.
8-42

Program Units and Procedures 8

See Also
• “Arrays”
• Chapter 9, “Intrinsic Procedures”, for details on elemental procedures

References to Non-Fortran Procedures

To facilitate references to non-Fortran procedures, Intel Fortran provides built-in functions %REF
and %VAL to pass actual arguments, and %LOC, which computes the internal address of a storage
item.

%REF and %VAL Argument List Functions

When a procedure is called, Fortran (by default) passes the address of the actual argument, and its
length if it is of type character. To call non-Fortran procedures, you may need to pass the actual
arguments in a form different from that used by Fortran.
The built-in functions %REF and %VAL let you change the form of an actual argument. You must
specify these functions in the actual argument list of a CALL statement or function reference. You
cannot use them in any other context.
These functions specify how to pass an actual argument (for example, a) to a non-Fortran
procedure, as follows:

Table 8-1 lists the Intel Fortran defaults for argument passing, and the allowed uses of %VAL and
%REF.

Function Effect

%REF (a) Passes argument a by reference.

%VAL (a) Passes argument a as an n-bit1 immediate value. If a is integer (or logical)
and shorter than n bits, it is sign-extended to an n-bit value. For complex
data types, %VAL passes two n-bit arguments.

1. n is 64 on Intel® Itanium® processors; 32 on IA-32 processors.

Table 8-1 Defaults for Argument List Functions

Allowed Functions

Actual Argument Data Ty pe Default %VAL %REF

Expressions:

Logical REF Yes1 Yes

Integer REF Yes1 Yes
8-43

8 Intel Fortran Language Reference
The %REF and %VAL functions override related cDEC$ ATTRIBUTE settings.

See Also

Your user’s guide for details on how to use the %REF and %VAL functions

%LOC Function

The built-in function %LOC computes the internal address of a storage item. It takes the following
form:

REAL(4) REF Yes Yes

REAL(8) REF Yes2 Yes

REAL(16) REF No Yes

COMPLEX(4) REF Yes Yes

COMPLEX(8) REF Yes Yes

COMPLEX(16) REF No Yes

Character N/A3 No Yes

Hollerith REF No No

Aggregate4 REF No Yes

Derived REF No Yes

Array Name:

Numeric REF No Yes

Character N/A3 No Yes

Aggregate4 REF No Yes

Derived REF No Yes

Procedure Name:

Numeric REF No Yes

Character N/A3 No Yes

1. If a logical or integer value occupies less than 64 bits of storage on Intel Itanium processors, or 32 bits of storage on IA-32 processors, it
is converted to the correct size by sign extension. Use the ZEXT function if zero extension is desired.

2. i64 only

3. A character argument is passed by address and hidden length. For more information, see your user’s guide.

4. In Intel Fortran record structures

Table 8-1 Defaults for Argument List Functions

Allowed Functions

Actual Argument Data Ty pe Default %VAL %REF
8-44

Program Units and Procedures 8

%LOC (arg)

arg
Is the name of an actual argument. It must be a variable, an expression, or the name of a procedure.
(It must not be the name of an internal procedure or statement function.)
The %LOC function produces an integer value that represents the location of the given argument.
The value is INTEGER(8) on Intel Itanium processors; INTEGER(4) on IA-32 processors. You
can use this integer value as an item in an arithmetic expression.
The LOC intrinsic function serves the same purpose as the %LOC built-in function.

See Also
• “LOC” for details on the LOC intrinsic function
• Your user’s guide for details on how to use the %LOC function

Procedure Interfaces
Every procedure has an interface, which consists of the name and characteristics of a procedure,
the name and characteristics of each dummy argument, and the generic identifier (if any) by which
the procedure can be referenced. The characteristics of a procedure are fixed, but the remainder of
the interface can change in different scoping units.
If these properties are all known within the scope of the calling program, the procedure interface is
explicit; otherwise it is implicit (deduced from its reference and declaration). The following table
shows which procedures have implicit or explicit interfaces:

The interface of a recursive subroutine or function is explicit within the subprogram that defines it.
An explicit interface can appear in a procedure’s definition, in an interface block, or both. (Internal
procedures must not appear in an interface block.)

Kind of Procedure Interface

External procedure Implicit 1

1. Unless an interface block is supplied for the procedure.

Module procedure Explicit

Internal procedure Explicit

Intrinsic procedure Explicit

Dummy procedure Implicit1

Statement function Implicit
8-45

8 Intel Fortran Language Reference
The following sections describe when explicit interfaces are required, how to define explicit
interfaces, and how to define generic names, operators, and assignment.

Determining When Procedures Require Explicit Interfaces

A procedure must have an explicit interface in the following cases:
• If the procedure has any of the following:

— A dummy argument that has the ALLOCATABLE, OPTIONAL, POINTER, TARGET,
or VOLATILE attribute

— A dummy argument that is an assumed-shape array
— A result that is an array, or a pointer, or is allocatable (functions only)
— A result whose length is neither assumed nor a constant (character functions only)

• If a reference to the procedure appears as follows:
— With an argument keyword
— As a reference by its generic name
— As a defined assignment (subroutines only)
— In an expression as a defined operator (functions only)
— In a context that requires it to be pure
— If the procedure is elemental

See Also
• “Optional Arguments”
• “Array Arguments”
• “Pointer Arguments”
• “Pure Procedures”
• “Elemental Procedures”
• “CALL Statement” for details on argument keywords in subroutine references
• “Function References” for details on argument keywords in function references
• “Defining Generic Names for Procedures” for details on user-defined generic procedures
• “Defining Generic Operators” for details on defined operators
• “Defining Generic Assignment” for details on defined assignment
• Your user’s guide for details on explicit interfaces when calling other languages
8-46

Program Units and Procedures 8

Defining Explicit Interfaces

Interface blocks define explicit interfaces for external or dummy procedures. They can also be
used to define a generic name for procedures, a new operator for functions, and a new form of
assignment for subroutines.
An interface block takes the following form:

INTERFACE [generic-spec]
[interface-body]...
[MODULE PROCEDURE name-list]...

END INTERFACE [generic-spec]
generic-spec
Is one of the following:
• A generic name
• OPERATOR (op)

Defines a generic operator (op). It can be a defined unary, defined binary, or extended
intrinsic operator.

• ASSIGNMENT (=)
Defines generic assignment.

interface-body
Is one or more function or subroutine subprograms. A function must end with END FUNCTION
and a subroutine must end with END SUBROUTINE.
The subprogram must not contain a statement function or a DATA, ENTRY, or FORMAT
statement; an entry name can be used as a procedure name.
The subprogram can contain a USE statement.
name-list
Is the name of one or more module procedures that are accessible in the host. The MODULE
PROCEDURE statement is only allowed if the interface block specifies a generic-spec and has a
host that is a module (or accesses a module by use association).
The characteristics of module procedures are not given in interface blocks, but are assumed from
the module subprogram definitions.

Rules and Behavior

Interface blocks can appear in the specification part of the program unit that invokes the external
or dummy procedure.
8-47

8 Intel Fortran Language Reference
A generic-spec can only appear in the END INTERFACE statement (a Fortran 95 feature) if one
appears in the INTERFACE statement; they must be identical.
The characteristics specified for the external or dummy procedure must be consistent with those
specified in the procedure’s definition.
An interface block must not appear in a block data program unit.
An interface block comprises its own scoping unit, and does not inherit anything from its host
through host association.
A procedure must not have more than one explicit interface in a given scoping unit.
A interface block containing generic-spec specifies a generic interface for the following
procedures:
• The procedures within the interface block

Any generic name, defined operator, or equals symbol that appears is a generic identifier for
all the procedures in the interface block. For the rules on how any two procedures with the
same generic identifier must differ, see “Unambiguous Generic Procedure References”.

• The module procedures listed in the MODULE PROCEDURE statement
The module procedures must be accessible by a USE statement.

To make an interface block available to multiple program units (through a USE statement), place
the interface block in a module.
The following rules apply to interface blocks containing pure procedures:
• The interface specification of a pure procedure must declare the INTENT of all dummy

arguments except pointer and procedure arguments.
• A procedure that is declared pure in its definition can also be declared pure in an interface

block. However, if it is not declared pure in its definition, it must not be declared pure in an
interface block.

Examples

The following example shows a simple procedure interface block with no generic specification:
SUBROUTINE SUB_B (B, FB)

 REAL B

 ...

 INTERFACE

 FUNCTION FB (GN)

 REAL FB, GN

 END FUNCTION

 END INTERFACE
8-48

Program Units and Procedures 8

See Also
• “Functions”
• “Subroutines”
• “Use and Host Association”
• “Modules and Module Procedures”
• “Pure Procedures”
• “Determining When Procedures Require Explicit Interfaces”
• “Defining Generic Names for Procedures” for details on user-defined generic procedures
• “Defining Generic Operators” for details on defined operators
• “Defining Generic Assignment” for details on defined assignment
• Your user’s guide for details on when you should not use interface blocks

Defining Generic Names for Procedures

An interface block can be used to specify a generic name to reference all of the procedures within
the interface block.
The initial line for such an interface block takes the following form:

INTERFACE generic-name
generic-name
Is the generic name. It can be the same as any of the procedure names in the interface block, or the
same as any accessible generic name (including a generic intrinsic name).
This kind of interface block can be used to extend or redefine a generic intrinsic procedure.
The procedures that are given the generic name must be the same kind of subprogram: all must be
functions, or all must be subroutines.
Any procedure reference involving a generic procedure name must be resolvable to one specific
procedure; it must be unambiguous. For more information, see “Unambiguous Generic Procedure
References”.
The following is an example of a procedure interface block defining a generic name:
INTERFACE GROUP_SUBS

 SUBROUTINE INTEGER_SUB (A, B)

 INTEGER, INTENT(INOUT) :: A, B

 END SUBROUTINE INTEGER_SUB

 SUBROUTINE REAL_SUB (A, B)

 REAL, INTENT(INOUT) :: A, B

 END SUBROUTINE REAL_SUB
8-49

8 Intel Fortran Language Reference
 SUBROUTINE COMPLEX_SUB (A, B)

 COMPLEX, INTENT(INOUT) :: A, B

 END SUBROUTINE COMPLEX_SUB

END INTERFACE

The three subroutines can be referenced by their individual specific names or by the group name
GROUP_SUBS.
The following example shows a reference to INTEGER_SUB:
INTEGER V1, V2

CALL GROUP_SUBS (V1, V2)

See Also

“Defining Explicit Interfaces” for details on interface blocks

Defining Generic Operators

An interface block can be used to define a generic operator. The only procedures allowed in the
interface block are functions that can be referenced as defined operations.
The initial line for such an interface block takes the following form:

INTERFACE OPERATOR (op)
op
Is one of the following:
• A defined unary operator (one argument)
• A defined binary operator (two arguments)
• An extended intrinsic operator (number of arguments must be consistent with the intrinsic

uses of that operator)
The functions within the interface block must have one or two nonoptional arguments with intent
IN, and the function result must not be of type character with assumed length. A defined operation
is treated as a reference to the function.
The following shows the form (and an example) of a defined unary and defined binary operation:

Operation Form Example

Defined unary .defined-operator. operand1

1. The operand corresponds to the function’s dummy argument.

.MINUS. C

Defined binary operand2 .defined-operator. operand3

2. The left operand corresponds to the first dummy argument of the function.

3. The right operand corresponds to the second argument.

B .MINUS. C
8-50

Program Units and Procedures 8

For intrinsic operator symbols, the generic properties include the intrinsic operations they
represent. Both forms of each relational operator have the same interpretation, so extending one
form (such as >=) defines both forms (>= and .GE.).
The following is an example of a procedure interface block defining a new operator:
INTERFACE OPERATOR(.BAR.)

 FUNCTION BAR(A_1)

 INTEGER, INTENT(IN) :: A_1

 INTEGER :: BAR

 END FUNCTION BAR

END INTERFACE

The following example shows a way to reference function BAR by using the new operator:
INTEGER B

I = 4 + (.BAR. B)

The following is an example of a procedure interface block with a defined operator extending an
existing operator:
INTERFACE OPERATOR(+)

 FUNCTION LGFUNC (A, B)

 LOGICAL, INTENT(IN) :: A(:), B(SIZE(A))

 LOGICAL :: LGFUNC(SIZE(A))

 END FUNCTION LGFUNC

END INTERFACE

The following example shows two equivalent ways to reference function LGFUNC:
LOGICAL, DIMENSION(1:10) :: C, D, E

N = 10

E = LGFUNC(C(1:N), D(1:N))

E = C(1:N) + D(1:N)

See Also
• “Defining Explicit Interfaces” for details on interface blocks
• “Expressions” for details on intrinsic operators
• “Defined Operations” for details on defined operators and operations
• “INTENT Attribute and Statement” for details on intent

Defining Generic Assignment

An interface block can be used to define generic assignment. The only procedures allowed in the
interface block are subroutines that can be referenced as defined assignments.
8-51

8 Intel Fortran Language Reference
The initial line for such an interface block takes the following form:
INTERFACE ASSIGNMENT (=)

The subroutines within the interface block must have two arguments, the first with intent OUT or
INOUT, and the second with intent IN.
A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.
The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the
equal sign are of the same derived type.
Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.
Any procedure reference involving generic assignment must be resolvable to one specific
procedure; it must be unambiguous. For more information, see “Unambiguous Generic Procedure
References”.
The following is an example of a procedure interface block defining assignment:

INTERFACE ASSIGNMENT (=)

 SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)

 INTEGER, INTENT(OUT) :: NUM

 LOGICAL, INTENT(IN) :: BIT(:)

 END SUBROUTINE BIT_TO_NUMERIC

 SUBROUTINE CHAR_TO_STRING (STR, CHAR)

 USE STRING_MODULE ! Contains definition of type STRING

 TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string

 CHARACTER(*), INTENT(IN) :: CHAR

 END SUBROUTINE CHAR_TO_STRING

END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:
CALL BIT_TO_NUMERIC(X, (NUM(I:J)))

X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:
CALL CHAR_TO_STRING(CH, '432C')

CH = '432C'

See Also
• “Defined Assignments”
8-52

Program Units and Procedures 8

• “Defining Explicit Interfaces” for details on interface blocks
• “INTENT Attribute and Statement” for details on intent

CONTAINS Statement
A CONTAINS statement separates the body of a main program, module, or external subprogram
from any internal or module procedures it may contain. It is not executable.
The CONTAINS statement takes the following form:

CONTAINS
Any number of internal procedures can follow a CONTAINS statement, but a CONTAINS
statement cannot appear in the internal procedures themselves.

See Also
• “Modules and Module Procedures”
• “Internal Procedures”

ENTRY Statement
The ENTRY statement provides one or more entry points within a subprogram. It is not executable
and must precede any CONTAINS statement (if any) within the subprogram.
The ENTRY statement takes the following form:

ENTRY name [([d-arg [, d-arg]...]) [RESULT (r-name)]]
name
Is the name of an entry point. If RESULT is specified, this entry name must not appear in any
specification statement in the scoping unit of the function subprogram.
d-arg
Is a dummy argument. The dummy argument can be an alternate return indicator (*) if the ENTRY
statement is within a subroutine subprogram.
r-name
Is the name of a function result. This name must not be the same as the name of the entry point, or
the name of any other function or function result. This parameter can only be specified for
function subprograms.

Rules and Behavior

ENTRY statements can only appear in external procedures or module procedures.
8-53

8 Intel Fortran Language Reference
An ENTRY statement must not appear in a CASE, DO, IF, FORALL, or WHERE construct, or a
nonblock DO loop.
When the ENTRY statement appears in a subroutine subprogram, it is referenced by a CALL
statement. When the ENTRY statement appears in a function subprogram, it is referenced by a
function reference.
An entry name within a function subprogram can appear in a type declaration statement.
Within the subprogram containing the ENTRY statement, the entry name must not appear as a
dummy argument in the FUNCTION or SUBROUTINE statement, and it must not appear in an
EXTERNAL or INTRINSIC statement. For example, neither of the following are valid:
(1) SUBROUTINE SUB(E)

 ENTRY E

 ...

(2) SUBROUTINE SUB

 EXTERNAL E

 ENTRY E

 ...

An ENTRY statement can reference itself if the function or subroutine subprogram was defined as
RECURSIVE.
 Dummy arguments can be used in ENTRY statements even if they differ in order, number, type
and kind parameters, and name from the dummy arguments used in the FUNCTION,
SUBROUTINE, and other ENTRY statements in the same subprogram. However, each reference
to a function, subroutine, or entry must use an actual argument list that agrees in order, number,
and type with the dummy argument list in the corresponding FUNCTION, SUBROUTINE, or
ENTRY statement.
Dummy arguments can be referred to only in executable statements that follow the first
SUBROUTINE, FUNCTION, or ENTRY statement in which the dummy argument is specified. If
a dummy argument is not currently associated with an actual argument, the dummy argument is
undefined and cannot be referenced. Arguments do not retain their association from one reference
of a subprogram to another.
For specific information on ENTRY statements in function subprograms and subroutine
subprograms (including examples), see “ENTRY Statements in Function Subprograms” and
“ENTRY Statements in Subroutine Subprograms”.

See Also
• “Functions”
• “Subroutines”
• “Function References”
8-54

Program Units and Procedures 8

• “CALL Statement”
• “Argument Association” for details on procedure arguments

ENTRY Statements in Function Subprograms

If the ENTRY statement is contained in a function subprogram, it defines an additional function.
The name of the function is the name specified in the ENTRY statement, and its result variable is
the entry name or the name specified by RESULT (if any).
If the entry result variable has the same characteristics as the FUNCTION statement’s result
variable, their result variables identify the same variable, even if they have different names.
Otherwise, the result variables are storage associated and must all be nonpointer scalars of
intrinsic type, in one of the following groups:

All entry names within a function subprogram are associated with the name of the function
subprogram. Therefore, defining any entry name or the name of the function subprogram defines
all the associated names with the same data type. All associated names with different data types
become undefined.
If RESULT is specified in the ENTRY statement and RECURSIVE is specified in the FUNCTION
statement, the interface of the function defined by the ENTRY statement is explicit within the
function subprogram.

Examples

The following example shows a function subprogram that computes the hyperbolic functions
SINH, COSH, and TANH:
REAL FUNCTION TANH(X)

 TSINH(Y) = EXP(Y) - EXP(-Y)

 TCOSH(Y) = EXP(Y) + EXP(-Y)

 TANH = TSINH(X)/TCOSH(X)

 RETURN

ENTRY SINH(X)

 SINH = TSINH(X)/2.0

 RETURN

 ENTRY COSH(X)

Group 1 Type default integer, default real, double precision real, default complex,
double complex, or default logical

Group 2 Type REAL(16) and COMPLEX(16)
Group 3 Type default character (with identical lengths)
8-55

8 Intel Fortran Language Reference
 COSH = TCOSH(X)/2.0

 RETURN

END

See Also

“RESULT Keyword”

ENTRY Statements in Subroutine Subprograms

If the ENTRY statement is contained in a subroutine subprogram, it defines an additional
subroutine. The name of the subroutine is the name specified in the ENTRY statement.
If RECURSIVE is specified on the SUBROUTINE statement, the interface of the subroutine
defined by the ENTRY statement is explicit within the subroutine subprogram.

Examples

The following example shows a main program calling a subroutine containing an ENTRY
statement:
PROGRAM TEST

 ...

 CALL SUBA(A, B, C) ! A, B, and C are actual arguments

 ... ! passed to entry point SUBA

END

SUBROUTINE SUB(X, Y, Z)

 ...

 ENTRY SUBA(Q, R, S) ! Q, R, and S are dummy arguments

 ... ! Execution starts with this statement

END SUBROUTINE

The following example shows an ENTRY statement specifying alternate returns:
CALL SUBC(M, N, *100, *200, P)

SUBROUTINE SUB(K, *, *)

 ...

 ENTRY SUBC(J, K, *, *, X)

 ...

 RETURN 1

 RETURN 2

END
8-56

Program Units and Procedures 8

Note that the CALL statement for entry point SUBC includes actual alternate return arguments.
The RETURN 1 statement transfers control to statement label 100 and the RETURN 2 statement
transfers control to statement label 200 in the calling program.

See Also

Your user’s guide for details on implementation of argument association in ENTRY statements
8-57

8 Intel Fortran Language Reference
8-58

Intrinsic Procedures
9

Intrinsic procedures are functions and subroutines that are included in the Fortran 95/90 library.
There are four classes of these intrinsic procedures, as follows:
• Elemental procedures

These procedures have scalar dummy arguments that can be called with scalar or array actual
arguments. There are many elemental intrinsic functions and one elemental intrinsic
subroutine (MVBITS).
If the arguments are all scalar, the result is scalar. If an actual argument is array-valued, the
intrinsic procedure is applied to each element of the actual argument, resulting in an array that
has the same shape as the actual argument.
If there is more than one array-valued argument, they must all have the same shape.

• Inquiry functions
These functions have results that depend on the properties of their principal argument, not the
value of the argument (the argument value can be undefined).

• Transformational functions
These functions have one or more array-valued dummy or actual arguments, an array result,
or both. The intrinsic function is not applied elementally to an array-valued actual argument;
instead it changes (transforms) the argument array into another array.

• Nonelemental procedures
These procedures must be called with only scalar arguments; they return scalar results. All
subroutines (except MVBITS) are nonelemental.

Intrinsic procedures are invoked the same way as other procedures, and follow the same rules of
argument association.
The intrinsic procedures have generic (or common) names, and many of the intrinsic functions
have specific names. (Some intrinsic functions are both generic and specific.)
9-1

9 Intel Fortran Language Reference
In general, generic functions accept arguments of more than one data type; the data type of the
result is the same as that of the arguments in the function reference. For elemental functions with
more than one argument, all arguments must be of the same type (except for function MERGE).
When an intrinsic function is passed as an actual argument to a procedure, its specific name must
be used, and when called, its arguments must be scalar. Some specific intrinsic functions are not
allowed as actual arguments in all circumstances. Table 9-1 lists specific functions that cannot be
passed as actual arguments.

This chapter contains information on the following topics:

Table 9-1 Functions Not Allowed as Actual Arguments

AIMAX0 EOF INT8 LGE

AIMIN0 FLOAT INT_PTR_KIND LGT

AJMAX0 FLOATI IQINT LLE

AJMIN0 FLOATJ IZEXT LLT

AKMAX0 FLOATK JFIX LOC

AKMIN0 HFIX JIDINT MALLOC

AMAX0 IADDR JIFIX MAX0

AMAX1 IARGC JINT MAX1

AMIN0 ICHAR JIQINT MIN0

AMIN1 IDINT JMAX0 MIN1

BADDRESS IFIX JMAX1 MULT_HIGH

CACHESIZE IIDINT JMIN0 NARGS

CHAR IIFIX JMIN1 QCMPLX

CMPLX IINT JZEXT QEXT

DBLE IIQINT KIDINT QEXTD

DBLEQ IJINT KIFIX QMAX1

DCMPLX IMAX0 KINT QMIN1

DFLOTI IMAX1 KIQINT QREAL

DFLOTJ IMIN0 KIQNNT RAN

DFLOTK IMIN1 KMAX0 REAL

DMAX1 INT KMAX1 SECNDS

DMIN1 INT1 KMIN0 SNGL

DPROD INT2 KMIN1 SNGLQ

DREAL INT4 KZEXT ZEXT
9-2

Intrinsic Procedures 9

• “Argument Keywords in Intrinsic Procedures”
• “Overview of Intrinsic Procedures”
• “Descriptions of Intrinsic Procedures”

See Also
• “Argument Association”
• “MERGE”
• “Optional Arguments”
• Appendix D, “Data Representation Models”
• “References to Generic Intrinsic Functions”
• “References to Elemental Intrinsic Procedures” for details on elemental references to intrinsic

procedures
• Your user’s guide for details on Intel® Fortran numeric data format

Argument Keywords in Intrinsic Procedures
For all intrinsic procedures, the arguments shown are the names you must use as keywords when
using the keyword form for actual arguments. For example, a reference to function CMPLX (X, Y,
KIND) can be written as follows:

Some argument keywords are optional (denoted by square brackets). The following describes
some of the most commonly used optional arguments:

Examples

The syntax for the DATE_AND_TIME intrinsic subroutine shows four optional positional
arguments: DATE, TIME, ZONE, and VALUES (see “DATE_AND_TIME”).
The following shows some valid ways to specify these arguments:

Using positional arguments: CMPLX (F, G, L)
Using argument keywords: CMPLX (KIND=L, Y=G, X=F)1
1. Note that argument keywords can be written in any order.

BACK Specifies that a string scan is to be in reverse order (right to left).
DIM Specifies a selected dimension of an array argument.
KIND Specifies the kind type parameter of the function result.
MASK Specifies that a mask can be applied to the elements of the argument array to

exclude the elements that are not to be involved in an operation.
9-3

9 Intel Fortran Language Reference
! Keyword example

 CALL DATE_AND_TIME (ZONE=Z)

 ! The following two positional examples are equivalent:

 CALL DATE_AND_TIME (DATE, TIME, ZONE)

 CALL DATE_AND_TIME (, , ZONE)

See Also
• “Argument Association”
• “CALL Statement” for details on argument keywords in subroutine references
• “Function References” for details on argument keywords in function references

Overview of Intrinsic Procedures
This section describes the categories of generic intrinsic functions (including a summarizing
table), lists the intrinsic subroutines, and provides general information on bit functions.
Intrinsic procedures are fully described (in alphabetical order) in “Descriptions of Intrinsic
Procedures”.

Categories of Intrinsic Functions

Generic intrinsic functions can be divided into categories, as shown in Table 9-2.

Table 9-2 Categories of Intrinsic Functions

Category Subcategory Description

Numeric Computation Perform type conversions or simple numeric operations: ABS, AIMAG,
AINT, AMAX0, AMIN0, ANINT, CEILING, CMPLX, CONJG, DBLE,
DCMPLX, DFLOAT, DIM, DNUM, DPROD, DREAL, FLOAT, FLOOR,
IFIX, ILEN, IMAG, INT, INUM, JNUM, MAX, MAX1, MIN, MIN1, MOD,
MODULO, NINT, QCMPLX, QEXT, QFLOAT, QNUM, QREAL, RAN,
REAL, RNUM, SIGN, SNGL, ZEXT

Manipulation1 Return values related to the components of the model values
associated with the actual value of the argument: EXPONENT,
FRACTION, NEAREST, RRSPACING, SCALE, SET_EXPONENT,
SPACING

Inquiry1 Return scalar values from the models associated with the type and

kind parameters of their arguments2: DIGITS, EPSILON, HUGE,
MAXEXPONENT, MINEXPONENT, PRECISION, RADIX, RANGE,
SIZEOF, TINY

Transformational Perform vector and matrix multiplication: DOT_PRODUCT, MATMUL
9-4

Intrinsic Procedures 9
System Return information about a process or processor: MCLOCK,
SECNDS

Kind type Return kind type parameters: SELECTED_INT_KIND,
SELECTED_REAL_KIND, KIND

Mathematical Perform mathematical operations: ACOS, ACOSD, ACOSH, ASIN,
ASIND, ASINH, ATAN, ATAN2, ATAN2D, ATAND, ATANH, COS,
COSD, COSH, COTAN, COTAND, EXP, LOG, LOG10, SIN, SIND,
SINH, SQRT, TAN, TAND, TANH

Bit Manipulation Perform single-bit processing, logical and shift operations, and allow
bit subfields to be referenced: AND, BTEST, DSHIFTL, DSHIFTR,
IAND, IBCHNG, IBCLR, IBITS, IBSET, IEOR, IOR, ISHA, ISHC,
ISHFT, ISHFTC, ISHL, IXOR, LSHIFT (or LSHFT), NOT, OR, RSHIFT
(or RSHFT), SHIFTL, SHIFTR, XOR

Inquiry Lets you determine parameter s (the bit size) in the bit model3:
BIT_SIZE

Representation Return information on bit representation of integers: LEADZ,
POPCNT, POPPAR, TRAILZ

Character Comparison Lexically compare character-string arguments and return a default
logical result: LGE, LGT, LLE, LLT

Conversion Convert character arguments to integer, ASCII, or character values4:
ACHAR, CHAR, IACHAR, ICHAR

String handling Perform operations on character strings, return lengths of arguments,
and search for certain arguments: ADJUSTL, ADJUSTR, INDEX,
LEN_TRIM, REPEAT, SCAN, TRIM, VERIFY

Inquiry Returns the length of an argument or information about command-line
arguments: IARG, IARGC, LEN, NARGS, NUMARG

Array Construction Construct new arrays from the elements of existing array: MERGE,
PACK, SPREAD, UNPACK

Inquiry Let you determine if an array argument is allocated, and return the
size or shape of an array, and the lower and upper bounds of
subscripts along each dimension: ALLOCATED, LBOUND, SHAPE,
SIZE, UBOUND

Location Returns the geometric locations of the maximum and minimum values
of an array: MAXLOC, MINLOC

Manipulation Let you shift an array, transpose an array, or change the shape of an
array: CSHIFT, EOSHIFT, RESHAPE, TRANSPOSE

Table 9-2 Categories of Intrinsic Functions

Category Subcategory Description
9-5

9 Intel Fortran Language Reference
Table 9-3 summarizes the generic intrinsic functions and indicates whether they are elemental,
inquiry, or transformational functions. Optional arguments are shown within square brackets.

Reduction Perform operations on arrays. The functions "reduce" elements of a
whole array to produce a scalar result, or they can be applied to a
specific dimension of an array to produce a result array with a rank
reduced by one: ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT

Miscellaneous Do the following:

• Check for pointer association (ASSOCIATED)

• Return an address (BADDRESS)

• Return the size of a level of the memory cache (CACHESIZE)

• Check for end-of-file (EOF)

• Return error functions (ERF and ERFC)

• Return the class of a floating-point argument (FP_CLASS)

• Return a pointer to an actual argument list for a routine
(IARGPTR)

• Return the INTEGER KIND that will hold an address
(INT_PTR_KIND)

• Test for Not-a-Number values (ISNAN)

• Return the internal address of a storage item (LOC)

• Return a logical value of an argument (LOGICAL)

• Allocate memory (MALLOC)

• Return the upper 64 bits of a 128-bit unsigned result
(MULT_HIGH)

• Return a disassociated pointer (NULL)

• Check for argument presence (PRESENT)

• Convert a bit pattern (TRANSFER)

1. All of the numeric manipulation and many of the numeric inquiry functions are defined by the model sets for integers (“Model for Integer Data”)
and reals (“Model for Real Data”).

2. The value of the argument does not have to be defined.

3. For more information on bit functions, see “Bit Functions”.

4. The Intel Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR = ICHAR.

Table 9-2 Categories of Intrinsic Functions

Category Subcategory Description
9-6

Intrinsic Procedures 9

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned

ABS (a) E The absolute value of an argument

ACHAR (i) E The character in the specified position of the ASCII
character set

ACOS (x) E The arccosine (in radians) of the argument

ACOSD (x) E The arccosine (in degrees) of the argument

ACOSH (x) E The hyperbolic arccosine of the argument

ADJUSTL (string) E The specified string with leading blanks removed and
placed at the end of the string

ADJUSTR (string) E The specified string with trailing blanks removed and
placed at the beginning of the string

AIMAG (z) E The imaginary part of a complex argument

AINT (a [, kind]) E A real value truncated to a whole number

ALL (mask [, dim]) T .TRUE. if all elements of the masked array are true

ALLOCATED (array) I The allocation status of the argument array

AMAX0 (a1, a2 [, a3,...]) E The maximum value in a list of integers (returned as a
real value)

AMIN0 (a1, a2 [, a3,...]) E The minimum value in a list of integers (returned as a
real value)

AND (i, j) E See IAND

ANINT (a [, kind]) E A real value rounded to a whole number

ANY (mask [, dim]) T .TRUE. if any elements of the masked array are true

ASIN (x) E The arcsine (in radians) of the argument

ASIND (x) E The arcsine (in degrees) of the argument

ASINH (x) E The hyperbolic arcsine of the argument

ASSOCIATED (pointer [, target]) I .TRUE. if the pointer argument is associated or the
pointer is associated with the specified target

ATAN (x) E The arctangent (in radians) of the argument

ATAN2 (y, x) E The arctangent (in radians) of the arguments

ATAN2D (y, x) E The arctangent (in degrees) of the arguments

ATAND (x) E The arctangent (in degrees) of the argument

ATANH (x) E The hyperbolic arctangent of the argument

BADDRESS (x) I The address of the argument
9-7

9 Intel Fortran Language Reference
BIT_SIZE (i) I The number of bits (s) in the bit model

BTEST (i, pos) E .TRUE. if the specified position of argument I is one

CEILING (a [, kind]) E The smallest integer greater than or equal to the
argument value

CHAR (i [, kind]) E The character in the specified position of the
processor character set

CONJG (z) E The conjugate of a complex number

COS (x) E The cosine of the argument, which is in radians

COSD (x) E The cosine of the argument, which is in degrees

COSH (x) E The hyperbolic cosine of the argument

COTAN (x) E The cotangent of the argument, which is in radians

COTAND (x) E The cotangent of the argument, which is in degrees

COUNT (mask [, dim] [, kind]) T The number of .TRUE. elements in the argument array

CSHIFT (array, shift [, dim]) T An array that has the elements of the argument array
circularly shifted

DBLE (a) E The corresponding double precision value of the
argument

DFLOAT (a) E The corresponding double precision value of the
integer argument

DIGITS (x) I The number of significant digits in the model for the
argument

DIM (x, y) E The positive difference between the two arguments

DOT_PRODUCT (vector_a, vector_b) T The dot product of two rank-one arrays (also called a
vector multiply function)

DSHIFTL (ileft, iright, ishift) E The upper (leftmost) 64 bits of a left-shifted 128-bit
integer

DSHIFTR (ileft, iright, ishift) E The lower (rightmost) 64 bits of a right-shifted 128-bit
integer

EOSHIFT (array, shift [, boundary] [, dim]) T An array that has the elements of the argument array
end-off shifted

EOF (a) I .TRUE. or .FALSE. depending on whether a file is
beyond the end-of-file record

EPSILON (x) I The number that is almost negligible when compared
to one

ERF (x) E The error function of an argument

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-8

Intrinsic Procedures 9
ERFC (x) E The complementary error function of an argument

EXP (x) E The exponential ex for the argument x

EXPONENT (x) E The value of the exponent part of a real argument

FLOAT (x) E The corresponding real value of the integer argument

FLOOR (a [, kind]) E The largest integer less than or equal to the argument
value

FP_CLASS (x) E The class of the IEEE floating-point argument

FRACTION (x) E The fractional part of a real argument

HUGE (x) I The largest number in the model for the argument

IACHAR (c) E The position of the specified character in the ASCII
character set

IADDR (x) E See BADDRESS.

IAND (i, j) E The logical AND of the two arguments

IBCHNG (i, pos) E The reversed value of a specified bit

IBCLR (i, pos) E The specified position of argument I cleared (set to
zero)

IBITS (i, pos, len) E The specified substring of bits of argument I

IBSET (i, pos) E The specified bit in argument I set to one

ICHAR (c [, kind]) E The position of the specified character in the
processor character set

IEOR (i, j) E The logical exclusive OR of the corresponding bit
arguments

IFIX (x) E The corresponding integer value of the real argument
rounded as if it were an implied conversion in an
assignment

ILEN (i) I The length (in bits) in the two's complement
representation of an integer

IMAG (z) E See AIMAG

INDEX (string, substring [, back] [, kind]) E The position of the specified substring in a character
expression

INT (a [, kind]) E The corresponding integer value (truncated) of the
argument

IOR (i, j) E The logical inclusive OR of the corresponding bit
arguments

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-9

9 Intel Fortran Language Reference
ISHA (i, shift) E Argument I shifted left or right by a specified number
of bits

ISHC (i, shift) E Argument I rotated left or right by a specified number
of bits

ISHFT (i, shift) E The logical end-off shift of the bits in argument I

ISHFTC (i, shift [, size]) E The logical circular shift of the bits in argument I

ISHL (i, shift) E Argument I logically shifted left or right by a specified
number of bits

ISNAN (x) E Tests for Not-a-Number (NaN) values

IXOR (i, j) E See IEOR

KIND (x) I The kind type parameter of the argument

LBOUND (array [, dim] [, kind]) I The lower bounds of an array (or one of its
dimensions)

LEADZ (i) E The number of leading zero bits in an integer.

LEN (string [, kind]) I The length (number of characters) of the argument
character string

LEN_TRIM (string [, kind]) E The length of the specified string without trailing
blanks

LGE (string_a, string_b) E A logical value determined by a > or = comparison of
the arguments

LGT (string_a, string_b E A logical value determined by a > comparison of the
arguments

LLE (string_a, string_b) E A logical value determined by a < or = comparison of
the arguments

LLT (string_a, string_b) E A logical value determined by a < comparison of the
arguments

LOC (a) I The internal address of the argument.

LOG (x) E The natural logarithm of the argument

LOG10 (x) E The common logarithm (base 10) of the argument

LOGICAL (l [, kind]) E The logical value of the argument converted to a
logical of type KIND

LSHIFT (i, positive_shift) 2 E Can also be specified as LSHFT; see ISHFT

MATMUL (matrix_a, matrix_b) T The result of matrix multiplication (also called a matrix
multiply function)

MAX (a1, a2 [, a3,...]) E The maximum value in the set of arguments

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-10

Intrinsic Procedures 9
MAX1 (a1, a2 [, a3,...]) E The maximum value in the set of real arguments
(returned as an integer)

MAXEXPONENT (x) I The maximum exponent in the model for the argument

MAXLOC (array [, dim] [, mask][, kind]) T The rank-one array that has the location of the
maximum element in the argument array

MAXVAL (array [, dim] [, mask]) T The maximum value of the elements in the argument
array

MERGE (tsource, fsource, mask) E An array that is the combination of two conformable
arrays (under a mask)

MIN (a1, a2 [, a3,...]) E The minimum value in the set of arguments

MIN1 (a1, a2 [, a3,...]) E The minimum value in the set of real arguments
(returned as an integer)

MINEXPONENT (x) I The minimum exponent in the model for the argument

MINLOC (array [, dim] [, mask][, kind]) T The rank-one array that has the location of the
minimum element in the argument array

MINVAL (array [, dim] [, mask]) T The minimum value of the elements in the argument
array

MOD (a, p) E The remainder of the arguments (has the sign of the
first argument)

MODULO (a, p) E The modulo of the arguments (has the sign of the
second argument)

NEAREST (x, s) E The nearest different machine-representable number
in a given direction

NINT (a [, kind]) E A real value rounded to the nearest integer

NOT (i) E The logical complement of the argument

NULL ([mold]) T A disassociated pointer

OR (i, j) E See IOR

PACK (array, mask [, vector]) T A packed array of rank one (under a mask)

POPCNT (i) E The number of 1 bits in the integer argument

POPPAR (i) E The parity of the integer argument

PRECISION (x) I The decimal precision (real or complex) of the
argument

PRESENT (a) I .TRUE. if an actual argument has been provided for an
optional dummy argument

PRODUCT (array [, dim] [, mask]) T The product of the elements of the argument array

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-11

9 Intel Fortran Language Reference
QEXT (a) E The corresponding REAL(16) precision value of the
argument.

QFLOAT (a) E The corresponding REAL(16) precision value of the
integer argument.

RADIX (x) I The base of the model for the argument

RANGE (x) I The decimal exponent range of the model for the
argument

REAL (a [, kind]) E The corresponding real value of the argument

REPEAT (string, ncopies) T The concatenation of zero or more copies of the
specified string

RESHAPE (source, shape [, pad] [, order]) T An array that has a different shape than the argument
array, but the same elements

RRSPACING (x) E The reciprocal of the relative spacing near the
argument

RSHIFT (i, negative_shift) 3 E Can also be specified as RSHFT; see ISHFT

SCALE (x, I) E The value of the exponent part (of the model for the
argument) changed by a specified value

SCAN (string, SET [, back][, kind]) E The position of the specified character (or set of
characters) within a string

SELECTED_INT_KIND (r) T The integer kind parameter of the argument

SELECTED_REAL_KIND ([p] [, r]) T The real kind parameter of the argument; one of the
optional arguments must be specified

SET_EXPONENT (x, i) E The value of the exponent part (of the model for the
argument) set to a specified value

SHAPE (SOURCE [, kind]) I The shape (rank and extents) of an array or scalar

SHIFTL (ivalue, ishift) E Argument "ivalue" shifted left by a specified number of
bits

SHIFTR (ivalue, ishift) E Argument "ivalue" shifted right by a specified number
of bits

SIGN (a, b) E A value with the sign transferred from its second
argument

SIN (x) E The sine of the argument, which is in radians

SIND (x) E The sine of the argument, which is in degrees

SINH (x) E The hyperbolic sine of the argument

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-12

Intrinsic Procedures 9
SIZE (array [, dim] [, kind]) I The size (total number of elements) of the argument
array (or one of its dimensions)

SIZEOF(x) I The bytes of storage used by an argument

SNGL (x) E The corresponding real value of the argument

SPACING (x) E The value of the absolute spacing of model numbers
near the argument

SPREAD (source, dim, ncopies) T A replicated array that has an added dimension

SQRT (x) E The square root of the argument

SUM (array [, dim] [, mask]) T The sum of the elements of the argument array

TAN (x) E The tangent of the argument, which is in radians

TAND (x) E The tangent of the argument, which is in degrees

TANH (x) E The hyperbolic tangent of the argument

TINY (x) I The smallest positive number in the model for the
argument

TRAILZ (i) E The number of trailing zero bits in an integer.

TRANSFER (source, mold [, size]) T The bit pattern of SOURCE converted to the type and
kind parameters of MOLD

TRANSPOSE (matrix) T The matrix transpose for the rank-two argument array

TRIM (string) T The argument with trailing blanks removed

UBOUND (array [, dim] [, kind]) I The upper bounds of an array (or one of its
dimensions)

UNPACK (vector, mask, field) T An array (under a mask) unpacked from a rank-one
array

VERIFY (string, set [, back][, kind]) E The position of the first character in a string that does
not appear in the given set of characters

XOR (i, j) E See IEOR

ZEXT (x [, kind]) E A zero-extended value of the argument

1. Key to Classes:

 E - Elemental

 I - Inquiry

 T - Transformational

2. Or LSHFT.

3. Or RSHFT.

Table 9-3 Summary of Generic Intrinsic Functions

Generic Function Class 1 Value Returned
9-13

9 Intel Fortran Language Reference
Table 9-4 lists specific functions that have no generic function associated with them and indicates
whether they are elemental, nonelemental, or inquiry functions. Optional arguments are shown
within square brackets.

Table 9-4 Specific Functions with No Generic Association

Specific Function Class 1 Value Returned

CACHESIZE (n)2 I The size of a level of the memory cache

CMPLX (x [, y] [, kind]) E The corresponding complex value of the argument

DCMPLX (x, y) E The corresponding double complex value of the argument

DNUM (i) E The corresponding double-precision value of a character
string

DPROD (x, y) E The higher precision product of two real arguments

DREAL (a) E The corresponding double-precision value of the real part
of a double-complex argument

IARG () I See IARGC

IARGC () I The index of the last command-line argument

IARGPTR () I The count of actual arguments passed to the current
routine

INUM (i) E The corresponding INTEGER(2) value of a character
string

JNUM (i) E The corresponding INTEGER(4) value of a character
string

MALLOC (i) E The starting address for the block of memory allocated

MCLOCK () I The sum (in units of microseconds) of the current
process’s user time and the user and system time of all its
child processes

MULT_HIGH (i, j)2 E The upper (leftmost) 64 bits of the 128-bit unsigned result.

NARGS () I The total number of command-line arguments, including
the command

NUMARG () I See IARGC

QCMPLX (x, y) E The corresponding COMPLEX(16) value of the argument

QNUM (i) E The corresponding REAL(16) value of a character string

QREAL (a) E The corresponding REAL(16) value of the real part of a
COMPLEX(16) argument

RAN (i) N The next number from a sequence of pseudorandom
numbers (uniformly distributed in the range 0 to 1)

RNUM (i) E The corresponding REAL(4) value of a character string
9-14

Intrinsic Procedures 9
Intrinsic Subroutines

Table 9-5 lists the intrinsic subroutines. Optional arguments are shown within square brackets. All
these subroutines are nonelemental except for MVBITS.

SECNDS (x) E The system time of day (or elapsed time) as a
floating-point value in seconds

1. Key to Classes:

 E - Elemental

 I - Inquiry

 N - Nonelemental

2. i64 only

Table 9-5 Intrinsic Subroutines

Subroutine Value Returned or Result

CPU_TIME (time) The processor time in seconds

DATE (buf) The ASCII representation of the current date (in
dd-mmm-yy form)

DATE_AND_TIME ([date] [, time] [, zone] [, values]) Date and time information from the real-time clock

ERRSNS ([io_err] [, sys_err] [, stat] [, unit] [, cond]) Information about the most recently detected error
condition

EXIT ([status]) Image exit status is optionally returned; the
program is terminated, all files closed, and control
is returned to the operating system

FREE (a) Frees memory that is currently allocated

GETARG (n, buffer [,status]) The specified command-line argument (where the
command itself is argument zero)

IDATE (i, j, k) Three integer values representing the current
month, day, and year

MM_PREFETCH (address [, hint] [, fault] [, exclusive]) Data from the specified address on one memory
cache line

MVBITS (from, frompos, len, to, topos)1 A sequence of bits (bit field) is copied from one
location to another

RANDOM_NUMBER (harvest) A pseudorandom number taken from a sequence of
pseudorandom numbers uniformly distributed
within the range 0.0 to 1.0

Table 9-4 Specific Functions with No Generic Association

Specific Function Class 1 Value Returned
9-15

9 Intel Fortran Language Reference
Bit Functions

Integer data types are represented internally in binary two’s complement notation. Bit positions in
the binary representation are numbered from right (least significant bit) to left (most significant
bit); the rightmost bit position is numbered 0.
The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of the bits of their argument (or
arguments). Bit 0 of the result comes from applying the specified logical operation to bit 0 of the
argument. Bit 1 of the result comes from applying the specified logical operation to bit 1 of the
argument, and so on for all of the bits of the result.
The functions ISHFT and ISHFTC shift binary patterns.
The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS operate on bit
fields.
A bit field is a contiguous group of bits within a binary pattern. Bit fields are specified by a
starting bit position and a length. A bit field must be entirely contained in its source operand.
For example, the integer 47 is represented by the following:

You can refer to the bit field contained in bits 3 through 6 by specifying a starting position of 3 and
a length of 4.
Negative integers are represented in two’s complement notation. For example, the integer –47 is
represented by the following:

RANDOM_SEED ([size] [, put] [, get]) Initializes or retrieves the pseudorandom number
generator seed value

RANDU (i1, i2, x) A pseudorandom number as a single-precision
value (within the range 0.0 to 1.0)

SYSTEM_CLOCK ([count] [, count_rate] [, count_max]) Data from the processors real-time clock

TIME (buf) The ASCII representation of the current time (in
hh:mm:ss form)

1. An elemental subroutine

Binary pattern: 0...0101111

Bit position: n...6543210
Where n is the number of bit positions in the numeric storage unit.

Binary pattern: 1...1010001

Table 9-5 Intrinsic Subroutines

Subroutine Value Returned or Result
9-16

Intrinsic Procedures 9
The value of bit position n is as follows:
1 for a negative number

0 for a non-negative number

All the high-order bits in the pattern from the last significant bit of the value up to bit n are the
same as bit n.
IBITS and MVBITS operate on general bit fields. Both the starting position of a bit field and its
length are arguments to these intrinsics. IBSET, IBCLR, and BTEST operate on 1-bit fields. They
do not require a length argument.
For IBSET, IBCLR, and BTEST, the bit position range is as follows:
• 0 to 63 for INTEGER(8) and LOGICAL(8)
• 0 to 31 for INTEGER(4) and LOGICAL(4)
• 0 to 15 for INTEGER(2) and LOGICAL(2)
• 0 to 7 for BYTE, INTEGER(1), and LOGICAL(1)
For IBITS, the bit position can be any number. The length range is 0 to 63 on Intel® Itanium®
processors; 0 to 31 on IA-32 processors.
The following example shows IBSET, IBCLR, and BTEST:
I = 4

J = IBSET (I,5)

PRINT *, 'J = ',J

K = IBCLR (J,2)

PRINT *, 'K = ',K

PRINT *, 'Bit 2 of K is ',BTEST(K,2)

END

The results are: J = 36, K = 32, and Bit 2 of K is F.
For optimum selection of performance and memory requirements, Intel Fortran provides the
following integer data types:

Bit position: n...6543210
Where n is the number of bit positions in the numeric storage unit.

Data Type Storage Required (in bytes)

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8
9-17

9 Intel Fortran Language Reference
The bit manipulation functions each have a generic form that operates on all of these integer types
and a specific form for each type.
When you specify the intrinsic functions that refer to bit positions or that shift binary patterns
within a storage unit, be careful that you do not create a value that is outside the range of integers
representable by the data type. If you shift by an amount greater than or equal to the size of the
object you're shifting, the result is 0.
Consider the following:
INTEGER(2) I,J

I = 1

J = 17

I = ISHFT(I,J)

The variables I and J have INTEGER(2) type. Therefore, the generic function ISHFT maps to the
specific function IISHFT, which returns an INTEGER(2) result. INTEGER(2) results must be in
the range –32768 to 32767, but the value 1, shifted left 17 positions, yields the binary pattern 1
followed by 17 zeros, which represents the integer 131072. In this case, the result in I is 0.
The previous example would be valid if I was INTEGER(4), because ISHFT would then map to
the specific function JISHFT, which returns an INTEGER(4) value.
If ISHFT is called with a constant first argument, the result will either be the default integer size or
the smallest integer size that can contain the first argument, whichever is larger.

Descriptions of Intrinsic Procedures
This section contains detailed information on all generic and specific intrinsic procedures. These
procedures are described in alphabetical order by generic name (if there is one).
Optional arguments are identified by square brackets in syntax and the label "(opt)" in descriptive
text.

ABS

Description: Computes an absolute value.
Syntax: result = ABS (a)
Class: Elemental function; Generic
Arguments: a must be of type integer, real, or complex.
Results: If a is an integer or real value, the value of the result is | a |; if a is a complex

value (X, Y), the result is the real value SQRT (X**2 + Y**2).
9-18

Intrinsic Procedures 9
Examples

ABS (–7.4) has the value 7.4.
ABS ((6.0, 8.0)) has the value 10.0.

ACHAR

Specific Name Argument Type Result Type

BABS INTEGER(1) INTEGER(1)

IIABS1

1. Or HABS.

INTEGER(2) INTEGER(2)

IABS2

2. Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a generic function.

INTEGER(4) INTEGER(4)

KIABS INTEGER(8) INTEGER(8)

ABS REAL(4) REAL(4)

DABS REAL(8) REAL(8)

QABS REAL(16) REAL(16)

CABS3

3. The settings of compiler options specifying real size can affect CABS.

COMPLEX(4) REAL(4)

CDABS4

4. This function can also be specified as ZABS.

COMPLEX(8) REAL(8)

CQABS COMPLEX(16) REAL(16)

Description: Returns the character in a specified position of the ASCII character set, even if
the processor’s default character set is different. It is the inverse of the
IACHAR function. In Intel Fortran, ACHAR is equivalent to the CHAR
function.

Syntax: result = ACHAR (i)
Class: Elemental function; Generic
Arguments: i must be of type integer.
Results: The result type is character with length 1; it has the kind parameter value of

KIND ('A').
If I has a value within the range 0 to 127, the result is the character in position I
of the ASCII character set. ACHAR (IACHAR(C)) has the value C for any
character C capable of representation in the processor.
9-19

9 Intel Fortran Language Reference
Examples

ACHAR (71) has the value 'G'.
ACHAR (63) has the value '?'.

ACOS

Example

ACOS (0.68032123) has the value .8225955.

ACOSD

Description: Produces the arccosine of x.
Syntax: result = ACOS (x)
Class: Elemental function; Generic
Arguments: x must be of type real. The | x | must be less than or equal to 1.
Results: The result type is the same as x and is expressed in radians. The value lies in the

range 0 to .

Specific Name Argument Type Result Type

ACOS REAL(4) REAL(4)

DACOS REAL(8) REAL(8)

QACOS REAL(16) REAL(16)

Description: Produces the arccosine of x.
Syntax: result = ACOSD (x)
Class: Elemental function; Generic
Arguments: x must be of type real. The | x | must be less than or equal to 1.
Results: The result type is the same as x and is expressed in degrees. The value lies in

the range –90 to 90 degrees.

Specific Name Argument Type Result Type

ACOSD REAL(4) REAL(4)

DACOSD REAL(8) REAL(8)

QACOSD REAL(16) REAL(16)

π

9-20

Intrinsic Procedures 9

Example

ACOSD (0.886579) has the value 27.55354.

ACOSH

Example

ACOSH (180.0) has the value 5.8861.

ADJUSTL

Example

ADJUSTL (' SUMMERTIME') has the value 'SUMMERTIME '.

Description: Produces the hyperbolic arccosine of x.
Syntax: result = ACOSH (x)
Class: Elemental function; Generic
Arguments: x must be of type real and must be greater than or equal to 1.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

ACOSH REAL(4) REAL(4)

DACOSH REAL(8) REAL(8)

QACOSH REAL(16) REAL(16)

Description: Adjusts a character string to the left, removing leading blanks and inserting
trailing blanks.

Syntax: result = ADJUSTL (string)
Class: Elemental function; Generic
Arguments: string must be of type character.
Results: The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any leading blanks
have been removed and inserted as trailing blanks.

∆∆∆∆ ∆∆∆∆
9-21

9 Intel Fortran Language Reference
ADJUSTR

Example

ADJUSTR ('SUMMERTIME ') has the value ' SUMMERTIME'.

AIMAG

Example

AIMAG ((4.0, 5.0)) has the value 5.0.

Description: Adjusts a character string to the right, removing trailing blanks and inserting
leading blanks.

Syntax: result = ADJUSTR (string)
Class: Elemental function; Generic
Arguments: string must be of type character.
Results: The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any trailing blanks have
been removed and inserted as leading blanks.

Description: Returns the imaginary part of a complex number. This function can also be
specified as IMAG.

Syntax: result = AIMAG (z)
Class: Elemental function; Generic
Arguments: z must be of type complex.
Results: The result type is real with the same kind parameter as z. If z has the value

(x,y), the result has the value y.

Specific Name Argument Type Result Type

AIMAG1

1. The setting of compiler options specifying real size can affect AIMAG.

COMPLEX(4) REAL(4)

DIMAG COMPLEX(8) REAL(8)

QIMAG COMPLEX(16) REAL(16)

∆∆∆∆ ∆∆∆∆
9-22

Intrinsic Procedures 9

AINT

Examples

AINT (3.678) has the value 3.0.
AINT (–1.375) has the value –1.0.

ALL

Description: Truncates a value to a whole number.
Syntax: result = AINT (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type real.
 kind Must be a scalar integer initialization expression.
Results: The result is of type real. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter is that of a.
The result is defined as the largest integer whose magnitude does not exceed
the magnitude of a and whose sign is the same as that of a. If | a | is less than 1,
AINT(a) has the value zero.

Specific Name Argument Type Result Type

AINT REAL(4) REAL(4)

DINT REAL(8) REAL(8)

QINT REAL(16) REAL(16)

Description: Determines if all values are true in an entire array or in a specified dimension of
an array.

Syntax: result = ALL (mask [, dim])
Class: Transformational function; Generic
Arguments:
 mask Must be a logical array.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

mask.
Results: The result is an array or a scalar of type logical.
9-23

9 Intel Fortran Language Reference
Examples

ALL ((/.TRUE., .FALSE., .TRUE./)) has the value false because some elements of MASK are not
true.
ALL ((/.TRUE., .TRUE., .TRUE./)) has the value true because all elements of MASK are true.

A is the array and B is the array .

ALL (A .EQ. B, DIM=1) tests to see if all elements in each column of A are equal to the elements
in the corresponding column of B. The result has the value (false, true, false) because only the
second column has elements that are all equal.
ALL (A .EQ. B, DIM=2) tests to see if all elements in each row of A are equal to the elements in
the corresponding row of B. The result has the value (false, false) because each row has some
elements that are not equal.

ALLOCATED

Examples

Consider the following:

The result is a scalar if dim is omitted or mask has rank one. A scalar result is
true only if all elements of mask are true, or mask has size zero. The result has
the value false if any element of mask is false.
An array result has the same type and kind parameters as mask, and a rank that
is one less than mask. Its shape is (d1, d2, ..., dDIM–1, dDIM+1, ..., dn), where (d1,
d2,..., dn) is the shape of mask.
Each element in an array result is true only if all elements in the one
dimensional array defined by mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) are true.

Description: Indicates whether an allocatable array is currently allocated.
Syntax: result = ALLOCATED (array)
Class: Inquiry function; Generic
Arguments: array must be an allocatable array.
Results: The result is a scalar of type default logical.

The result has the value true if array is currently allocated, false if array is not
currently allocated, or undefined if its allocation status is undefined.

1 5 7
3 6 8

0 5 7
2 6 9
9-24

Intrinsic Procedures 9

REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E

PRINT *, ALLOCATED (E) ! Returns the value false

ALLOCATE (E (12, 15, 20))

PRINT *, ALLOCATED (E) ! Returns the value true

ANINT

Examples

ANINT (3.456) has the value 3.0.
ANINT (–2.798) has the value –3.0.

ANY

Description: Calculates the nearest whole number.
Syntax: result = ANINT (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type real.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is real. If kind is present, the kind parameter is that specified by

kind; otherwise, the kind parameter is that of a. If a is greater than zero, ANINT
(a) has the value AINT (a + 0.5); if a is less than or equal to zero, ANINT (a)
has the value AINT (a – 0.5).

Specific Name Argument Type Result Type

ANINT REAL(4) REAL(4)

DNINT REAL(8) REAL(8)

QNINT REAL(16) REAL(16)

Description: Determines if any value is true in an entire array or in a specified dimension of
an array.

Syntax: result = ANY (mask [, dim])
Class: Transformational function; Generic
9-25

9 Intel Fortran Language Reference
Examples

ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element is true.

A is the array and B is the array .

ANY (A .EQ. B, DIM=1) tests to see if any elements in each column of A are equal to the
elements in the corresponding column of B. The result has the value (false, true, true) because the
second and third columns have at least one element that is equal.
ANY (A .EQ. B, DIM=2) tests to see if any elements in each row of A are equal to the elements in
the corresponding row of B. The result has the value (true, true) because each row has at least one
element that is equal.

ASIN

Arguments:
 mask Must be a logical array.
 dim (opt) Must be a scalar integer expression with a value in the range 1 to n, where n is

the rank of mask.
Results: The result is an array or a scalar of type logical.

The result is a scalar if dim is omitted or mask has rank one. A scalar result is
true if any elements of mask are true. The result has the value false if no
element of mask is true, or mask has size zero.
An array result has the same type and kind parameters as mask, and a rank that
is one less than mask. Its shape is (d1, d2, ..., dDIM–1, dDIM+1, ..., dn), where (d1,
d2, ..., dn) is the shape of mask.
Each element in an array result is true if any elements in the one dimensional
array defined by mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) are true.

Description: Produces the arcsine of x.
Syntax: result = ASIN (x)
Class: Elemental function; Generic
Arguments: x must be of type real. The | x | must be less than or equal to 1.
Results: The result type is the same as x and is expressed in radians. The value lies in the

range – /2 to /2.

1 5 7
3 6 8

0 5 7
2 6 9

π π
9-26

Intrinsic Procedures 9
Example

ASIN (0.79345021) has the value 0.9164571.

ASIND

Example

ASIND (0.2467590) has the value 14.28581.

ASINH

Specific Name Argument Type Result Type

ASIN REAL(4) REAL(4)

DASIN REAL(8) REAL(8)

QASIN REAL(16) REAL(16)

Description: Produces the arcsine of x.
Syntax: result = ASIND (x)
Class: Elemental function; Generic
Arguments: x must be of type real. The | x | must be less than or equal to 1.
Results: The result type is the same as x and is expressed in degrees. The value lies in

the range –90 to 90 degrees.

Specific Name Argument Type Result Type

ASIND REAL(4) REAL(4)

DASIND REAL(8) REAL(8)

QASIND REAL(16) REAL(16)

Description: Produces the hyperbolic arcsine of x.
Syntax: result = ASINH (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x.
9-27

9 Intel Fortran Language Reference
Example

ASINH (180.0) has the value 5.88611.

ASSOCIATED

Examples

Consider the following:
 REAL, TARGET, DIMENSION (0:50) :: TAR

 REAL, POINTER, DIMENSION (:) :: PTR

 PTR => TAR

 PRINT *, ASSOCIATED (PTR, TAR) ! Returns the value true

The subscript range for PTR is 0:50. Consider the following pointer assignment statements:

Specific Name Argument Type Result Type

ASINH REAL(4) REAL(4)

DASINH REAL(8) REAL(8)

QASINH REAL(16) REAL(16)

Description: Returns the association status of its pointer argument or indicates whether the
pointer is associated with the target.

Syntax: result = ASSOCIATED (pointer [, target])
Class: Inquiry function; Generic
Arguments:
 pointer Must be a pointer (of any data type).
 target (opt) Must be a pointer or target.
Results: The result is a scalar of type default logical. The setting of compiler options

specifying integer size can affect this function.
If only pointer appears, the result is true if it is currently associated with a
target; otherwise, the result is false.
If target also appears and is a target, the result is true if pointer is currently
associated with target; otherwise, the result is false.
If target is a pointer, the result is true if both pointer and target are currently
associated with the same target; otherwise, the result is false. (If either pointer
or target is disassociated, the result is false.)
9-28

Intrinsic Procedures 9

 (1) PTR => TAR (:)

 (2) PTR => TAR (0:50)

 (3) PTR => TAR (0:49)

For statements 1 and 2, ASSOCIATED (PTR, TAR) is true because TAR has not changed (the
subscript range for PTR in both cases is 1:51, following the rules for deferred-shape arrays). For
statement 3, ASSOCIATED (PTR, TAR) is false because the upper bound of TAR has changed.
Consider the following:
 REAL, POINTER, DIMENSION (:) :: PTR2, PTR3

 ALLOCATE (PTR2 (0:15))

 PTR3 => PTR2

 PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value true

 ...

 NULLIFY (PTR2)

 NULLIFY (PTR3)

 PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value false

ATAN

Example

ATAN (1.5874993) has the value 1.008666.

Description: Produces the arctangent of x.
Syntax: result = ATAN (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x and is expressed in radians. The value lies in the

range – /2 to /2.

Specific Name Argument Type Result Type

ATAN REAL(4) REAL(4)

DATAN REAL(8) REAL(8)

QATAN REAL(16) REAL(16)

π π
9-29

9 Intel Fortran Language Reference
ATAN2

Examples

ATAN2 (2.679676, 1.0) has the value 1.213623.

If Y has the value and X has the value , then ATAN2 (Y, X) is

.

Description: Produces an arctangent. The result is the principal value of the argument of the
nonzero complex number (x, y).

Syntax: result = ATAN2 (y, x)
Class: Elemental function; Generic
Arguments:
 y Must be of type real.
 x Must have the same type and kind parameters as y. If y has the value zero, x

cannot have the value zero.
Results: The result type is the same as x and is expressed in radians. The value lies in the

range . If , the result is approximately equal to
the value of arctan (y/x).
If y > zero, the result is positive.
If y < zero, the result is negative.
If y = zero, the result is zero (if x > zero) or (if x < zero).
If x = zero, the absolute value of the result is /2.

Specific Name Argument Type Result Type

ATAN2 REAL(4) REAL(4)

DATAN2 REAL(8) REAL(8)

QATAN2 REAL(16) REAL(16)

π– ATAN2 y x,() π≤< x zero≠

π

π

1 1
1– 1–

1– 1
1– 1

3π
4

------ π
4

3π–
4

--------- π–
4

9-30

Intrinsic Procedures 9

ATAN2D

Example

ATAN2D (2.679676, 1.0) has the value 69.53546.

ATAND

Description: Produces an arctangent. The result is the principal value of the argument of the
nonzero complex number (x, y).

Syntax: result = ATAN2D (y, x)
Class: Elemental function; Generic
Arguments:
 y Must be of type real.
 x Must have the same type and kind parameters as y. If y has the value zero, x

cannot have the value zero.
Results: The result type is the same as x and is expressed in degrees. The value lies in

the range –180 degrees to 180 degrees. If , the result is approximately
equal to the value of arctan (y/x).
If y > zero, the result is positive.
If y < zero, the result is negative.
If y = zero, the result is zero (if x > zero) or 180 degrees (if x < zero).
If x = zero, the absolute value of the result is 90 degrees.

Specific Name Argument Type Result Type

ATAN2D REAL(4) REAL(4)

DATAN2D REAL(8) REAL(8)

QATAN2D REAL(16) REAL(16)

Description: Produces the arctangent of x.
Syntax: result = ATAND (x)
Class: Elemental function; Generic
Arguments: x must be of type real and must be greater than or equal to zero.
Results: The result type is the same as x and is expressed in degrees.

x zero≠
9-31

9 Intel Fortran Language Reference
Example

ATAND (0.0874679) has the value 4.998819.

ATANH

Example

ATANH (–0.77) has the value –1.02033.

BADDRESS

Specific Name Argument Type Result Type

ATAND REAL(4) REAL(4)

DATAND REAL(8) REAL(8)

QATAND REAL(16) REAL(16)

Description: Produces the hyperbolic arctangent of x.
Syntax: result = ATANH (x)
Class: Elemental function; Generic
Arguments: x must be of type real, where .
Results: The result type is the same as x. The value lies in the range –1.0 to 1.0.

Specific Name Argument Type Result Type

ATANH REAL(4) REAL(4)

DATANH REAL(8) REAL(8)

QATANH REAL(16) REAL(16)

Description: Returns the address of x. It cannot be passed as an actual argument. This
function can also be specified as IADDR.

Syntax: result = BADDRESS (x)
Class: Inquiry function; Generic
Arguments: x is a variable, an array or record field reference, a procedure, or a constant; it

can be of any data type. It must not be the name of an internal procedure or
statement function. If it is a pointer, it must be defined and associated with a
target.

 x 1≤
9-32

Intrinsic Procedures 9
Example

Consider the following:
PROGRAM batest

 INTEGER X(5), I

 DO I=1, 5

 PRINT *, BADDRESS(X(I))

 END DO

END

BIT_SIZE

Example

BIT_SIZE (1_2) has the value 16 because the KIND=2 integer type contains 16 bits.

BTEST

Results: The result type is INTEGER(4) on IA-32 processors; INTEGER(8) on Intel®
Itanium® processors. The value of the result represents the address of the data
object or, in the case of pointers, the address of its associated target. If the
argument is not valid, the result is undefined.

Description: Returns the number of bits in an integer type.
Syntax: result = BIT_SIZE (i)
Class: Inquiry function; Generic
Arguments: i must be of type integer.
Results: The result is a scalar integer with the same kind parameter as i. The result value

is the number of bits (s) defined by the bit model for integers with the kind
parameter of the argument. For information on the bit model, see “Model for
Bit Data”.

Description: Tests a bit of an integer argument.
Syntax: result = BTEST (i, pos)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
9-33

9 Intel Fortran Language Reference
Examples

BTEST (9, 3) has the value true.

If A has the value , the value of BTEST (A, 2) is and the value

of BTEST (2, A) is .

CACHESIZE (i64 only)

 pos Must be of type integer. It must not be negative and it must be less than
BIT_SIZE (i).
The rightmost (least significant) bit of i is in position 0.

Results: The result type is default logical.
The result is true if bit pos of I has the value 1. The result is false if pos has the
value zero. For more information on bit functions, see “Bit Functions”.
The setting of compiler options specifying integer size can affect this function.

Specific Name Argument Type Result Type

BBTEST INTEGER(1) LOGICAL(1)

BITEST1

1. Or HTEST

INTEGER(2) LOGICAL(2)

BTEST2

2. Or BJTEST

INTEGER(4) LOGICAL(4)

BKTEST INTEGER(8) LOGICAL(8)

Description: Returns the size of a level of the memory cache. This specific function has no
generic function associated with it and is only available on Intel Itanium
processors. It must not be passed as an actual argument.

Syntax: result = CACHESIZE (n)
Class: Inquiry function; Specific
Arguments: n must be scalar and of type INTEGER(4).
Results: The result type is INTEGER(4). The result value is the number of kilobytes in

the level n memory cache.

1 2
3 4

false false

false true

true false

false false
9-34

Intrinsic Procedures 9
Example

CACHESIZE(1) returns 16 for a processor with a 16KB first level memory cache.

CEILING

Examples

CEILING (4.8) has the value 5.
CEILING (–2.55) has the value –2.0.

CHAR

n = 1 specifies the first level cache; n = 2 specifies the second level cache; etc.
If cache level n does not exist, the result value is 0.

Description: Returns the smallest integer greater than or equal to its argument.
Syntax: result = CEILING (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type real.
 kind (opt) Must be a scalar integer initialization expression. This argument is a Fortran 95

feature.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
The value of the result is equal to the smallest integer greater than or equal to a.
The setting of compiler options specifying integer size can affect this function.

Description: Returns the character in the specified position of the processor’s character set.
It is the inverse of the function ICHAR.

Syntax: result = CHAR (i [, kind])
Class: Elemental function; Generic
9-35

9 Intel Fortran Language Reference
Examples

CHAR (76) has the value 'L'.
CHAR (94) has the value '^'.

CMPLX

Arguments:
 i Must be of type integer with a value in the range 0 to n – 1, where n is the

number of characters in the processor’s character set.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is of type character with length 1. If kind is present, the kind

parameter of the result is that specified by kind; otherwise, the kind parameter
of the result is that of default character. If the processor cannot represent the
result value in the kind of the result, the result is undefined.
The result is the character in position i of the processor’s character set.
ICHAR(CHAR (I, KIND(C))) has the value I for 0 to n – 1 and
CHAR(ICHAR(C), KIND(C)) has the value C for any character C capable of
representation in the processor.

Specific Name Argument Type Result Type

INTEGER(1) CHARACTER

INTEGER(2) CHARACTER

CHAR1

1. This specific function cannot be passed as an actual argument.

INTEGER(4) CHARACTER

INTEGER(8) CHARACTER

Description: Converts the argument to complex type. This function cannot be passed as an
actual argument.

Syntax: result = CMPLX (x [, y] [, kind])
Class: Elemental function; Specific
Arguments:
 x Must be of type integer, real, or complex.
 y (opt) Must be of type integer or real. It must not be present if x is of type complex.
 kind (opt) Must be a scalar integer initialization expression.
9-36

Intrinsic Procedures 9
Examples

CMPLX (–3) has the value (–3.0, 0.0).
CMPLX (4.1, 2.3) has the value (4.1, 2.3).

CONJG

Examples

CONJG ((2.0, 3.0)) has the value (2.0,–3.0).
CONJG ((1.0, –4.2)) has the value (1.0, 4.2).

Results: The result type is complex. If kind is present, the kind parameter is that
specified by kind; otherwise, the kind parameter is that of default real type.
If only one noncomplex argument appears, it is converted into the real part of
the result value and zero is assigned to the imaginary part. If y is not specified
and x is complex, the result value is CMPLX (REAL(x), AIMAG(x)).
If two noncomplex arguments appear, the complex value is produced by
converting the first argument into the real part of the value, and converting the
second argument into the imaginary part.
CMPLX(x, y, kind) has the complex value whose real part is REAL(x, kind) and
whose imaginary part is REAL(y, kind).
The setting of compiler options specifying real size can affect this function.

Description: Calculates the conjugate of a complex number.
Syntax: result = CONJG (z)
Class: Elemental function; Generic
Arguments: z must be of type complex.
Results: The result type is the same as z. If z has the value (x, y), the result has the value

(x, –y).

Specific Name Argument Type Result Type

CONJG COMPLEX(4) COMPLEX(4)

DCONJG COMPLEX(8) COMPLEX(8)

QCONJG COMPLEX(16) COMPLEX(16)
9-37

9 Intel Fortran Language Reference
COS

Examples

COS (2.0) has the value –0.4161468.
COS (0.567745) has the value 0.8431157.

COSD

Description: Produces the cosine of x.
Syntax: result = COS (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex. It must be in radians and is treated as modulo

2* .
If x is of type complex, its real part is regarded as a value in radians.

Results: The result type is the same as x.

Specific Name Argument Type Result Type

COS REAL(4) REAL(4)

DCOS REAL(8) REAL(8)

QCOS REAL(16) REAL(16)

CCOS1

1. The setting of compiler options specifying real size can affect CCOS.

COMPLEX(4) COMPLEX(4)

CDCOS2

2. This function can also be specified as ZCOS.

COMPLEX(8) COMPLEX(8)

CQCOS COMPLEX(16) COMPLEX(16)

Description: Produces the cosine of x.
Syntax: result = COSD (x)
Class: Elemental function; Generic
Arguments: x must be of type real. It must be in degrees and is treated as modulo 360.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

COSD REAL(4) REAL(4)

π

9-38

Intrinsic Procedures 9
Examples

COSD (2.0) has the value 0.9993908.
COSD (30.4) has the value 0.8625137.

COSH

Examples

COSH (2.0) has the value 3.762196.
COSH (0.65893) has the value 1.225064.

COTAN

DCOSD REAL(8) REAL(8)

QCOSD REAL(16) REAL(16)

Description: Produces a hyperbolic cosine.
Syntax: result = COSH (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

COSH REAL(4) REAL(4)

DCOSH REAL(8) REAL(8)

QCOSH REAL(16) REAL(16)

Description: Produces the cotangent of x.
Syntax: result = COTAN (x)
Class: Elemental function; Generic
Arguments: x must be of type real; it cannot be zero. It must be in radians and is treated as

modulo 2* .
Results: The result type is the same as x.

Specific Name Argument Type Result Type

π

9-39

9 Intel Fortran Language Reference
Examples

COTAN (2.0) has the value –4.576575E–01.
COTAN (0.6) has the value 1.461696.

COTAND

Examples

COTAND (2.0) has the value 0.2863625E+02.
COTAND (0.6) has the value 0.9548947E+02.

COUNT

Specific Name Argument Type Result Type

COTAN REAL(4) REAL(4)

DCOTAN REAL(8) REAL(8)

QCOTAN REAL(16) REAL(16)

Description: Produces the cotangent of X.
Syntax: result = COTAND (x)
Class: Elemental function; Generic
Arguments: x must be of type real. It must be in degrees and is treated as modulo 360.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

COTAND REAL(4) REAL(4)

DCOTAND REAL(8) REAL(8)

QCOTAND REAL(16) REAL(16)

Description: Counts the number of true elements in an entire array or in a specified
dimension of an array.

Syntax: result = COUNT (mask [, dim] [, kind])
Class: Transformational function; Generic
9-40

Intrinsic Procedures 9
Examples

COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements are true.
COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements are true.

A is the array and B is the array .

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of A are not equal to
the elements in the corresponding column of B. The result has the value (2, 0, 1) because:
• The first column of A and B have 2 elements that are not equal.
• The second column of A and B have 0 elements that are not equal.
• The third column of A and B have 1 element that is not equal.
COUNT (A .NE. B, DIM=2) tests to see how many elements in each row of A are not equal to the
elements in the corresponding row of B. The result has the value (1, 2) because:
• The first row of A and B have 1 element that is not equal.
• The second row of A and B have 2 elements that are not equal.

Arguments:
 mask Must be a logical array.
 dim (opt) Must be a scalar integer expression with a value in the range 1 to n, where n is

the rank of mask.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is an array or scalar of type integer. If kind is present, the kind

parameter of the result is that specified by kind; otherwise, the kind parameter
of the result is that of default integer. If the processor cannot represent the
result value in the kind of the result, the result is undefined.
The result is a scalar if dim is omitted or mask has rank one. A scalar result has
a value equal to the number of true elements of mask. If mask has size zero, the
result is zero.
An array result has a rank that is one less than mask, and shape (d1, d2, ...,
dDIM–1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the shape of mask.
Each element in an array result equals the number of elements that are true in
the one dimensional array defined by mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn).
The setting of compiler options specifying integer size can affect this function.

1 5 7
3 6 8

0 5 7
2 6 9
9-41

9 Intel Fortran Language Reference
CPU_TIME

If a meaningful time cannot be returned, a processor-dependent negative value is returned.

Example

Consider the following:
 REAL time_begin, time_end

 ...

 CALL CPU_TIME(time_begin)

 ...

 CALL CPU_TIME(time_end)

 PRINT (*,*) 'Time of operation was ', time_end - time_begin, ' seconds'

CSHIFT

Description: Returns a processor-dependent approximation of the processor time in seconds.
This is a new intrinsic procedure in Fortran 95.

Syntax: CALL CPU_TIME (time)
Class: Subroutine
Arguments: time must be scalar and of type real. It is an INTENT(OUT) argument.

Description: Performs a circular shift on a rank-one array, or performs circular shifts on all
the complete rank-one sections (vectors) along a given dimension of an array of
rank two or greater.
Elements shifted off one end are inserted at the other end. Different sections
can be shifted by different amounts and in different directions.

Syntax: result = CSHIFT (array, shift [, dim])
Class: Transformational function; Generic
Arguments:
 array Must be an array; it can be of any data type.
 shift Must be a scalar integer or an array with a rank that is one less than array, and

shape (d1, d2, ..., dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of
array.

 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of
array. If dim is omitted, it is assumed to be 1.
9-42

Intrinsic Procedures 9
Examples

V is the array (1, 2, 3, 4, 5, 6).
CSHIFT (V, SHIFT=2) shifts the elements in V circularly to the left by 2 positions, producing the
value (3, 4, 5, 6, 1, 2). 1 and 2 are shifted off the beginning and inserted at the end.
CSHIFT (V, SHIFT= –2) shifts the elements in V circularly to the right by 2 positions, producing
the value (5, 6, 1, 2, 3, 4). 5 and 6 are shifted off the end and inserted at the beginning.

M is the array . CSHIFT (M, SHIFT = 1, DIM = 2) produces the result .

Each element in rows 1, 2, and 3 is shifted to the left by 2 positions. The elements shifted off the
beginning are inserted at the end.

CSHIFT (M, SHIFT = –1, DIM = 1) produces the result .

Each element in columns 1, 2, and 3 is shifted down by 1 position. The elements shifted off the
end are inserted at the beginning.

CSHIFT (M, SHIFT = (/1, –1, 0/), DIM = 2) produces the result .

Each element in row 1 is shifted to the left by 1 position; each element in row 2 is shifted to the
right by 1 position; no element in row 3 is shifted at all.

Results: The result is an array with the same type and kind parameters, and shape as
array.
If array has rank one, element i of the result is array (1 + MODULO (i + shift –
1, SIZE (array))). (The same shift is applied to each element.)
If array has rank greater than one, each section (s1,s2, ..., sDIM–1, :, sDIM+1, ...,
sn) of the result is shifted as follows:
• By the value of shift, if shift is scalar
• According to the corresponding value in shift(s1, s2,..., sDIM–1, sDIM+1,...,

sn), if shift is an array
The value of shift determines the amount and direction of the circular shift. A
positive shift value causes a shift to the left (in rows) or up (in columns). A
negative shift value causes a shift to the right (in rows) or down (in columns). A
zero shift value causes no shift.

1 2 3
4 5 6
7 8 9

2 3 1
5 6 4
8 9 7

7 8 9
1 2 3
4 5 6

2 3 1
6 4 5
7 8 9
9-43

9 Intel Fortran Language Reference
DATE

The date is returned as a 9-byte ASCII character string taking the form dd-mmm-yy, where:

If buf is of numeric type and smaller than 9 bytes, data corruption can occur.
If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 9
bytes, the subroutine truncates the date to fit in the specified length. If an array of type character is
passed, the subroutine stores the date in the first array element, using the element length, not the
length of the entire array.

Example

Consider the following:
CHARACTER*1 DAY(9)

...

CALL DATE (DAY)

The length of the first array element in CHARACTER array DAY is passed to the DATE
subroutine. The subroutine then truncates the date to fit into the one-character element, producing
an incorrect result.

DATE_AND_TIME

Description: Returns the current date as set within the system.
Syntax: CALL DATE (buf)
Class: Subroutine
Arguments: buf is a 9-byte variable, array, array element, or character substring.

dd is the 2-digit date

mmm is the 3-letter month

yy is the last two digits of the year

CAUTION. The two-digit year return value may cause problems with the year
2000 or later. Use DATE_AND_TIME instead (see “DATE_AND_TIME”).

Description: Returns character data on the real-time clock and date in a form compatible
with the representations defined in Standard ISO 8601:1988.
9-44

Intrinsic Procedures 9
The setting of compiler options specifying integer size can affect this subroutine.

Examples

Consider the following example executed 2000 March 28 at 11:04:14.5:

Syntax: CALL DATE_AND_TIME ([date] [, time] [, zone] [, values])
Class: Subroutine
Arguments: There are four optional arguments:1
 date (opt) Must be scalar and of type default character; its length must be at least 8 to

contain the complete value. Its leftmost 8 characters are set to a value of the
form CCYYMMDD, where:
 CC is the century
 MM is the month within the year
 DD is the day within the month

 time (opt) Must be scalar and of type default character; its length must be at least 10 to
contain the complete value. Its leftmost 10 characters are set to a value of the
form hhmmss.sss, where:
 hh is the hour of the day
 mm is the minutes of the hour
 ss.sss is the seconds and milliseconds of the minute

 zone (opt) Must be scalar and of type default character; its length must be at least 5 to
contain the complete value. Its leftmost 5 characters are set to a value of the
form hhmm, where hh and mm are the time difference with respect to
Coordinated Universal Time (UTC)2 in hours and parts of an hour expressed in
minutes, respectively.

 values (opt) Must be of type default integer and of rank one. Its size must be at least 8. The
values returned in VALUES are as follows:
 VALUES (1) is the 4-digit year.
 VALUES (2) is the month of the year.
 VALUES (3) is the day of the month.
 VALUES (4) is the time difference with respect to Coordinated Universal Time
 (UTC) in minutes.
 VALUES (5) is the hour of the day (range 0 to 23). 3

 VALUES (6) is the minutes of the hour (range 0 to 59). 3

 VALUES (7) is the seconds of the minute (range 0 to 59). 3

 VALUES (8) is the milliseconds of the second (range 0 to 999).3

1. All are INTENT(OUT) arguments. (See “INTENT Attribute and Statement”.)

2. UTC (also known as Greenwich Mean Time) is defined by CCIR Recommendation 460-2.

3. In local time.
9-45

9 Intel Fortran Language Reference
INTEGER DATE_TIME (8)

CHARACTER (LEN = 12) REAL_CLOCK (3)

CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), &

 REAL_CLOCK (3), DATE_TIME)

This assigns the value "20000328" to REAL_CLOCK (1), the value "110414.500" to
REAL_CLOCK (2), and the value "–0500" to REAL_CLOCK (3). The following values are
assigned to DATE_TIME: 2000, 3, 28, -300, 11, 4, 14, and 500.

DBLE

Description: Converts a number to double-precision real type.
Syntax: result = DBLE (a)
Class: Elemental function; Generic
Arguments: a must be of type integer, real, or complex.
Results: The result type is double precision real (REAL(8) or REAL*8). Functions that

cause conversion of one data type to another type have the same effect as the
implied conversion in assignment statements.
If a is of type double precision, the result is the value of the a with no
conversion (DBLE(a) = a).
If a is of type integer or real, the result has as much precision of the significant
part of a as a double precision value can contain.
If a is of type complex, the result has as much precision of the significant part
of the real part of a as a double precision value can contain.

Specific Name 1 Argument Type Result Type

INTEGER(1) REAL(8)

INTEGER(2) REAL(8)

INTEGER(4) REAL(8)

INTEGER(8) REAL(8)

DBLE2 REAL(4) REAL(8)

REAL(8) REAL(8)

DBLEQ REAL(16) REAL(8)

COMPLEX(4) REAL(8)

COMPLEX(8) REAL(8)
9-46

Intrinsic Procedures 9
Examples

DBLE (4) has the value 4.0.
DBLE ((3.4, 2.0)) has the value 3.4.

DCMPLX

Examples

DCMPLX (–3) has the value (–3.0, 0.0).
DCMPLX (4.1, 2.3) has the value (4.1, 2.3).

COMPLEX(16) REAL(8)

1. These specific functions cannot be passed as actual arguments.

2. For compatibility with older versions of Fortran, DBLE can be specified as a specific function.

Description: Converts the argument to double complex type. This function cannot be passed
as an actual argument.

Syntax: result = DCMPLX (x [, y])
Class: Elemental function; Specific
Arguments:
 x Must be of type integer, real, or complex.
 y Must be of type integer or real. It must not be present if x is of type complex.
Results: The result type is double complex (COMPLEX(8) or COMPLEX*16).

If only one noncomplex argument appears, it is converted into the real part of
the result value and zero is assigned to the imaginary part. If y is not specified
and x is complex, the result value is CMPLX (REAL(x), AIMAG(x)).
If two noncomplex arguments appear, the complex value is produced by
converting the first argument into the real part of the value, and converting the
second argument into the imaginary part.
DCMPLX(x, y) has the complex value whose real part is REAL(x, KIND=8)
and whose imaginary part is REAL(y, KIND=8).

Specific Name 1 Argument Type Result Type
9-47

9 Intel Fortran Language Reference
DFLOAT

Example

DFLOAT (–4) has the value –4.0.

DIGITS

Example

If X is of type REAL(4), DIGITS (X) has the value 24.

Description: Converts an integer to double-precision real (REAL(8)) type.
Syntax: result = DFLOAT (a)
Class: Elemental function; Generic
Arguments: a must be of type integer.
Results: The result type is double precision real (REAL(8) or REAL*8).

Functions that cause conversion of one data type to another type have the same
affect as the implied conversion in assignment statements.

Specific Name 1

1. These specific functions cannot be passed as actual arguments.

Argument Type Result Type

INTEGER(1) REAL(8)

DFLOTI INTEGER(2) REAL(8)

DFLOTJ INTEGER(4) REAL(8)

DFLOTK INTEGER(8) REAL(8)

Description: Returns the number of significant digits for numbers of the same type and kind
parameters as the argument.

Syntax: result = DIGITS (x)
Class: Inquiry function; Generic
Arguments: x must be of type integer or real; it can be scalar or array valued.
Results: The result is a scalar of type default integer.

The result has the value q if x is of type integer; it has the value p if x is of type
real. Integer parameter q is defined in “Model for Integer Data”; real parameter
p is defined in “Model for Real Data”.
9-48

Intrinsic Procedures 9

DIM

Examples

DIM (6, 2) has the value 4.
DIM (–4.0, 3.0) has the value 0.0.

DNUM

Description: Returns the difference between two numbers (if the difference is positive).
Syntax: result = DIM (x, y)
Class: Elemental function; Generic
Arguments:
 x Must be of type integer or real.
 y Must have the same type and kind parameters as x.
Results: The result type is the same as x. The value of the result is x – y if x is greater

than y; otherwise, the value of the result is zero.

Specific Name Argument Type Result Type

BDIM INTEGER(1) INTEGER(1)

IIDIM1

1. Or HDIM.

INTEGER(2) INTEGER(2)

IDIM2

2. Or JIDIM. For compatibility, IDIM can also be specified as a generic function.

INTEGER(4) INTEGER(4)

KIDIM3

3. Or KDIM.

INTEGER(8) INTEGER(8)

DIM REAL(4) REAL(4)

DDIM REAL(8) REAL(8)

QDIM REAL(16) REAL(16)

Description: Converts a character string to a double-precision real value.
Syntax: result = DNUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
9-49

9 Intel Fortran Language Reference
Examples

DNUM ("3.14159") has the double-precision value 3.14159.
The following sets x to 311.0:
 CHARACTER(3) i

 DOUBLE PRECISION x

 i = "311"

 x = DNUM(i)

DOT_PRODUCT

Examples

DOT_PRODUCT ((/1, 2, 3/), (/3, 4, 5/)) has the value 26, calculated as follows:

Results: The result type is double-precision real. The result value is the double-precision
real value represented by the character string i.

Description: Performs dot-product multiplication of numeric or logical vectors (rank-one
arrays).

Syntax: result = DOT_PRODUCT (vector_a, vector_b)
Class: Transformational function; Generic
Arguments:
 vector_a Must be a rank-one array of numeric (integer, real, or complex) or logical type.
 vector_b Must be a rank-one array of numeric type if vector_a is of numeric type, or of

logical type if vector_a is of logical type. It must be the same size as vector_a.
Results: The result is a scalar whose type depends on the types of vector_a and

vector_b.
If vector_a is of type integer or real, the result value is SUM
(vector_a*vector_b).
If vector_a is of type complex, the result value is SUM (CONJG
(vector_a)*vector_b).
If vector_a is of type logical, the result has the value ANY (vector_a .AND.
vector_b).
If either rank-one array has size zero, the result is zero if the array is of numeric
type, and false if the array is of logical type. (For more information on
expressions, see “Expressions”.)
9-50

Intrinsic Procedures 9

((1 x 3) + (2 x 4) + (3 x 5)) = 26
DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) has the value (17.0, 4.0).
DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) has the value false.

DPROD

Examples

DPROD (2.0, –4.0) has the value –8.00D0.
DPROD (5.0D0, 3.0D0) has the value 15.00Q0.
The following shows another example:
 REAL(4) e

 REAL(8) d

 e = 123456.7

 d = 123456.7D0 ! DPROD (e,e) returns 15241557546.4944

 ! DPROD (d,d) returns 15241556774.8899992813874268904328

DREAL

Description: Produces a higher precision product. This is a specific function that has no
generic name associated with it. It cannot be passed as an actual argument.

Syntax: result = DPROD (x, y)
Class: Elemental function; Specific
Arguments:
 x Must be of type REAL(4) or REAL(8).
 y Must have the same type and kind parameters as x.
Results: If x and y are of type REAL(4), the result type is double-precision real

(REAL(8) or REAL*8). If x and y are of type REAL(8), the result is of type
REAL(16). The result value is equal to x*y.
The setting of compiler options specifying real size can affect this function.

Description: Converts the real part of a double complex argument to double-precision real
type. This specific function has no generic function associated with it. It cannot
be passed as an actual argument.

Syntax: result = DREAL (a)
9-51

9 Intel Fortran Language Reference
Example

DREAL ((2.0d0, 3.0d0)) has the value 2.0d0.

DSHIFTL

Example

Consider the following:
INTEGER(8) ILEFT / Z'111122221111222' /

INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /

PRINT *, DSHIFTL (ILEFT, IRIGHT, 16_8)! prints 1306643199093243919

DSHIFTR

Class: Elemental function; Specific
Arguments: a must be of type double complex (COMPLEX(8) or COMPLEX*16).
Results: The result type is double precision real (REAL(8) or REAL*8).

Description: Arithmetically shifts a 128-bit integer to the left.
Syntax: result = DSHIFTL (ileft, iright, ishift)
Class: Elemental function; Specific
Arguments:
 ileft Must be of type INTEGER(8).
 iright Must be of type INTEGER(8).
 ishift Must be of type INTEGER(8). It must be nonnegative and less than or equal to

64. This is the shift count.
Results: The result type is INTEGER(8). The result value is the 64-bit value starting at

bit 128 – ishift of the 128-bit concatenation of the values of ileft and iright.

Description: Arithmetically shifts a 128-bit integer to the right.
Syntax: result = DSHIFTR (ileft, iright, ishift)
Class: Elemental function; Specific
Arguments:
 ileft Must be of type INTEGER(8).
9-52

Intrinsic Procedures 9
Example

Consider the following:
INTEGER(8) ILEFT / Z'111122221111222' /

INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /

PRINT *, DSHIFTR (ILEFT, IRIGHT, 16_8)! prints 1306606910610341887

EOF

Example

Consider the following:
! Creates a file of random numbers, and reads them back

 REAL x, total

 INTEGER count

 OPEN (1, FILE = 'TEST.DAT')

 DO I = 1, 20

 CALL RANDOM_NUMBER(x)

 WRITE (1, '(F6.3)') x * 100.0

 END DO

 CLOSE(1)

 iright Must be of type INTEGER(8).
 ishift Must be of type INTEGER(8). It must be nonnegative and less than or equal to

64. This is the shift count.
Results: The result type is INTEGER(8). The result value is the 64-bit value starting at

bit 64 + ishift of the 128-bit concatenation of the values of ileft and iright.

Description: Checks whether a file is at or beyond the end-of-file record. This specific
function has no generic function associated with it. It cannot be passed as an
actual argument.

Syntax: result = EOF (a)
Class: Inquiry function; Specific
Arguments: a must be of type integer. It represents a unit specifier corresponding to an open

file. It cannot be zero unless you have reconnected unit zero to a unit other than
the screen or keyboard.

Results: The result type is logical. The value of the result is .TRUE. if the file connected
to a is at or beyond the end-of-file record; otherwise, .FALSE..
9-53

9 Intel Fortran Language Reference
 OPEN (1, FILE = 'TEST.DAT')

 DO WHILE (.NOT. EOF(1))

 count = count + 1

 READ (1, *) value

 total = total + value

 END DO

100 IF (count .GT. 0) THEN

 WRITE (*,*) 'Average is: ', total / count

 ELSE

 WRITE (*,*) 'Input file is empty '

 END IF

STOP

 END

EOSHIFT

Description: Performs an end-off shift on a rank-one array, or performs end-off shifts on all
the complete rank-one sections along a given dimension of an array of rank
two or greater.
Elements are shifted off at one end of a section and copies of a boundary value
are filled in at the other end. Different sections can have different boundary
values and can be shifted by different amounts and in different directions.

Syntax: result = EOSHIFT (array, shift [, boundary] [, dim])
Class: Transformational function; Generic
Arguments:
 array Must be an array (of any data type).
 shift Must be a scalar integer or an array with a rank that is one less than array, and

shape (d1, d2, ..., dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of
array.

 boundary (opt) Must have the same type and kind parameters as array. It must be a scalar or an
array with a rank that is one less than array, and shape (d1, d2, ..., dDIM–1,
dDIM+1, ..., dn).
If boundary is not specified, it is assumed to have the following default values
(depending on the data type of array):
9-54

Intrinsic Procedures 9
Examples

V is the array (1, 2, 3, 4, 5, 6).
EOSHIFT (V, SHIFT=2) shifts the elements in V to the left by 2 positions, producing the value (3,
4, 5, 6, 0, 0). 1 and 2 are shifted off the beginning and two elements with the default BOUNDARY
value are placed at the end.
EOSHIFT (V, SHIFT= -3, BOUNDARY= 99) shifts the elements in V to the right by 3 positions,
producing the value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are shifted off the end and three elements with
BOUNDARY value 99 are placed at the beginning.

M is the character array .

ARRAY Type
Integer
Real
Complex
Logical
Character(len)

BOUNDARY Value
0
0.0
(0.0, 0.0)
false
len blanks

 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of
array. If dim is omitted, it is assumed to be 1.

Results: The result is an array with the same type and kind parameters, and shape as
array.
If array has rank one, the same shift is applied to each element. If an element is
shifted off one end of the array, the boundary value is placed at the other end
the array.
If array has rank greater than one, each section (s1, s2, ..., sDIM–1, :, sDIM+1, ...,
sn) of the result is shifted as follows:
• By the value of shift, if shift is scalar
• According to the corresponding value in shift(s1, s2,..., sDIM–1, sDIM+1,...,

sn), if shift is an array
If an element is shifted off one end of a section, the boundary value is placed at
the other end of the section.
The value of shift determines the amount and direction of the end- off shift. A
positive shift value causes a shift to the left (in rows) or up (in columns). A
negative shift value causes a shift to the right (in rows) or down (in columns).

1 2 3
4 5 6
7 8 9
9-55

9 Intel Fortran Language Reference
EOSHIFT (M, SHIFT = 1, BOUNDARY = '*', DIM = 2) produces the result .

Each element in rows 1, 2, and 3 is shifted to the left by 1 position. This causes the first element in
each row to be shifted off the beginning, and the BOUNDARY value to be placed at the end.

EOSHIFT (M, SHIFT = –1, DIM = 1) produces the result .

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes the last element in
each column to be shifted off the end and the BOUNDARY value to be placed at the beginning.
EOSHIFT (M, SHIFT = (/1, –1, 0/), BOUNDARY = (/ '*', '?', '/' /), DIM = 2) produces the result

.

Each element in row 1 is shifted to the left by 1 position, causing the first element to be shifted off
the beginning and the BOUNDARY value * to be placed at the end. Each element in row 2 is
shifted to the right by 1 position, causing the last element to be shifted off the end and the
BOUNDARY value ? to be placed at the beginning. No element in row 3 is shifted at all, so the
specified BOUNDARY value is not used.

EPSILON

Example

If X is of type REAL(4), EPSILON (X) has the value 2–23.

Description: Returns a positive model number that is almost negligible compared to unity in
the model representing real numbers.

Syntax: result = EPSILON (x)
Class: Inquiry function; Generic
Arguments: x must be of type real; it can be scalar or array valued.
Results: The result is a scalar of the same type and kind parameters as x. The result has

the value b1–p. Parameters b and p are defined in “Model for Real Data”.

2 3 *
5 6 *
8 9 *

0 0 0
1 2 3
4 5 6

2 3 *
? 4 5
7 8 9
9-56

Intrinsic Procedures 9

ERF

Example

ERF (1.0) has the value 0.842700794.

ERFC

Description: Returns the error function of an argument.
Syntax: result = ERF (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x. The result is in the range –1 to 1.

ERF returns the error function of x defined as follows:

Specific Name Argument Type Result Type

ERF REAL(4) REAL(4)

DERF REAL(8) REAL(8)

QERF REAL(16) REAL(16)

Description: Returns the complementary error function of an argument.
Syntax: result = ERFC (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x. The result is in the range 0 to 2.

ERFC returns 1 – ERF(x) and is defined as follows:

ERFC is provided because of the extreme loss of relative accuracy if ERF(x) is
called for large x and the result is subtracted from 1.

2
π

------- e
t

2–
td

0

x

∫

2
π

------- e
t

2–
td

x

∞

∫

9-57

9 Intel Fortran Language Reference
Example

ERFC (1.0) has the value 0.1572992057.

ERRSNS

If you specify INTEGER(2) arguments, only the low-order 16 bits of information are returned or
adjacent data can be overwritten. Because of this, it is best to use INTEGER(4) arguments.
The saved error information is set to zero after each call to ERRSNS.

Specific Name Argument Type Result Type

ERFC REAL(4) REAL(4)

DERFC REAL(8) REAL(8)

QERFC REAL(16) REAL(16)

Description: Returns information about the most recently detected I/O system error condition.
Syntax: CALL ERRSNS ([io_err] [, sys_err] [, stat] [, unit] [, cond])
Class: Subroutine
Arguments: There are five optional arguments:
 io_err (opt) Is an integer variable or array element that stores the most recent Run-Time

Library error number that occurred during program execution. (For a listing of
error numbers, see your user’s guide.)
A zero indicates no error has occurred since the last call to ERRSNS or since the
start of program execution.

 sys_err (opt) Is an integer variable or array element that stores the most recent system error
number associated with io_err. This code is one of the following:
• On Linux* systems, it is an errno value. (See errno(2).)
• On Windows* systems, it is the value returned by GetLastError() at

the time of the error.
 stat (opt) Is an integer variable or array element that stores a status value that occurred

during program execution. This value is zero.
 unit (opt) Is an integer variable or array element that stores the logical unit number, if the

last error was an I/O error.
 cond (opt) Is an integer variable or array element that stores the actual processor value. This

value is always zero.
9-58

Intrinsic Procedures 9

Example

Any of the arguments can be omitted. For example, the following is valid:
CALL ERRSNS (SYS_ERR, STAT, , UNIT)

EXIT

Example

CALL EXIT (100)

EXP

Description: Terminates program execution, closes all files, and returns control to the
operating system.

Syntax: CALL EXIT ([status])
Class: Subroutine
Arguments: status (opt)

Is an integer argument you can use to specify the image exit-status value.

Description: Computes an exponential value.
Syntax: result = EXP (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex.
Results: The result type is the same as x. The value of the result is ex. If x is of type

complex, its imaginary part is regarded as a value in radians.

Specific Name Argument Type Result Type

EXP REAL(4) REAL(4)

DEXP REAL(8) REAL(8)

QEXP REAL(16) REAL(16)

CEXP1

1. The setting of compiler options specifying real size can affect CEXP.

COMPLEX(4) COMPLEX(4)

CDEXP2

2. This function can also be specified as ZEXP.

COMPLEX(8) COMPLEX(8)

CQEXP COMPLEX(16) COMPLEX(16)
9-59

9 Intel Fortran Language Reference
Examples

EXP (2.0) has the value 7.389056.
EXP (1.3) has the value 3.669297.

EXPONENT

Examples

EXPONENT (2.0) has the value 2.
If 4.1 is a REAL(4) value, EXPONENT (4.1) has the value 3.

FLOOR

Description: Returns the exponent part of the argument when represented as a model
number.

Syntax: result = EXPONENT (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is default integer. If x is not equal to zero, the result value is the

exponent part of x. The exponent must be within default integer range;
otherwise, the result is undefined.
If x is zero, the exponent of x is zero. For more information on the exponent
part (e) in the real model, see “Model for Real Data”.

Description: Returns the greatest integer less than or equal to its argument.
Syntax: result = FLOOR (a [, kind])
Class: Elemental function; Generic
Arguments: a must be of type real.

kind (opt)
Must be a scalar integer initialization expression. This argument is a Fortran 95
feature.

Results: The result type is integer. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
9-60

Intrinsic Procedures 9
Examples

FLOOR (4.8) has the value 4.
FLOOR (–5.6) has the value –6.

FP_CLASS

Example

FP_CLASS (4.0_8) has the value 4 (FOR_K_FP_POS_NORM).

FRACTION

The value of the result is equal to the greatest integer less than or equal to a.
The setting of compiler options specifying integer size can affect this function.

Description: Returns the class of an IEEE* real (S_floating, T_floating, or X_floating)
argument.

Syntax: result = FP_CLASS (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is default integer. The return value is one of the following:

Class of Argument
Signaling NaN
Quiet NaN
Positive Infinity
Negative Infinity
Positive Normalized Number
Negative Normalized Number
Positive Denormalized Number
Negative Denormalized Number
Positive Zero
Negative Zero

Return Value
FOR_K_FP_SNAN
FOR_K_FP_QNAN
FOR_K_FP_POS_INF
FOR_K_FP_NEG_INF
FOR_K_FP_POS_NORM
FOR_K_FP_NEG_NORM
FOR_K_FP_POS_DENORM
FOR_K_FP_NEG_DENORM
FOR_K_FP_POS_ZERO
FOR_K_FP_NEG_ZERO

The preceding return values are defined in file fordef.f on Linux* systems
and file fordef.for on Windows* systems. For information on the location
of these files, see your user’s guide.

Description: Returns the fractional part of the model representation of the argument value.
9-61

9 Intel Fortran Language Reference
Examples

If 3.0 is a REAL(4) value, FRACTION (3.0) has the value 0.75.

FREE

If the freed address was not previously allocated by MALLOC, or if an address is freed more than
once, results are unpredictable.

Example

Consider the following:
INTEGER(4) SIZE

 REAL(4) STORAGE(*)

 POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE

 SIZE = 1024 ! Size in bytes

 ADDR = MALLOC(SIZE) ! Allocate the memory

 CALL FREE(ADDR) ! Free it

GETARG

Syntax: result = FRACTION (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x. The result has the value x * be. Parameters b

and e are defined in “Model for Real Data”. If x has the value zero, the result
has the value zero.

Description: Frees a block of memory that is currently allocated.
Syntax: CALL FREE (a)
Class: Subroutine
Arguments: a must be of type INTEGER(4) on IA-32 processors; INTEGER(8) on Intel

Itanium processors. This value is the starting address of the memory to be
freed, previously allocated by MALLOC (see “MALLOC”).

Description: Returns the specified command-line argument (where the command itself is
argument number zero). This subroutine cannot be passed as an actual
argument.
9-62

Intrinsic Procedures 9
GETARG returns the nth command-line argument. If n is zero, the name of the executing program
file is returned.
GETARG returns command-line arguments as they were entered. There is no case conversion.
If the command-line argument is shorter than buffer, GETARG pads buffer on the right with
blanks. If the argument is longer than buffer, GETARG truncates the argument on the right. If
there is an error, GETARG fills buffer with blanks.

Example

Assume a command-line invocation of PROG1 -g -c -a, and that buffer is at least five
characters long. The following calls to GETARG return the corresponding arguments in buffer and
status:

Syntax: CALL GETARG (n, buffer [, status])
Class: Subroutine
Arguments:
 n Must be a scalar of type INTEGER(2) or INTEGER(4). This value is the

position of the command-line argument to retrieve. The command itself is
argument number 0.

 buffer Must be a scalar of type default character. Its value is the returned
command-line argument.

 status (opt) Must be a scalar and have the same type and kind parameters as n. If specified,
its value is the returned completion status.
If there were no errors, status returns the number of characters in the retrieved
command-line argument before truncation or blank-padding. (That is, status is
the original number of characters in the command-line argument.) Errors return
a value of –1. Errors include specifying an argument position less than 0 or
greater than the value returned by IARGC.

Statement
String returned in
buffer

Length returned in
status

CALL GETARG (0, buffer, status) PROG1 5

CALL GETARG (1, buffer) -g undefined

CALL GETARG (2, buffer, status) -c 2

CALL GETARG (3, buffer) -a undefined

CALL GETARG (4, buffer, status) all blanks –1
9-63

9 Intel Fortran Language Reference
 See Also
• “IARGC”
• “NARGS”

HUGE

Example

If X is of type REAL(4), HUGE (X) has the value (1 – 2–24) x 2128.

IACHAR

Description: Returns the largest number in the model representing the same type and kind
parameters as the argument.

Syntax: result = HUGE (x)
Class: Inquiry function; Generic
Arguments: x must be of type integer or real; it can be scalar or array valued.
Results: The result is a scalar of the same type and kind parameters as x. If x is of type

integer, the result has the value rq – 1. If x is of type real, the result has the value
(1 – b–p)bemax.
Integer parameters r and q are defined in “Model for Integer Data”; real
parameters b, p, and emax are defined in “Model for Real Data”.

Description: Returns the position of a character in the ASCII character set, even if the
processor’s default character set is different. In Intel Fortran, IACHAR is
equivalent to the ICHAR function.

Syntax: result = IACHAR (c)
Class: Elemental function; Generic
Arguments: c must be of type character of length 1.
Results: The result type is default integer. If c is in the ASCII collating sequence, the

result is the position of c in that sequence and satisfies the inequality
().
The results must be consistent with the LGE, LGT, LLE, and LLT lexical
comparison functions. For example, if LLE(C, D) is true, IACHAR(C) .LE.
IACHAR(D) is also true.

0 IACHAR c() 127≤≤
9-64

Intrinsic Procedures 9

Examples

IACHAR ('Y') has the value 89.
IACHAR ('%') has the value 37.

IAND

Examples

IAND (2, 3) has the value 2.
IAND (4, 6) has the value 4.

Description: Performs a logical AND on corresponding bits. This function can also be
specified as AND.

Syntax: result = IAND (i, j)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 j Must be of type integer with the same kind parameter as i.
Results: The result type is the same as I. The result value is derived by combining i and

j bit-by-bit according to the following :
I J IAND(I, J)
1 1 1
1 0 0
0 1 0
0 0 0

The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BIAND INTEGER(1) INTEGER(1)

IIAND1

1. Or HIAND

INTEGER(2) INTEGER(2)

JIAND INTEGER(4) INTEGER(4)

KIAND INTEGER(8) INTEGER(8)
9-65

9 Intel Fortran Language Reference
IARGC

Example

Consider the following:
 integer(4) no_of_arguments

 no_of_arguments = IARGC ()

 print *, 'total command line arguments are ', no_of_arguments

For a command-line invocation of PROG1 -g -c -a, the program above prints:
 total command line arguments are 3

See Also
• “GETARG”
• “NARGS”

IARGPTR

Description: Returns the index of the last command-line argument. It cannot be passed as an
actual argument. This function can also be specified as IARG or NUMARG.

Syntax: result = IARGC ()
Class: Inquiry function; Specific
Arguments: None.
Results: The result type is INTEGER(4). The result is the index of the last

command-line argument, which is also the number of arguments on the
command line. The command is not included in the count. For example,
IARGC returns 3 for the command-line invocation of PROG1 -g -c -a.
IARGC returns a value that is 1 less than that returned by NARGS.

Description: Returns a pointer to the actual argument list for the current routine.
Syntax: result = IARGPTR ()
Class: Inquiry function; Specific
Arguments: None.
Results: The result type is INTEGER(4) on IA-32 processors; INTEGER(8) on Intel

Itanium processors. The actual argument list is an array of values of the same
type.
9-66

Intrinsic Procedures 9
Example

Consider the following:
 WRITE (*,'(" Address of argument list is ",Z16.8)') IARGPTR()

IBCHNG

Example

Consider the following:
INTEGER J, K

J = IBCHNG(10, 2) ! returns 14 = 1110

K = IBCHNG(10, 1) ! returns 8 = 1000

IBCLR

An argument count is not present and the first element has the address of the
first argument.
Formal (dummy) arguments that can be omitted must be declared VOLATILE.
For more information, see “VOLATILE Attribute and Statement”.

Description: Reverses the value of a specified bit in an integer.
Syntax: result = IBCHNG (i, pos)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer. This argument contains the bit to be reversed.
 pos Must be of type integer. This argument is the position of the bit to be changed.

The rightmost (least significant) bit of i is in position 0.
Results: The result type is the same as i. The result is equal to i with the bit in position

pos reversed.
For more information on bit functions, see “Bit Functions”.

Description: Clears one bit to zero.
Syntax: result = IBCLR (i, pos)
Class: Elemental function; Generic
9-67

9 Intel Fortran Language Reference
Examples

IBCLR (18, 1) has the value 16.
If V has the value (1, 2, 3, 4), the value of IBCLR (POS = V, I = 15) is (13, 11, 7, 15).

IBITS

Arguments:
 i Must be of type integer.
 pos Must be of type integer. It must not be negative and it must be less than

BIT_SIZE (i).
The rightmost (least significant) bit of i is in position 0.

Results: The result type is the same as i. The result has the value of the sequence of bits
of i, except that bit pos of i is set to zero.
For more information on bit functions, see “Bit Functions”.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BBCLR INTEGER(1) INTEGER(1)

IIBCLR1

1. Or HBCLR.

INTEGER(2) INTEGER(2)

JIBCLR INTEGER(4) INTEGER(4)

KIBCLR INTEGER(8) INTEGER(8)

Description: Extracts a sequence of bits (a bit field).
Syntax: result = IBITS (i, pos, len)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 pos Must be of type integer. It must not be negative and pos + len must be less than

or equal to BIT_SIZE (i).
The rightmost (least significant) bit of i is in position 0.

 len Must be of type integer. It must not be negative.
9-68

Intrinsic Procedures 9
Examples

IBITS (12, 1, 4) has the value 6.
IBITS (10, 1, 7) has the value 5.

IBSET

Results: The result type is the same as i. The result has the value of the sequence of len
bits in i, beginning at pos right-adjusted and with all other bits zero.
For more information on bit functions, see “Bit Functions”.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BBITS INTEGER(1) INTEGER(1)

IIBITS1

1. Or HBITS.

INTEGER(2) INTEGER(2)

JIBITS INTEGER(4) INTEGER(4)

KIBITS INTEGER(8) INTEGER(8)

Description: Sets one bit to 1.
Syntax: result = IBSET (i, pos)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 pos Must be of type integer. It must not be negative and it must be less than

BIT_SIZE (i).
The rightmost (least significant) bit of i is in position 0.

Results: The result type is the same as i. The result has the value of the sequence of bits
of i, except that bit pos of i is set to 1.
For more information on bit functions, see “Bit Functions”.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.
9-69

9 Intel Fortran Language Reference
Examples

IBSET (8, 1) has the value 10.
If V has the value (1, 2, 3, 4), the value of IBSET (POS = V, I = 2) is (2, 6, 10, 18).

ICHAR

Specific Name Argument Type Result Type

BBSET INTEGER(1) INTEGER(1)

IIBSET1

1. Or HBSET.

INTEGER(2) INTEGER(2)

JIBSET INTEGER(4) INTEGER(4)

KIBSET INTEGER(8) INTEGER(8)

Description: Returns the position of a character in the processor’s character set.
Syntax: result = ICHAR (c [, kind])
Class: Elemental function; Generic
Arguments:
 c Must be of type character of length 1.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer.
The result value is the position of c in the processor’s character set. Argument c
is in the range zero to n – 1, where n is the number of characters in the character
set.
For any characters C and D (capable of representation in the processor), C .LE.
D is true only if ICHAR(C) .LE. ICHAR(D) is true, and C .EQ. D is true only if
ICHAR(C) .EQ. ICHAR(D) is true.

Specific Name Argument Type Result Type

CHARACTER INTEGER(2)

ICHAR1

1. This specific function cannot be passed as an actual argument.

CHARACTER INTEGER(4)

CHARACTER INTEGER(8)
9-70

Intrinsic Procedures 9

Examples

ICHAR ('W') has the value 87.
ICHAR ('#') has the value 35.

IDATE

The current month is returned in i; the current day in j. The last two digits of the current year are
returned in k.

Example

If the current date is September 16, 1996, the values of the integer variables upon return are: I = 9,
J = 16, and K = 96.

IEOR

Description: Returns three integer values representing the current month, day, and year.
Syntax: CALL IDATE (i, j, k)
Class: Subroutine
Arguments:
 i Must be of type INTEGER(4). The current month.
 j Must be of type INTEGER(4). The current day.
 k Must be of type INTEGER(4). The current year.

CAUTION. The two-digit year return value may cause problems with the year
2000 or later. Use DATE_AND_TIME instead (see “DATE_AND_TIME”).

Description: Performs an exclusive OR on corresponding bits. This function can also be
specified as XOR or IXOR.

Syntax: result = IEOR (i, j)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 j Must be of type integer with the same kind parameter as i.
9-71

9 Intel Fortran Language Reference
Example

IEOR (12, 7) has the value 11; binary 1100 exclusive OR with binary 0111 is binary 1011.

ILEN

Examples

ILEN (4) has the value 3.
ILEN (–4) has the value 2.

Results: The result type is the same as i. The result value is derived by combining i and j
bit-by-bit according to the following truth table:
I J IEOR(I, J)
1 1 0
1 0 1
0 1 1
0 0 0

The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BIEOR1

1. Or BIXOR

INTEGER(1) INTEGER(1)

IIEOR2

2. Or HIEOR, HIXOR, or IIXOR

INTEGER(2) INTEGER(2)

JIEOR3

3. Or JIXOR

INTEGER(4) INTEGER(4)

KIEOR4

4. For compatibility, this specific function can also be specified as IXOR.

INTEGER(8) INTEGER(8)

Description: Returns the length (in bits) of the two’s complement representation of an integer.
Syntax: result = ILEN (i)
Class: Elemental function; Generic
Arguments: i must be of type integer.
Results: The result type is the same as i. The result value is (LOG2(I + 1)) if i is not

negative; otherwise, the result value is (LOG2(–I)).
9-72

Intrinsic Procedures 9

INDEX

Examples

INDEX ('FORTRAN', 'O', BACK = .TRUE.) has the value 2.
INDEX ('XXXX', " ", BACK = .TRUE.) has the value 5.

INT

Description: Returns the starting position of a substring within a string.
Syntax: result = INDEX (string, substring [, back] [, kind])
Class: Elemental function; Generic
Arguments:
 string Must be of type character.
 substring Must be of type character.
 back (opt) Must be of type logical.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
If back does not appear (or appears with the value false), the value returned is
the minimum value of I such that string (I : I + LEN (substring) – 1) =
substring (or zero if there is no such value). If LEN (string) < LEN (substring),
zero is returned. If LEN (substring) = zero, 1 is returned.
If back appears with the value true, the value returned is the maximum value of
I such that string (I : I + LEN (substring) – 1) = substring (or zero if there is no
such value). If LEN(string) < LEN (substring), zero is returned. If LEN
(substring) = zero, LEN (string) + 1 is returned.

Specific Name Argument Type Result Type

INDEX1

1. The setting of compiler options specifying integer size can affect this function.

CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

De cription: Converts a value to integer type.
9-73

9 Intel Fortran Language Reference
Syntax: result = INT (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type integer, real, or complex.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is shown in
the following table. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
Functions that cause conversion of one data type to another type have the same
affect as the implied conversion in assignment statements.
The result value depends on the type and absolute value of a, as follows:
• If a is of type integer, INT (a) = a.
• If a is of type real and , INT (a) has the value zero.

If a is of type real and , INT (a) is the integer whose magnitude is
the largest integer that does not exceed the magnitude of a and whose sign is
the same as the sign of a.

• If a is of type complex, INT (a) = a is the value obtained by applying the
preceding rules (for a real argument) to the real part of a.

Specific Name 1 Argument Type Result Type

INTEGER(1), INTEGER(2), INTEGER(4) INTEGER(4)

INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8) INTEGER(8)

IJINT INTEGER(4) INTEGER(2)

IIFIX2 REAL(4) INTEGER(2)

IINT REAL(4) INTEGER(2)

IFIX3,4 REAL(4) INTEGER(4)

JFIX INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8),
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INTEGER(4)

INT5,6,7 REAL(4) INTEGER(4)

KIFIX REAL(4) INTEGER(8)

KINT REAL(4) INTEGER(8)

IIDINT REAL(8) INTEGER(2)

IDINT6,8 REAL(8) INTEGER(4)

 a 1<
 a 1≥
9-74

Intrinsic Procedures 9
Examples

INT (–4.2) has the value –4.
INT (7.8) has the value 7.

INT_PTR_KIND

KIDINT REAL(8) INTEGER(8)

IIQINT REAL(16) INTEGER(2)

IQINT6,9 REAL(16) INTEGER(4)

KIQINT REAL(16) INTEGER(8)

INT110 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8),
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INTEGER(1)

INT210 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8),
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INTEGER(2)

INT410 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8),
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INTEGER(4)

INT810 INTEGER(1), INTEGER(2), INTEGER(4), INTEGER(8),
REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), COMPLEX(16)

INTEGER(8)

1. These specific functions cannot be passed as actual arguments.

2. This function can also be specified as HFIX.

3. The setting of compiler options specifying integer size or real size can affect IFIX.

4. For compatibility with older versions of Fortran, IFIX can also be specified as a generic function.

5. Or JINT.

6. The setting of compiler options specifying integer size can affect INT, IDINT, and IQINT.

7. OR JIFIX.

8. Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as a generic function.

9. Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as a generic function.

10. For compatibility, these functions can be specified as generic functions.

Description: Returns the INTEGER KIND that will hold an address. This is a specific
function that has no generic function associated with it. It cannot be passed as
an actual argument.

Syntax: result = INT_PTR_KIND ()

Specific Name 1 Argument Type Result Type
9-75

9 Intel Fortran Language Reference
Example

Consider the following:
 REAL A(100)

 POINTER (P, A)

 INTEGER (KIND=INT_PTR_KIND()) SAVE_P

 P = MALLOC (400)

 SAVE_P = P

INUM

Example

INUM ("451.92") has the value 451 of type INTEGER(2).

IOR

Class: Inquiry function; Specific
Arguments: None.
Results: The result type is default integer. The result is a scalar with the value equal to

the value of the kind parameter of the integer data type that can represent an
address on the host platform.
The result value is 4 on IA-32 processors; 8 on Intel Itanium processors.

Description: Converts a character string to an INTEGER(2) value.
Syntax: result = INUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
Results: The result type is INTEGER(2). The result value is the INTEGER(2) value

represented by the character string i.

Description: Performs an inclusive OR on corresponding bits. This function can also be
specified as OR.

Syntax: result = IOR (i, j)
Class: Elemental function; Generic
9-76

Intrinsic Procedures 9
Examples

IOR (1, 4) has the value 5.
IOR (1, 2) has the value 3.

ISHA

Arguments:
 i Must be of type integer.
 j Must be of type integer with the same kind parameter as i.
Results: The result type is the same as i. The result value is derived by combining i and j

bit-by-bit according to the following truth table:
I J IOR(I, J)
1 1 1
1 0 1
0 1 1
0 0 0

The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BIOR INTEGER(1) INTEGER(1)

IIOR1

1. Or HIOR.

INTEGER(2) INTEGER(2)

JIOR INTEGER(4) INTEGER(4)

KIOR INTEGER(8) INTEGER(8)

Description: Arithmetically shifts an integer left or right by a specified number of bits.
Syntax: result = ISHA (i, shift)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer. This argument is the value to be shifted.
 shift Must be of type integer. This argument is the direction and distance of shift.

Positive shifts are left (toward the most significant bit); negative shifts are right
(toward the least significant bit).
9-77

9 Intel Fortran Language Reference
Example

Consider the following:
INTEGER(1) i, res1

INTEGER(2) j, res2

i = -128 ! equal to 10000000

j = -32768 ! equal to 10000000 00000000

res1 = ISHA (i, -4) ! returns 11111000 = -8

res2 = ISHA (j, -4) ! returns 11111000 00000000 = -2048

ISHC

Results: The result type is the same as i. The result is equal to i shifted arithmetically by
shift bits.
If shift is positive, the shift is to the left; if shift is negative, the shift is to the
right. If shift is zero, no shift is performed.
Bits shifted out from the left or from the right, as appropriate, are lost. If the
shift is to the left, zeros are shifted in on the right. If the shift is to the right,
copies of the sign bit (0 for non-negative i; 1 for negative i) are shifted in on the
left.
The kind of integer is important in arithmetic shifting because sign varies
among integer representations (see the following example). If you want to shift
a one-byte or two-byte argument, you must declare it as INTEGER(1) or
INTEGER(2).

Description: Rotates an integer left or right by specified number of bits. Bits shifted out one
end are shifted in the other end. No bits are lost.

Syntax: result = ISHC (i, shift)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer. This argument is the value to be rotated.
 shift Must be of type integer. This argument is the direction and distance of rotation.

Positive rotations are left (toward the most significant bit); negative rotations
are right (toward the least significant bit).

Results: The result type is the same as i. The result is equal to i circularly rotated by shift
bits.
9-78

Intrinsic Procedures 9
Example

Consider the following:
INTEGER(1) i, res1

INTEGER(2) j, res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHC (i, -3) ! returns 01000001 = 65

res2 = ISHC (j, -3) ! returns 01000000 00000001 = 16385

ISHFT

The kind of integer is important in circular shifting. With an INTEGER(4)
argument, all 32 bits are shifted. If you want to rotate a one-byte or two-byte
argument, you must declare it as INTEGER(1) or INTEGER(2).

Description: Performs a logical shift.
Syntax: result = ISHFT (i, shift)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 shift Must be of type integer. The absolute value for shift must be less than or equal

to BIT_SIZE (i).
Results: The result type is the same as i. The result has the value obtained by shifting the

bits of i by shift positions. If shift is positive, the shift is to the left; if shift is
negative, the shift is to the right. If shift is zero, no shift is performed.
Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are
shifted in from the opposite end.
ISHFT with a positive shift can also be specified as LSHIFT (or LSHFT).
ISHFT with a negative shift can also be specified as RSHIFT (or RSHFT) with
| shift |.
For more information on bit functions, see “Bit Functions”.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.
9-79

9 Intel Fortran Language Reference
Examples

ISHFT (2, 1) has the value 4.
ISHFT (2, –1) has the value 1.

ISHFTC

Specific Name Argument Type Result Type

BSHFT INTEGER(1) INTEGER(1)

IISHFT1

1. Or HSHFT.

INTEGER(2) INTEGER(2)

JISHFT INTEGER(4) INTEGER(4)

KISHFT INTEGER(8) INTEGER(8)

Description: Performs a circular shift of the rightmost bits.
Syntax: result = ISHFTC (i, shift [, size])
Class: Elemental function; Generic
Arguments:
 i Must be of type integer.
 shift Must be of type integer. The absolute value for shift must be less than or equal

to size.
 size (opt) Must be of type integer. The value of size must be positive and must not exceed

BIT_SIZE(i). If size is omitted, it is assumed to have the value of BIT_SIZE(i).
Results: The result type is the same as i. The result value is obtained by circular shifting

the size rightmost bits of i by shift positions. If shift is positive, the shift is to the
left; if shift is negative, the shift is to the right. If shift is zero, no shift is
performed.
No bits are lost. Bits in i beyond the value specified by size are unaffected. For
more information on bit functions, see “Bit Functions”.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BSHFTC INTEGER(1) INTEGER(1)

IISHFTC1 INTEGER(2) INTEGER(2)
9-80

Intrinsic Procedures 9
Examples

ISHFTC (4, 2, 4) has the value 1.
ISHFTC (3, 1, 3) has the value 6.

ISHL

Example

Consider the following:
INTEGER(1) i, res1

INTEGER(2) j, res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHL (i, 5) ! returns 01000000 = 64

res2 = ISHL (j, 5) ! returns 00000001 01000000 = 320

JISHFTC INTEGER(4) INTEGER(4)

KISHFTC INTEGER(8) INTEGER(8)

1. Or HSHFTC.

Description: Logically shifts an integer left or right by the specified bits. Zeros are shifted in
from the opposite end.

Syntax: result = ISHL (i, shift)
Class: Elemental function; Generic
Arguments:
 i Must be of type integer. This argument is the value to be shifted.
 shift Must be of type integer. This argument is the direction and distance of shift.

If positive, i is shifted left (toward the most significant bit). If negative, i is
shifted right (toward the least significant bit).

Results: The result type is the same as i. The result is equal to i logically shifted by shift
bits. Zeros are shifted in from the opposite end.
Unlike circular or arithmetic shifts, which can shift ones into the number being
shifted, logical shifts shift in zeros only, regardless of the direction or size of
the shift. The integer kind, however, still determines the end that bits are shifted
out of, which can make a difference in the result (see the following example).

Specific Name Argument Type Result Type
9-81

9 Intel Fortran Language Reference
ISNAN

Example

Consider the following:
 LOGICAL A

 DOUBLE PRECISION B

 ...

 A = ISNAN(B)

A is assigned the value .TRUE. if B is an IEEE NaN; otherwise, the value assigned is .FALSE..

JNUM

Example

JNUM ("46616.725") has the value 46616 of type INTEGER(4).

KIND

Description: Tests whether IEEE real (S_floating, T_floating, and X_floating) numbers are
Not-a-Number (NaN) values.

Syntax: result = ISNAN (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is default logical. The result is .TRUE. if x is an IEEE NaN;

otherwise, the result is .FALSE..

Description: Converts a character string to an INTEGER(4) value.
Syntax: result = JNUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
Results: The result type is INTEGER(4). The result value is the integer value

represented by the character string i.

Description: Returns the value of the kind type parameter of the argument. For more
information on kind type parameters, see “Intrinsic Data Types”.
9-82

Intrinsic Procedures 9
Examples

KIND (0.0) has the kind value of default real type.
KIND (12) has the kind value of default integer type.

LBOUND

Syntax: result = KIND (x)
Class: Inquiry function; Generic
Arguments: x can be of any intrinsic type.
Results: The result is a scalar of type default integer. The result has a value equal to the

kind type parameter value of x.

Description: Returns the lower bounds for all dimensions of an array, or the lower bound for
a specified dimension.

Syntax: result = LBOUND (array [, dim] [, kind])
Class: Inquiry function; Generic
Arguments:
 array Must be an array (of any data type). It must not be an allocatable array that is

not allocated, or a disassociated pointer.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
If dim is present, the result is a scalar. Otherwise, the result is a rank-one array
with one element for each dimension of array. Each element in the result
corresponds to a dimension of array.
If array is an array section or an array expression that is not a whole array or
array structure component, each element of the result has the value 1.
9-83

9 Intel Fortran Language Reference
Examples

Consider the following:
 REAL ARRAY_A (1:3, 5:8)

 REAL ARRAY_B (2:8, -3:20)

LBOUND (ARRAY_A) is (1, 5). LBOUND (ARRAY_A, DIM=2) is 5.
LBOUND (ARRAY_B) is (2, –3). LBOUND (ARRAY_B (5:8, :)) is (1,1) because the arguments
are array sections.

LEADZ

Example

Consider the following:
 INTEGER*8 J, TWO

 PARAMETER (TWO=2)

 DO J= -1, 40

 TYPE *, LEADZ(TWO**J) ! Prints 64 down to 23 (leading zeros)

 ENDDO

 END

If array is a whole array or array structure component, LBOUND (array, dim)
has a value equal to the lower bound for subscript dim of array (if dim is
nonzero or array is an assumed-size array of rank dim). Otherwise, the
corresponding element of the result has the value 1.
The setting of compiler options specifying integer size can affect this function.

Description: Returns the number of leading zero bits in an integer.
Syntax: result = LEADZ (i)
Class: Elemental function; Generic
Arguments: i must be of type integer or logical.
Results: The result type is the same as i. The result value is the number of leading zeros

in the binary representation of the integer i.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.
9-84

Intrinsic Procedures 9

LEN

Example

Consider the following:
 CHARACTER (15) C (50)

 CHARACTER (25) D

LEN (C) has the value 15, and LEN (D) has the value 25.

LEN_TRIM

Description: Returns the length of a character expression.
Syntax: result = LEN (string [, kind])
Class: Inquiry function; Generic
Arguments:
 string Must be of type character; it can be scalar or array valued.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is a scalar of type integer. If kind is present, the kind parameter of the

result is that specified by kind; otherwise, the kind parameter of the result is
that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
The result has a value equal to the number of characters in string (if it is scalar)
or in an element of string (if it is array valued).

Specific Name Argument Type Result Type

LEN1

1. The setting of compiler options specifying integer size can affect this function.

CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

Description: Returns the length of the character argument without counting trailing blank
characters.

Syntax: result = LEN_TRIM (string [, kind])
Class: Elemental function; Generic
Arguments:
 string Must be of type character.
9-85

9 Intel Fortran Language Reference
Examples

LEN_TRIM (' C D ') has the value 7.
LEN_TRIM (' ') has the value 0.

LGE

 kind (opt) Must be a scalar integer initialization expression.
Results: The result is a scalar of type integer. If kind is present, the kind parameter of the

result is that specified by kind; otherwise, the kind parameter of the result is
that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
The result has a value equal to the number of characters remaining after any
trailing blanks in string are removed. If the argument contains only blank
characters, the result is zero.
The setting of compiler options specifying integer size can affect this function.

Description: Determines if a string is lexically greater than or equal to another string, based
on the ASCII collating sequence, even if the processor’s default collating
sequence is different. In Intel Fortran, LGE is equivalent to the (.GE.)
operator.

Syntax: result = LGE (string_a, string_b)
Class: Elemental function; Generic
Arguments:
 string_a Must be of type character.
 string_b Must be of type character.
Results: The result type is default logical. If the strings are of unequal length, the

comparison is made as if the shorter string were extended on the right with
blanks, to the length of the longer string.
The result is true if the strings are equal, both strings are of zero length, or if
string_a follows string_b in the ASCII collating sequence; otherwise, the result
is false.

Specific Name Argument Type Result Type

LGE1

1. This specific function cannot be passed as an actual argument.

CHARACTER LOGICAL(4)

∆∆∆ ∆∆ ∆∆∆

∆∆∆∆∆

 ≥
9-86

Intrinsic Procedures 9

Examples

LGE ('ONE', 'SIX') has the value false.
LGE ('TWO', 'THREE') has the value true.

LGT

Examples

LGT ('TWO', 'THREE') has the value true.
LGT ('ONE', 'FOUR') has the value true.

LLE

Description: Determines whether a string is lexically greater than another string, based on
the ASCII collating sequence, even if the processor’s default collating sequence
is different. In Intel Fortran, LGT is equivalent to the > (.GT.) operator.

Syntax: result = LGT (string_a, string_b)
Class: Elemental function; Generic
Arguments:
 string_a Must be of type character.
 string_b Must be of type character.
Results: The result type is default logical. If the strings are of unequal length, the

comparison is made as if the shorter string were extended on the right with
blanks, to the length of the longer string.
The result is true if string_a follows string_b in the ASCII collating sequence;
otherwise, the result is false. If both strings are of zero length, the result is also
false.

Specific Name Argument Type Result Type

LGT1

1. This specific function cannot be passed as an actual argument.

CHARACTER LOGICAL(4)

Description: Determines whether a string is lexically less than or equal to another string,
based on the ASCII collating sequence, even if the processor’s default collating
sequence is different. In Intel Fortran, LLE is equivalent to the (.LE.)
operator.

 ≤
9-87

9 Intel Fortran Language Reference
Examples

LLE ('TWO', 'THREE') has the value false.
LLE ('ONE', 'FOUR') has the value false.

LLT

Syntax: result = LLE (string_a, string_b)
Class: Elemental function; Generic
Arguments:
 string_a Must be of type character.
 string_b Must be of type character.
Results: The result type is default logical. If the strings are of unequal length, the

comparison is made as if the shorter string were extended on the right with
blanks, to the length of the longer string.
The result is true if the strings are equal, both strings are of zero length, or if
string_a precedes string_b in the ASCII collating sequence; otherwise, the
result is false.

Specific Name Argument Type Result Type

LLE1

1. This specific function cannot be passed as an actual argument.

CHARACTER LOGICAL(4)

Description: Determines whether a string is lexically less than another string, based on the
ASCII collating sequence, even if the processor’s default collating sequence is
different. In Intel Fortran, LLT is equivalent to the < (.LT.) operator.

Syntax: result = LLT (string_a, string_b)
Class: Elemental function; Generic
Arguments:
 string_a Must be of type character.
 string_b Must be of type character.
Results: The result type is default logical. If the strings are of unequal length, the

comparison is made as if the shorter string were extended on the right with
blanks, to the length of the longer string.
9-88

Intrinsic Procedures 9
Examples

LLT ('ONE', 'SIX') has the value true.
LLT ('ONE', 'FOUR') has the value false.

LOC

LOG

The result is true if string_a precedes string_b in the ASCII collating sequence;
otherwise, the result is false. If both strings are of zero length, the result is also
false.

Specific Name Argument Type Result Type

LLT1

1. This specific function cannot be passed as an actual argument.

CHARACTER LOGICAL(4)

Description: Returns the internal address of a storage item. This function cannot be passed
as an actual argument.

Syntax: result = LOC (x)
Class: Inquiry function; Generic
Arguments: x is a variable, an array or record field reference, a procedure, or a constant; it

can be of any data type. It must not be the name of an internal procedure or
statement function. If it is a pointer, it must be defined and associated with a
target.

Results: The result type is INTEGER(4) on IA-32 processors; INTEGER(8) on Intel
Itanium processors. The value of the result represents the address of the data
object or, in the case of pointers, the address of its associated target. If the
argument is not valid, the result is undefined.
This function serves the same purpose as the %LOC built-in function.

Description: Returns the natural logarithm of the argument.
Syntax: result = LOG (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex. If x is real, its value must be greater than

zero. If x is complex, its value must not be zero.
9-89

9 Intel Fortran Language Reference
Examples

LOG (8.0) has the value 2.079442.
LOG (25.0) has the value 3.218876.

LOG10

Results: The result type is the same as x. The result value is approximately equal to
logex.
If the arguments are complex, the result is the principal value of imaginary part
omega in the range . The imaginary part of the result is if the
real part of the argument is less than zero and the imaginary part of the
argument is zero.

Specific Name Argument Type Result Type

ALOG1,2

1. This function can also be specified as LOG.

2. The setting of compiler options specifying real size can affect ALOG, LOG, and CLOG.

REAL(4) REAL(4)

DLOG REAL(8) REAL(8)

QLOG REAL(16) REAL(16)

CLOG COMPLEX(4) COMPLEX(4)

CDLOG3

3. This function can also be specified as ZLOG.

COMPLEX(8) COMPLEX(8)

CQLOG COMPLEX(16) COMPLEX(16)

Description: Returns the common logarithm of the argument.
Syntax: result = LOG10 (x)
Class: Elemental function; Generic
Arguments: x must be of type real. The value of x must be greater than zero.
Results: The result type is the same as x. The result value is approximately equal to

log10x.

Specific Name Argument Type Result Type

ALOG101 REAL(4) REAL(4)

DLOG10 REAL(8) REAL(8)

 π – ω π≤< π
9-90

Intrinsic Procedures 9
Examples

LOG10 (8.0) has the value 0.9030900.
LOG10 (15.0) has the value 1.176091.

LOGICAL

Examples

LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical regardless of the kind
parameter of logical variable L.
LOGICAL (.FALSE., 2) has the value false, with the kind parameter of INTEGER(KIND=2).

MALLOC

QLOG10 REAL(16) REAL(16)

1. This function can also be specified as LOG10. The setting of compiler options specifying real size can affect ALOG10 and
LOG10.

Description: Converts the logical value of the argument to a logical value with different kind
parameters.

Syntax: result = LOGICAL (l [, kind])
Class: Elemental function; Generic
Arguments:
 l Must be of type logical.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is logical. If kind is present, the kind parameter is that specified

by kind; otherwise, the kind parameter is that of default logical. The result
value is that of l.
The setting of compiler options specifying integer size can affect this function.

Description: Allocates a block of memory. This specific function cannot be passed as an
actual argument.

Syntax: result = MALLOC (i)
Class: Elemental function; Specific

Specific Name Argument Type Result Type
9-91

9 Intel Fortran Language Reference
Example

Consider the following:
 INTEGER(4) SIZE

 REAL(4) STORAGE(*)

 POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE

 SIZE = 1024 ! Size in bytes

 ADDR = MALLOC(SIZE) ! Allocate the memory

 CALL FREE(ADDR) ! Free it

MATMUL

Arguments: i must be of type integer. This value is the size (in bytes) of memory to be
allocated.

Results: The result type is INTEGER(4) on IA-32 processors; INTEGER(8) on Intel
Itanium processors. The result is the starting address of the allocated memory.
The memory allocated can be freed by using the FREE intrinsic function (see
“FREE”).

Description: Performs matrix multiplication of numeric or logical matrices.
Syntax: result = MATMUL (matrix_a, matrix_b)
Class: Transformational function; Generic
Arguments:
 matrix_a Must be an array of rank one or two. It must be of numeric (integer, real, or

complex) or logical type.
 matrix_b Must be an array of rank one or two. It must be of numeric type if matrix_a is

of numeric type or logical type if matrix_a is logical type.
At least one argument must be of rank two. The size of the first (or only)
dimension of matrix_b must equal the size of the last (or only) dimension of
matrix_a.
9-92

Intrinsic Procedures 9
Examples

A is matrix , B is matrix , X is vector (1, 2), and Y is vector (1, 2, 3).

The result of MATMUL (A, B) is the matrix-matrix product AB with the value .

The result of MATMUL (X, A) is the vector-matrix product XA with the value (8, 11, 14).
The result of MATMUL (A, Y) is the matrix-vector product AY with the value (20, 26).

MAX

Results: The result is an array whose type depends on the data type of the arguments,
according to the rules described in “Data Type of Numeric Expressions”. The
rank and shape of the result depends on the rank and shapes of the arguments,
as follows:
• If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result is a

rank-two array with shape (n, k).
• If matrix_a has shape (m) and matrix_b has shape (m, k), the result is a

rank-one array with shape (k).
• If matrix_a has shape (n, m) and matrix_b has shape (m), the result is a

rank-one array with shape (n).
If the arguments are of numeric type, element (i, j) of the result has the value
SUM ((row i of matrix_a) * (column j of matrix_b)). If the arguments are of
logical type, element (i, j) of the result has the value ANY ((row i of matrix_a)
.AND. (column j of matrix_b)).

Description: Returns the maximum value of the arguments.
Syntax: result = MAX (a1, a2 [, a3,...])
Class: Elemental function; Generic
Arguments: a1, a2, and a3 (opt)

All must have the same type (integer or real) and kind parameters.

2 3 4
3 4 5

2 3
3 4
4 5

29 38
38 50
9-93

9 Intel Fortran Language Reference
Examples

MAX (2.0, –8.0, 6.0) has the value 6.0.
MAX (14, 32, –50) has the value 32.

Results: For MAX0, AMAX1, DMAX1, QMAX1, IMAX0, JMAX0, and KMAX0, the
result type is the same as the arguments. For MAX1, IMAX1, JMAX1, and
KMAX1, the result type is integer. For AMAX0, AIMAX0, AJMAX0, and
AKMAX0, the result is of type real. The value of the result is that of the largest
argument.

Specific Name 1

1. These specific functions cannot be passed as actual arguments.

Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMAX0 INTEGER(2) INTEGER(2)

AIMAX0 INTEGER(2) REAL(4)

MAX02

2. Or JMAX0.

INTEGER(4) INTEGER(4)

AMAX03,4

3. Or AJMAX0. AMAX0 is the same as REAL(MAX).

4. In Fortran 95/90, AMAX0 and MAX1 are specific functions with no generic name. For compatibility with older versions of Fortran,
these functions can also be specified as generic functions.

INTEGER(4) REAL(4)

KMAX0 INTEGER(8) INTEGER(8)

AKMAX0 INTEGER(8) REAL(4)

IMAX1 REAL(4) INTEGER(2)

MAX14,5,6

5. Or JMAX1. MAX1 is the same as INT(MAX).

6. The setting of compiler options specifying integer size can affect MAX1.

REAL(4) INTEGER(4)

KMAX1 REAL(4) INTEGER(8)

AMAX17

7. The setting of compiler options specifying real size can affect AMAX1.

REAL(4) REAL(4)

DMAX1 REAL(8) REAL(8)

QMAX1 REAL(16) REAL(16)
9-94

Intrinsic Procedures 9

MAXEXPONENT

Example

If X is of type REAL(4), MAXEXPONENT (X) has the value 128.

MAXLOC

Description: Returns the maximum exponent in the model representing the same type and
kind parameters as the argument.

Syntax: result = MAXEXPONENT (x)
Class: Inquiry function; Generic
Arguments: x must be of type real; it can be scalar or array valued.
Results: The result is a scalar of type default integer. The result has the value emax, as

defined in “Model for Real Data”.

Description: Returns the location of the maximum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

Syntax: result = MAXLOC (array [, dim] [, mask] [, kind])
Class: Transformational function; Generic
Arguments:
 array Must be an array of type integer or real.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array. This argument is a Fortran 95 feature.
 mask (opt) Must be a logical array that is conformable with array.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is an array of type integer. If kind is present, the kind parameter of

the result is that specified by kind; otherwise, the kind parameter of the result is
that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
9-95

9 Intel Fortran Language Reference
Examples

The value of MAXLOC ((/3, 7, 4, 7/)) is (2), which is the subscript of the location of the first
occurrence of the maximum value in the rank-one array.

A is the array .

MAXLOC (A, MASK=A .LT. 5) has the value (1, 1) because these are the subscripts of the
location of the maximum value (4) that is less than 5.
MAXLOC (A, DIM=1) has the value (1, 2, 3, 2). 1 is the subscript of the location of the maximum
value (4) in column 1; 2 is the subscript of the location of the maximum value (1) in column 2; and
so forth.

The following rules apply if dim is omitted:
• The array result has rank one and a size equal to the rank of array.
• If MAXLOC (array) is specified, the elements in the array result form the

subscript of the location of the element with the maximum value in array.
The ith subscript returned lies in the range 1 to ei, where ei is the extent of
the ith dimension of array.

• If MAXLOC (array, MASK=mask) is specified, the elements in the array
result form the subscript of the location of the element with the maximum
value corresponding to the condition specified by mask.

The following rules apply if dim is specified:
• The array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• If array has rank one, MAXLOC (array, dim [,mask]) has a value equal to

that of MAXLOC (array [,MASK = mask]). Otherwise, the value of
element (s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of MAXLOC (array, dim [,mask])
is equal to MAXLOC (array (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) [,MASK =
mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn)]).

If more than one element has maximum value, the element whose subscripts
are returned is the first such element, taken in array element order. If array has
size zero, or every element of mask has the value .FALSE., the value of the
result is undefined.
The setting of compiler options specifying integer size can affect this function.

4 0 3– 2
3 1 2– 6
1– 4– 5 5–
9-96

Intrinsic Procedures 9

MAXLOC (A, DIM=2) has the value (1, 4, 3). 1 is the subscript of the location of the maximum
value in row 1; 4 is the subscript of the location of the maximum value in row 2; and so forth.

MAXVAL

Description: Returns the maximum value of all elements in an array, a set of elements in an
array, or elements in a specified dimension of an array.

Syntax: result = MAXVAL (array [, dim] [, mask])
Class: Transformational function; Generic
Arguments:
 array Must be an array of type integer or real.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array.
 mask (opt) Must be a logical array that is conformable with array.
Results: The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.
The following rules apply if dim is omitted:
• If MAXVAL (array) is specified, the result has a value equal to the

maximum value of all the elements in array.
• If MAXVAL (array, MASK=mask) is specified, the result has a value equal

to the maximum value of the elements in array corresponding to the
condition specified by mask.

The following rules apply if dim is specified:
• The array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• If array has rank one, MAXVAL (array, dim [,mask]) has a value equal to

that of MAXVAL (array [,MASK = mask]). Otherwise, the value of
element (s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of MAXVAL (array, dim [,mask])
is equal to MAXVAL (array (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) [,MASK =
mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim
is omitted), or each element in the result array (if dim is specified), has the
value of the negative number of the largest magnitude supported by the
processor for numbers of the type and kind parameters of array.
9-97

9 Intel Fortran Language Reference
Examples

The value of MAXVAL ((/2, 3, 4/)) is 4 because that is the maximum value in the rank-one array.
MAXVAL (B, MASK=B .LT. 0.0) finds the maximum value of the negative elements of B.

C is the array .

MAXVAL (C, DIM=1) has the value (5, 6, 7). 5 is the maximum value in column 1; 6 is the
maximum value in column 2; and so forth.
MAXVAL (C, DIM=2) has the value (4, 7). 4 is the maximum value in row 1 and 7 is the
maximum value in row 2.

MCLOCK

MERGE

Description: Returns time accounting for a program.
Syntax: result = MCLOCK ()
Class: Inquiry function; Specific
Arguments: None.
Results: The result type is integer. The result is the sum (in units of microseconds) of the

current process’s user time and the user and system time of all its child
processes.

Description: Selects between two values or between corresponding elements in two arrays,
according to the condition specified by a logical mask.

Syntax: result = MERGE (tsource, fsource, mask)
Class: Elemental function; Generic
Arguments:
 tsource Must be a scalar or array (of any data type).
 fsource Must be a scalar or array of the same type and type parameters as tsource.
 mask Must be a logical array.
Results: The result type is the same as tsource. The value of mask determines whether

the result value is taken from tsource (if mask is true) or fsource (if mask is
false).

2 3 4
5 6 7
9-98

Intrinsic Procedures 9

Examples

For MERGE (1.0, 0.0, R < 0), R = -3 has the value 1.0, and R = 7 has the value 0.0.

TSOURCE is the array , FSOURCE is the array , and MASK is the array

.

MERGE (TSOURCE, FSOURCE, MASK) produces the result: .

MIN

Description: Returns the minimum value of the arguments.
Syntax: result = MIN (a1, a2 [, a3,...])
Class: Elemental function; Generic
Arguments: a1, a2, and a3 (opt)

All must have the same type (integer or real) and kind parameters.
Results: For MIN0, AMIN1, DMIN1, QMIN1, IMIN0, JMIN0, and KMIN0, the result

type is the same as the arguments. For MIN1, IMIN1, JMIN1, and KMIN1, the
result type is integer. For AMIN0, AIMIN0, AJMIN0, and AKMIN0, the result
is of type real. The value of the result is that of the smallest argument.

Specific Name 1 Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMIN0 INTEGER(2) INTEGER(2)

AIMIN0 INTEGER(2) REAL(4)

MIN02 INTEGER(4) INTEGER(4)

AMIN03,4 INTEGER(4) REAL(4)

KMIN0 INTEGER(8) INTEGER(8)

AKMIN0 INTEGER(8) REAL(4)

IMIN1 REAL(4) INTEGER(2)

MIN14,5,6 REAL(4) INTEGER(4)

KMIN1 REAL(4) INTEGER(8)

AMIN17 REAL(4) REAL(4)

1 3 5
2 4 6

8 9 0
1 2 3

F T T

T T F
8 3 5
2 4 3
9-99

9 Intel Fortran Language Reference
Examples

MIN (2.0, –8.0, 6.0) has the value –8.0.
MIN (14, 32, –50) has the value –50.

MINEXPONENT

Example

If X is of type REAL(4), MINEXPONENT (X) has the value –125.

MINLOC

DMIN1 REAL(8) REAL(8)

QMIN1 REAL(16) REAL(16)

1. These specific functions cannot be passed as actual arguments.

2. Or JMIN0.

3. Or AJMIN0. AMIN0 is the same as REAL(MIN).

4. In Fortran 95/90, AMIN0 and MIN1 are specific functions with no generic name. For compatibility with older versions of Fortran,
these functions can also be specified as generic functions.

5. Or JMIN1. MIN1 is the same as INT(MIN).

6. The setting of compiler options specifying integer size can affect MIN1.
7. The setting of compiler options specifying real size can affect AMIN1.

Description: Returns the minimum exponent in the model representing the same type and
kind parameters as the argument.

Syntax: result = MINEXPONENT (x)
Class: Inquiry function; Generic
Arguments: x must be of type real; it can be scalar or array valued.
Results: The result is a scalar of type default integer. The result has the value emin, as

defined in “Model for Real Data”.

Description: Returns the location of the minimum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

Syntax: result = MINLOC (array [, dim] [, mask] [, kind])
Class: Transformational function; Generic

Specific Name 1 Argument Type Result Type
9-100

Intrinsic Procedures 9
Examples

The value of MINLOC ((/3, 1, 4, 1/)) is (2), which is the subscript of the location of the first
occurrence of the minimum value in the rank-one array.

Arguments:
 array Must be an array of type integer or real.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array. This argument is a Fortran 95 feature.
 mask (opt) Must be a logical array that is conformable with array.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is an array of type integer. If kind is present, the kind parameter of

the result is that specified by kind; otherwise, the kind parameter of the result is
that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
The following rules apply if dim is omitted:
• The array result has rank one and a size equal to the rank of array.
• If MINLOC (array) is specified, the elements in the array result form the

subscript of the location of the element with the minimum value in array.
The ith subscript returned lies in the range 1 to ei, where ei is the extent of
the ith dimension of array.

• If MINLOC (array, MASK=mask) is specified, the elements in the array
result form the subscript of the location of the element with the minimum
value corresponding to the condition specified by mask.

The following rules apply if dim is specified:
• The array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• If array has rank one, MINLOC (array, dim [,mask]) has a value equal to

that of MINLOC (array [,MASK = mask]). Otherwise, the value of element
(s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of MINLOC (array, dim [,mask]) is equal
to MINLOC (array (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) [,MASK = mask (s1,
s2, ..., sDIM–1, :, sDIM+1, ..., sn)]).

If more than one element has minimum value, the element whose subscripts are
returned is the first such element, taken in array element order. If array has size
zero, or every element of mask has the value .FALSE., the value of the result is
undefined.
The setting of compiler options specifying integer size can affect this function.
9-101

9 Intel Fortran Language Reference
A is the array .

MINLOC (A, MASK=A .GT. –5) has the value (3, 2) because these are the subscripts of the
location of the minimum value (-4) that is greater than –5.
MINLOC (A, DIM=1) has the value (3, 3, 1, 3). 3 is the subscript of the location of the minimum
value (–1) in column 1; 3 is the subscript of the location of the minimum value (–4) in column 2;
and so forth.
MINLOC (A, DIM=2) has the value (3, 3, 4). 3 is the subscript of the location of the minimum
value (–3) in row 1; 3 is the subscript of the location of the minimum value (–2) in row 2; and so
forth.

MINVAL

Description: Returns the minimum value of all elements in an array, a set of elements in an
array, or elements in a specified dimension of an array.

Syntax: result = MINVAL (array [, dim] [, mask])
Class: Transformational function; Generic
Arguments:
 array Must be an array of type integer or real.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array.
 mask (opt) Must be a logical array that is conformable with array.
Results: The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.
The following rules apply if dim is omitted:
• If MINVAL (array) is specified, the result has a value equal to the minimum

value of all the elements in array.
• If MINVAL (array, MASK=mask) is specified, the result has a value equal

to the minimum value of the elements in array corresponding to the
condition specified by mask.

4 0 3– 2
3 1 2– 6
1– 4– 5 5–
9-102

Intrinsic Procedures 9
Examples

The value of MINVAL ((/2, 3, 4/)) is 2 because that is the minimum value in the rank-one array.
The value of MINVAL (B, MASK=B .GT. 0.0) finds the minimum value of the positive elements
of B.
C is the array .

MINVAL (C, DIM=1) has the value (2, 3, 4). 2 is the minimum value in column 1; 3 is the
minimum value in column 2; and so forth.
MINVAL (C, DIM=2) has the value (2, 5). 2 is the minimum value in row 1 and 5 is the minimum
value in row 2.

MM_PREFETCH

The following rules apply if dim is specified:
• The array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• If array has rank one, MINVAL (array, dim [,mask]) has a value equal to

that of MINVAL (array [,MASK = mask]). Otherwise, the value of element
(s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of MINVAL (array, dim [,mask]) is equal
to MINVAL (array (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn) [,MASK = mask (s1,
s2, ..., sDIM–1, :, sDIM+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim
is omitted), or each element in the result array (if dim is specified), has the
value of the positive number of the largest magnitude supported by the
processor for numbers of the type and kind parameters of array.

Description: Prefetches data from the specified address on one memory cache line.
Syntax: CALL MM_PREFETCH (address [, hint] [, fault] [, exclusive])
Class: Subroutine
Arguments:
 address Is the name of a scalar or array; it can be of any type or rank. It specifies the

address of the data on the cache line to prefetch.
 hint (opt) Is an optional default integer constant with one of the following values:

2 3 4
5 6 7
9-103

9 Intel Fortran Language Reference
Example

Consider the following:
 subroutine spread_lf (a, b)

 PARAMETER (n = 1025)

 real*8 a(n,n), b(n,n), c(n)

 do j = 1,n

 do i = 1,100

 a(i, j) = b(i-1, j) + b(i+1, j)

 call mm_prefetch a(i+20, j), 1)

 call mm_prefetch b(i+21, j), 1)

Value Prefetch Constant Description

0 FOR_K_PREFETCH_T0 Prefetches into the L1 cache (and the L2 and
the L3 cache). Use this for integer data.

1 FOR_K_PREFETCH_T1 Prefetches into the L2 cache (and the L3
cache); floating-point data is used from the L2
cache, not the L1 cache. Use this for real data.

2 FOR_K_PREFETCH_T2 Prefetches into the L2 cache (and the L3
cache); this line will be marked for early
displacement. Use this if you are not going to
reuse the cache line frequently.

3 FOR_K_PREFETCH_NTA Prefetches into the L2 cache (but not the L3
cache); this line will be marked for early
displacement. Use this if you are not going to
reuse the cache line.

The preceding return values are defined in file fordef.f on Linux* systems
and file fordef.for on Windows* systems. For information on the location of
these files, see your user’s guide.
If hint is omitted, 0 is assumed.

 fault (opt) Is an optional default logical constant. If .TRUE. is specified, page faults are
allowed to occur, if necessary; if .FALSE. is specified, page faults are not allowed
to occur. If fault is omitted, .FALSE. is assumed. This argument is ignored on
IA-32 processors.

 exclusive (opt) Is an optional default logical constant. If .TRUE. is specified, you get exclusive
ownership of the cache line because you intend to assign to it; if .FALSE. is
specified, there is no exclusive ownership. If exclusive is omitted, .FALSE. is
assumed. This argument is ignored on IA-32 processors.
9-104

Intrinsic Procedures 9

 enddo

 enddo

 print *, a(2, 567)

 stop

 end

MOD

Examples

MOD (7, 3) has the value 1.
MOD (9, –6) has the value 3.
MOD (–9, 6) has the value –3.

Description: Returns the remainder when the first argument is divided by the second
argument.

Syntax: result = MOD (a, p)
Class: Elemental function; Generic
Arguments:
 a Must be of type integer or real.
 p Must have the same type and kind parameters as a.
Results: The result type is the same as a. If p is not equal to zero, the value of the result

is a – INT(a/p) x p. If p is equal to zero, the result is undefined.

Specific Name Argument Type Result Type

BMOD INTEGER(1) INTEGER(1)

IMOD1

1. Or HMOD.

INTEGER(2) INTEGER(2)

MOD2

2. Or JMOD.

INTEGER(4) INTEGER(4)

KMOD INTEGER(8) INTEGER(8)

AMOD3

3. The setting of compiler options specifying real size can affect AMOD.

REAL(4) REAL(4)

DMOD REAL(8) REAL(8)

QMOD REAL(16) REAL(16)
9-105

9 Intel Fortran Language Reference
MODULO

Examples

MODULO (7, 3) has the value 1.
MODULO (9, –6) has the value –3.
MODULO (–9, 6) has the value 3.

MULT_HIGH (i64 only)

Description: Returns the modulo of the arguments.
Syntax: result = MODULO (a, p)
Class: Elemental function; Generic
Arguments:
 a Must be of type integer or real.
 p Must have the same type and kind parameters as a.
Results: The result type is the same as a. The result value depends on the type of a, as

follows:
• If a is of type integer and p is not equal to zero, the value of the result is

a - FLOOR(REAL(a)/REAL(p)) * p.
• If a is of type real and P is not equal to zero, the value of the result is

a - FLOOR(a/p) * p.
If p is equal to zero (regardless of the type of a), the result is undefined.

Description: Multiplies two 64-bit unsigned integers. This specific function has no generic
function associated with it and is only available on Intel Itanium processors. It
cannot be passed as an actual argument.

Syntax: result = MULT_HIGH (i, j)
Class: Elemental function; Specific
Arguments:
 i Must be of type INTEGER(8).
 j Must be of type INTEGER(8).
Results: The result type is INTEGER(8). The result value is the upper (leftmost)

64 bits of the 128-bit unsigned result.
9-106

Intrinsic Procedures 9

Example

Consider the following:
 INTEGER(8) I,J,K

 I=2_8**53

 J=2_8**51

 K = MULT_HIGH (I,J)

 PRINT *,I,J,K

 WRITE (6,1000)I,J,K

 1000 FORMAT (' ', 3(Z,1X))

 END

This example prints the following:
 9007199254740992 2251799813685248 1099511627776

 20000000000000 8000000000000 10000000000

MVBITS

Description: Copies a sequence of bits (a bit field) from one location to another.
Syntax: CALL MVBITS (from, frompos, len, to, topos)
Class: Elemental subroutine
Arguments: There are five arguments:1
 from Can be of any integer type. It represents the location from which a bit field is

transferred.
 frompos Can be of any integer type; it must not be negative. It identifies the first bit

position in the field transferred from from. frompos + len must be less than or
equal to BIT_SIZE (from).2

 len Can be of any integer type; it must not be negative. It identifies the length of the
field transferred from from.

 to Can be of any integer type, but must have the same kind parameter as from. It
represents the location to which a bit field is transferred. to is set by copying the
sequence of bits of length len, starting at position frompos of from to position
topos of to. No other bits of to are altered.
On return, the len bits of to (starting at topos) are equal to the value that len bits
of from (starting at frompos) had on entry.2
9-107

9 Intel Fortran Language Reference
You can also use the following specific subroutines:

Example

If TO has the initial value of 6, its value after a call to MVBITS (7, 2, 2, TO, 0) is 5.

NARGS

Example

Consider the following:
 INTEGER(2) result

 result = RUNQQ('myprog', '-c -r')

 END

 topos Can be of any integer type; it must not be negative. It identifies the starting
position (within to) for the bits being transferred. topos + len must be less than
or equal to BIT_SIZE (to).

1. FROM, FROMPOS, LEN, and TOPOS are INTENT(IN) arguments; TO is an INTENT(INOUT) argument. For more information on
INTENT, see “INTENT Attribute and Statement”.

2. The model for the interpretation of an integer value as a sequence of bits is shown in “Model for Bit Data”. For more information on
bit functions, see “Bit Functions”.

BMVBITS Arguments from and to must be INTEGER(1).
HMVBITS Arguments from and to must be INTEGER(2).
IMVBITS All arguments must be INTEGER(2).
JMVBITS Arguments can be INTEGER(2) or INTEGER(4); at least one must

be INTEGER(4).
KMVBITS Arguments can be INTEGER(2), INTEGER(4), or INTEGER(8); at

least one must be INTEGER(8).

Description: Returns the total number of command-line arguments, including the command.
This function cannot be passed as an actual argument.

Syntax: result = NARGS ()
Class: Inquiry function; Specific
Arguments: None.
Results: The result type is INTEGER(4). The result is the number of command-line

arguments, including the command. For example, NARGS returns 4 for the
command-line invocation of PROG1 -g -c -a.
9-108

Intrinsic Procedures 9

! MYPROG.F90 responds to command switches -r, -c,

! and/or -d

INTEGER(4) count, num, i, status

CHARACTER(80) buf

REAL r1 / 0.0 /

COMPLEX c1 / (0.0,0.0) /

REAL(8) d1 / 0.0 /

num = 5

count = NARGS()

DO i = 1, count-1

 CALL GETARG(i, buf, status)

 IF (status .lt. 0) THEN

 WRITE (*,*) 'GETARG error - exiting'

 EXIT

 END IF

 IF (buf(2:status) .EQ.'r') THEN

 r1 = REAL(num)

 WRITE (*,*) 'r1 = ',r1

 ELSE IF (buf(2:status) .EQ.'c') THEN

 c1 = CMPLX(num)

 WRITE (*,*) 'c1 = ', c1

 ELSE IF (buf(2:status) .EQ.'d') THEN

 d1 = DBLE(num)

 WRITE (*,*) 'd1 = ', d1

 ELSE

 WRITE(*,*) 'Invalid command switch: ', buf (1:status)

 END IF

END DO

END

See Also
• “GETARG”
• “IARGC”
9-109

9 Intel Fortran Language Reference
NEAREST

Example

If 3.0 and 2.0 are REAL(4) values, NEAREST (3.0, 2.0) has the value 3 + 2–22, which equals
approximately 3.0000002. (For more information on the model for REAL(4), see “Model for Real
Data”.)

NINT

Description: Returns the nearest different number (representable on the processor) in a given
direction.

Syntax: result = NEAREST (x, s)
Class: Elemental function; Generic
Arguments:
 x Must be of type real.
 s Must be of type real and nonzero.
Results: The result type is the same as x. The result has a value equal to the machine

representable number that is different from and nearest to x, in the direction of
the infinity with the same sign as s.

Description: Returns the nearest integer to the argument.
Syntax: result = NINT (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type real.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is shown in
the following table. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
If a is greater than zero, NINT (a) has the value INT (a + 0.5); if a is less than
or equal to zero, NINT (a) has the value INT (a – 0.5).

Specific Name Argument Type Result Type

ININT REAL(4) INTEGER(2)
9-110

Intrinsic Procedures 9
Examples

NINT (3.879) has the value 4.
NINT (–2.789) has the value –3.

NOT

NINT1,2 REAL(4) INTEGER(4)

KNINT REAL(4) INTEGER(8)

IIDNNT REAL(8) INTEGER(2)

IDNINT2,3 REAL(8) INTEGER(4)

KIDNNT REAL(8) INTEGER(8)

IIQNNT REAL(16) INTEGER(2)

IQNINT2,4 REAL(16) INTEGER(4)

KIQNNT5 REAL(16) INTEGER(8)

1. Or JNINT

2. The setting of compiler options specifying integer size can affect NINT, IDNINT, and IQNINT.
3. Or JIDNNT. For compatibility with older versions of Fortran, IDNINT can also be specified as a generic function.

4. Or JIQNNT. For compatibility with older versions of Fortran, IQNINT can also be specified as a generic function.

5. This specific function cannot be passed as an actual argument.

Description: Returns the logical complement of the argument.
Syntax: result = NOT (i)
Class: Elemental function; Generic
Arguments: i must be of type integer.
Results: The result type is the same as I. The result value is obtained by complementing

I bit-by-bit according to the following truth table:
I NOT(I)
1 0
0 1

The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Specific Name Argument Type Result Type

BNOT INTEGER(1) INTEGER(1)

Specific Name Argument Type Result Type
9-111

9 Intel Fortran Language Reference
Example

If I has a value equal to 10101010 (base 2), NOT (I) has the value 01010101 (base 2).

NULL

Example

Consider the following:
 INTEGER, POINTER :: POINT1 => NULL()

This statement defines the initial association status of POINT1 to be disassociated.

INOT1 INTEGER(2) INTEGER(2)

JNOT INTEGER(4) INTEGER(4)

KNOT INTEGER(8) INTEGER(8)

1. Or HNOT.

Description: Initializes a pointer as disassociated when it is declared. This is a new intrinsic
procedure in Fortran 95.

Syntax: result = NULL ([mold])
Class: Transformational function; Generic
Arguments: mold (opt)

Must be a pointer; it can be of any type. Its pointer association status can be
associated, disassociated, or undefined. If its status is associated, the target does
not have to be defined with a value.

Results: The result type is the same as mold (if present); otherwise, it is determined as
follows:
If NULL() Appears:
On the right side of pointer
 assignment
As initialization for an object in a
 declaration
As default initialization for a
 component
In a structure constructor
As an actual argument
In a DATA statement

Type is Determined From:

The pointer on the left side

The object

The component
The corresponding component
The corresponding dummy argument
The corresponding pointer object

The result is a pointer with disassociated association status.

Specific Name Argument Type Result Type
9-112

Intrinsic Procedures 9

PACK

Examples

N is the array .

PACK (N, MASK=N .NE. 0, VECTOR=(/1, 3, 5, 9, 11, 13/)) produces the result (7, 8, 5, 9, 11,
13).
PACK (N, MASK=N .NE. 0) produces the result (7, 8).

Description: Takes elements from an array and packs them into a rank-one array under the
control of a mask.

Syntax: result = PACK (array, mask [, vector])
Class: Transformational function; Generic
Arguments:
 array Must be an array (of any data type).
 mask Must be of type logical and conformable with array. It determines which

elements are taken from array.
 vector (opt) Must be a rank-one array with the same type and type parameters as array. Its

size must be at least t, where t is the number of true elements in mask. If mask is
a scalar with value true, vector must have at least as many elements as there are
in array.
Elements in vector are used to fill out the result array if there are not enough
elements selected by mask.

Results: The result is a rank-one array with the same type and type parameters as array.
If vector is present, the size of the result is that of vector. Otherwise, the size of
the result is the number of true elements in mask, or the number of elements in
array (if mask is a scalar with value true).
Elements in array are processed in array element order to form the result array.
Element i of the result is the element of array that corresponds to the ith true
element of mask. If vector is present and has more elements than there are true
values in mask, any result elements that are empty (because they were not true
according to mask) are set to the corresponding values in vector.

0 8 0
0 0 0
7 0 0
9-113

9 Intel Fortran Language Reference
POPCNT

Example

If the value of I is B'0...00011010110', the value of POPCNT(I) is 5.

POPPAR

Example

If the value of I is B'0...00011010110', the value of POPPAR(I) is 1.

PRECISION

Description: Returns the number of 1 bits in the integer argument.
Syntax: result = POPCNT (i)
Class: Elemental function; Generic
Arguments: i must be of type integer or logical.
Results: The result type is the same as i. The result value is the number of 1 bits in the

binary representation of the integer i.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Description: Returns the parity of the integer argument.
Syntax: result = POPPAR (i)
Class: Elemental function; Generic
Arguments: i must be of type integer or logical.
Results: The result type is the same as i. If there are an odd number of 1 bits in the

binary representation of the integer i, the result value is 1. If there are an even
number, the result value is zero.
POPPAR(i) is the same as 1 .AND. POPCNT(i).
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.

Description: Returns the decimal precision in the model representing real numbers with the
same kind parameter as the argument.
9-114

Intrinsic Procedures 9
Example

If X is a REAL(4) value, PRECISION (X) has the value 6. The value 6 is derived from
INT ((24–1) * LOG10 (2.)) = INT (6.92...). For more information on the model for REAL(4), see
“Model for Real Data”.

PRESENT

Example

Consider the following:
SUBROUTINE CHECK (X, Y)

 REAL X, Z

 REAL, OPTIONAL :: Y

 ...

 IF (PRESENT (Y)) THEN

 Z = Y

 ELSE

 Z = X * 2

 END IF

END

 ...

CALL CHECK (15.0, 12.0) ! Causes B to be set to 12.0

Syntax: result = PRECISION (x)
Class: Inquiry function; Generic
Arguments: x must be of type real or complex; it can be scalar or array valued.
Results: The result is a scalar of type default integer. The result has the value

INT((DIGITS(X) – 1) * LOG10(RADIX(X))). If RADIX(X) is an integral
power of 10, 1 is added to the result.

Description: Returns whether or not an optional dummy argument is present (has an
associated actual argument).

Syntax: result = PRESENT (a)
Class: Inquiry function; Generic
Arguments: a must be an optional argument of the current procedure.
Results: The result is a scalar of type default logical. The result is .TRUE. if a is present;

otherwise, .FALSE..
9-115

9 Intel Fortran Language Reference
CALL CHECK (15.0) ! Causes B to be set to 30.0

PRODUCT

Examples

PRODUCT ((/2, 3, 4/)) returns the value 24 (the product of 2 * 3 * 4). PRODUCT ((/2, 3, 4/),
DIM=1) returns the same result.
PRODUCT (C, MASK=C .LT. 0.0) returns the product of the negative elements of C.

Description: Returns the product of all the elements in an entire array or in a specified
dimension of an array.

Syntax: result = PRODUCT (array [, dim] [, mask])
Class: Transformational function; Generic
Arguments:
 array Must be an array of type integer or real.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array.
 mask (opt) Must be of type logical and conformable with array.
Results: The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.
The following rules apply if dim is omitted:
• If PRODUCT (array) is specified, the result is the product of all elements of

array. If array has size zero, the result is 1.
• If PRODUCT (array, MASK=mask) is specified, the result is the product of

all elements of array corresponding to true elements of mask. If array has
size zero, or every element of mask has the value .FALSE., the result is 1.

The following rules apply if dim is specified:
• If array has rank one, the value is the same as PRODUCT (array

[,MASK=mask]).
• An array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• The value of element (s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of PRODUCT

(array, dim [,mask]) is equal to PRODUCT (array (s1, s2, ..., sDIM–1, :,
sDIM+1, ..., sn) [,MASK=mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn)]).
9-116

Intrinsic Procedures 9
A is the array .

PRODUCT (A, DIM=1) returns the value (2, 12, 35), which is the product of all elements in each
column. 2 is the product of 1 * 2 in column 1. 12 is the product of 4 * 3 in column 2, and so forth.
PRODUCT (A, DIM=2) returns the value (28, 30), which is the product of all elements in each
row. 28 is the product of 1 * 4 * 7 in row 1. 30 is the product of 2 * 3 * 5 in row 2.

QCMPLX

Examples

QCMPLX (–3) has the value (–3.0Q0, 0.0Q0).
QCMPLX (4.1, 2.3) has the value (4.1Q0, 2.3Q0).

QEXT

Description: Converts an argument to COMPLEX(16) type. This function cannot be passed
as an actual argument.

Syntax: result = QCMPLX (x [, y])
Class: Elemental function; Specific
Arguments:
 x Must be of type integer, real, or complex.
 y (opt) Must be of type integer or real. It must not be present if x is of type complex.
Results: The result type is COMPLEX(16) (or COMPLEX*32).

If only one noncomplex argument appears, it is converted into the real part of
the result value and zero is assigned to the imaginary part. If y is not specified
and x is complex, the result value is CMPLX (REAL(X), AIMAG(X)).
If two noncomplex arguments appear, the complex value is produced by
converting the first argument into the real part of the value, and converting the
second argument into the imaginary part.
QCMPLX(X, Y) has the complex value whose real part is REAL(X,
KIND=16) and whose imaginary part is REAL(Y, KIND=16).

Description: Converts a number to quad-precision real (REAL(16)) type.

1 4 7
2 3 5
9-117

9 Intel Fortran Language Reference
Examples

QEXT (4) has the value 4.0 (rounded; there are 32 places to the right of the decimal point).
QEXT ((3.4, 2.0)) has the value 3.4 (rounded; there are 32 places to the right of the decimal point).

QFLOAT

Syntax: result = QEXT (a)
Class: Elemental function; Generic
Arguments: a must be of type integer, real, or complex.
Results: The result type is REAL(16) (REAL*16). Functions that cause conversion of

one data type to another type have the same effect as the implied conversion in
assignment statements.
If a is of type REAL(16), the result is the value of the a with no conversion
(QEXT(a) = a).
If a is of type integer or real, the result has as much precision of the significant
part of a as a REAL(16) value can contain.
If a is of type complex, the result has as much precision of the significant part
of the real part of a as a REAL(16) value can contain.

Specific Name 1

1. These specific functions cannot be passed as actual arguments.

Argument Type Result Type

INTEGER(1) REAL(16)

INTEGER(2) REAL(16)

INTEGER(4) REAL(16)

INTEGER(8) REAL(16)

QEXT REAL(4) REAL(16)

QEXTD REAL(8) REAL(16)

REAL(16) REAL(16)

COMPLEX(4) REAL(16)

COMPLEX(8) REAL(16)

COMPLEX(16) REAL(16)

Description: Converts an integer to quad-precision real (REAL(16)) type.
Syntax: result = QFLOAT (a)
9-118

Intrinsic Procedures 9
Example

QFLOAT (–4) has the value –4.0 (rounded; there are 32 places to the right of the decimal point).

QNUM

Example

QNUM ("-174.23") has the value -174.23 of type REAL(16).

QREAL

Example

QREAL ((2.0q0, 3.0q0)) has the value 2.0q0.

Class: Elemental function; Generic
Arguments: a must be of type integer.
Results: The result type is REAL(16) (REAL*16).

Functions that cause conversion of one data type to another type have the same
affect as the implied conversion in assignment statements.

Description: Converts a character string to a REAL(16) value.
Syntax: result = QNUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
Results: The result type is REAL(16). The result value is the real value represented by

the character string i.

Description: Converts the real part of a COMPLEX(16) argument to REAL(16) type. This is
a specific function that has no generic function associated with it. It cannot be
passed as an actual argument.

Syntax: result = QREAL (a)
Class: Elemental function; Specific
Arguments: a must be of type COMPLEX(16) (or COMPLEX*32).
Results: The result type is quad-precision real (REAL(16) or REAL*16).
9-119

9 Intel Fortran Language Reference
RADIX

Example

If X is a REAL(4) value, RADIX (X) has the value 2.

RAN

Example

In RAN (I), if variable I has the value 3, RAN has the value 4.8220158E–05.

Description: Returns the base of the model representing numbers of the same type and kind
parameters as the argument.

Syntax: result = RADIX (x)
Class: Inquiry function; Generic
Arguments: x must be of type integer or real; it can be scalar or array valued.
Results: The result is a scalar of type default integer. For an integer argument, the result

has the value r (as defined in “Model for Integer Data”). For a real argument,
the result has the value b (as defined in “Model for Real Data”).

Description: Returns the next number from a sequence of pseudorandom numbers of
uniform distribution over the range 0 to 1. This is a specific function that has
no generic function associated with it. It cannot be passed as an actual
argument.
RAN is not a pure function.

Syntax: result = RAN (i)
Class: Nonelemental function; Specific
Arguments: i is the seed. It must be an INTEGER(4) variable or array element.

It should initially be set to a large, odd integer value. The RAN function stores
a value in the argument that is later used to calculate the next random number.
There are no restrictions on the seed, although it should be initialized with
different values on separate runs to obtain different random numbers.

Results: The result type is REAL(4). The result is a floating-point number that is
uniformly distributed in the range between 0.0 inclusive and 1.0 exclusive. It is
set equal to the value associated with the argument i.
9-120

Intrinsic Procedures 9

RANDOM_NUMBER

The seed for the pseudorandom number generator used by RANDOM_NUMBER can be set or
queried with “RANDOM_SEED”.

Example

Consider the following:
REAL Y, Z (5, 5)

! Initialize Y with a pseudorandom number

CALL RANDOM_NUMBER (HARVEST = Y)

CALL RANDOM_NUMBER (Z)

Y and Z contain uniformly distributed random numbers.

RANDOM_SEED

Description: Returns one pseudorandom number or an array of such numbers.
Syntax: CALL RANDOM_NUMBER (harvest)
Class: Subroutine
Arguments: harvest must be of type real. It is an INTENT(OUT) argument (see “INTENT

Attribute and Statement”), and can be scalar or an array variable.
It is set to contain pseudorandom numbers from the uniform distribution within
the range .

Description: Changes or queries the seed (starting point) for the pseudorandom number
generator used by RANDOM_NUMBER.

Syntax: CALL RANDOM_SEED ([size] [, put] [, get])
Class: Subroutine
Arguments: No more than one argument can be specified. If no argument is specified, a

random number based on the date and time is assigned to the seed. The three
optional arguments follow:1

 size (opt) Must be scalar and of type default integer. It is set to the number of integers (N)
that the processor uses to hold the value of the seed.

 put (opt) Must be a default integer array of rank one and size N. It is used to reset the
seed value.

0 x 1 <≤

≥

9-121

9 Intel Fortran Language Reference
The setting of compiler options specifying integer size can affect this subroutine.

Example

Consider the following:
CALL RANDOM_SEED ! Processor initializes the seed

 ! randomly from the date and time

CALL RANDOM_SEED (SIZE = M) ! Sets M to N

CALL RANDOM_SEED (PUT = SEED (1 : M)) ! Sets user seed

CALL RANDOM_SEED (GET = OLD (1 : M)) ! Reads current seed

RANDU

The result is returned in x, which must be of type REAL(4). The result value is a pseudorandom
number in the range 0.0 to 1.0. The algorithm for computing the random number value is based on
the values for i1 and i2.
If i1=0 and i2=0, the generator base is set as follows:
 X(n + 1) = 2**16 + 3

Otherwise, it is set as follows:
 X(n + 1) = (2**16 + 3) * X(n) mod 2**32

The generator base X(n + 1) is stored in i1, i2. The result is X(n + 1) scaled to a real value Y(n
+ 1), for .

 get (opt) Must be a default integer array of rank one and size N. It is set to the current
value of the seed.

1. SIZE and GET are INTENT(OUT) arguments; PUT is an INTENT(IN) argument. For more information on INTENT, see “INTENT
Attribute and Statement”.

Description: Computes a pseudorandom number as a single-precision value.
Syntax: CALL RANDU (i1, i2, x)
Class: Subroutine
Arguments:
 i1, i2 INTEGER(2) variables or array elements that contain the seed for computing

the random number. These values are updated during the computation so that
they contain the updated seed.

 x A REAL(4) variable or array element where the computed random number is
returned.

≥

0.0 Y n 1+() 1<≤
9-122

Intrinsic Procedures 9

Example

Consider the following:
REAL X

INTEGER(2) I, J

...

CALL RANDU (I, J, X)

If I and J are values 4 and 6, X stores the value 5.4932479E–04.

RANGE

Example

If X is a REAL(4) value, RANGE (X) has the value 37. (HUGE(X) = (1 – 2–24) x 2128 and
TINY(X) = 2–126.)

REAL

Description: Returns the decimal exponent range in the model representing numbers with
the same kind parameter as the argument.

Syntax: result = RANGE (x)
Class: Inquiry function; Generic
Arguments: x must be of type integer, real, or complex; it can be scalar or array valued.
Results: The result is a scalar of type default integer.

For an integer argument, the result has the value INT (LOG10 (HUGE(X))).
For information on the integer model, see “Model for Integer Data”; on HUGE,
see “HUGE”.
For a real or complex argument, the result has the value INT(MIN
(LOG10(HUGE(X)), –LOG10(TINY(X)))). For information on the real
model, see “Model for Real Data”; on TINY, see “TINY”.

Description: Converts a value to real type.
Syntax: result = REAL (a [, kind])
Class: Elemental function; Generic
Arguments:
 a Must be of type integer, real, or complex.
9-123

9 Intel Fortran Language Reference
Examples

REAL (–4) has the value –4.0.
REAL (Y) has the same kind parameter and value as the real part of complex variable Y.

REPEAT

 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is real. If kind is present, the kind parameter is that specified by

kind; otherwise, the kind parameter of the result is shown in the following table.
If the processor cannot represent the result value in the kind of the result, the
result is undefined.
Functions that cause conversion of one data type to another type have the same
affect as the implied conversion in assignment statements.
If a is integer or real, the result is equal to an approximation of a. If a is
complex, the result is equal to an approximation of the real part of a.

Specific Name 1

1. These specific functions cannot be passed as actual arguments.

Argument Type Result Type

INTEGER(1) REAL(4)

FLOATI INTEGER(2) REAL(4)

FLOAT2,3

2. The setting of compiler options specifying real size can affect FLOAT, REAL, and SNGL.
3. Or FLOATJ. For compatibility with older versions of Fortran, FLOAT can also be specified as a generic function.

INTEGER(4) REAL(4)

REAL2 INTEGER(4) REAL(4)

FLOATK INTEGER(8) REAL(4)

REAL(4) REAL(4)

SNGL2,4

4. For compatibility with older versions of Fortran, SNGL can also be specified as a generic function. The generic SNGL includes
specific function REAL, which takes a REAL(4) argument and produces a REAL(4) result.

REAL(8) REAL(4)

SNGLQ REAL(16) REAL(4)

COMPLEX(4) REAL(4)

COMPLEX(8) REAL(8)

Description: Concatenates several copies of a string.
Syntax: result = REPEAT (string, ncopies)
Class: Transformational function; Generic
9-124

Intrinsic Procedures 9
Examples

REPEAT ('S', 3) has the value SSS.
REPEAT ('ABC', 0) has the value of a zero-length string.

RESHAPE

Arguments:
 string Must be scalar and of type character.
 ncopies Must be scalar and of type integer. It must not be negative.
Results: The result is a scalar of type character and length ncopies x LEN(string). The

kind parameter is the same as string. The value of the result is the
concatenation of ncopies copies of string.

Description: Constructs an array with a different shape from the argument array.
Syntax: result = RESHAPE (source, shape [, pad] [, order])
Class: Transformational function; Generic
Arguments:
 source Must be an array (of any data type). It supplies the elements for the result array.

Its size must be greater than or equal to PRODUCT(shape) if pad is omitted or
has size zero.

 shape Must be an integer array of up to 7 elements, with rank one and constant size. It
defines the shape of the result array. Its size must be positive; its elements must
not have negative values.

 pad (opt) Must be an array with the same type and kind parameters as source. It is used to
fill in extra values if the result array is larger than source.

 order (opt) Must be an integer array with the same shape as shape. Its elements must be a
permutation of (1,2,...,n), where n is the size of shape. If order is omitted, it is
assumed to be (1,2,...,n).

Results: The result is an array of shape shape with the same type and kind parameters as
source. The size of the result is the product of the values of the elements of
shape.
In the result array, the array elements of source are placed in the order of
dimensions specified by order. If order is omitted, the array elements are
placed in normal array element order.
9-125

9 Intel Fortran Language Reference
Examples

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 3/)) has the value .

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 4/), (/1, 1/), (/2, 1/)) has the value .

RNUM

Example

RNUM ("821.003") has the value 821.003 of type REAL(4)

RRSPACING

Example

If –3.0 is a REAL(4) value, RRSPACING (–3.0) has the value 0.75 x 224.

The array elements of source are followed (if necessary) by the array elements
of pad in array element order. If necessary, additional copies of pad follow until
all the elements of the result array have values.

Description: Converts a character string to a REAL(4) value.
Syntax: result = RNUM (i)
Class: Elemental function; Specific
Arguments: i must be of type character.
Results: The result type is REAL(4). The result value is the real value represented by the

character string i.

Description: Returns the reciprocal of the relative spacing of model numbers near the
argument value.

Syntax: result = RRSPACING (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x. The result has the value | x * b–e | x bp.

Parameters b, e, and p are defined in “Model for Real Data”.

3 5 7
4 6 8

3 4 5 6
7 8 1 1
9-126

Intrinsic Procedures 9

SCALE

Example

If 3.0 is a REAL(4) value, SCALE (3.0, 2) has the value 12.0 and SCALE (3.0, 3) has the value
24.0.

SCAN

Description: Returns the value of the exponent part (of the model for the argument) changed
by a specified value.

Syntax: result = SCALE (x, i)
Class: Elemental function; Generic
Arguments:
 x Must be of type real.
 i Must be of type integer.
Results: The result type is the same as x. The result has the value x x bi. Parameter b is

defined in “Model for Real Data”.

Description: Scans a string for any character in a set of characters.
Syntax: result = SCAN (string, set [, back] [, kind])
Class: Elemental function; Generic
Arguments:
 string Must be of type character.
 set Must be of type character with the same kind parameter as string.
 back (opt) Must be of type logical.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is of type integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
If back is omitted (or is present with the value false) and string has at least one
character that is in set, the value of the result is the position of the leftmost
character of string that is in set.
9-127

9 Intel Fortran Language Reference
Examples

SCAN ('ASTRING', 'ST') has the value 2.
SCAN ('ASTRING', 'ST', BACK=.TRUE.) has the value 3.
SCAN ('ASTRING', 'CD') has the value zero.

SECNDS

Example

The following shows how to use SECNDS to perform elapsed-time computations:
C START OF TIMED SEQUENCE

 T1 = SECNDS(0.0)

If back is present with the value true and string has at least one character that is
in set, the value of the result is the position of the rightmost character of string
that is in set.
If no character of string is in set or the length of string or set is zero, the value
of the result is zero.
The setting of compiler options specifying integer size can affect this function.

Description: Provides the system time of day, or elapsed time, as a floating-point value in
seconds. This is a specific function that has no generic function associated with
it. It cannot be passed as an actual argument.
SECNDS is not a pure function, so it cannot be referenced inside a FORALL
construct.

Syntax: result = SECNDS (x)
Class: Elemental function; Specific
Arguments: x must be of type REAL(4).
Results: The result type is the same as x. The result value is the time in seconds since

midnight – x. (The function also produces correct results for time intervals that
span midnight.)
The value of SECNDS is accurate to 0.01 second, which is the resolution of the
system clock.
The 24 bits of precision provide accuracy to the resolution of the system clock
for about one day. However, loss of significance can occur if you attempt to
compute very small elapsed times late in the day.
9-128

Intrinsic Procedures 9

C CODE TO BE TIMED

 ...

 DELTA = SECNDS(T1) ! DELTA gives the elapsed time

SELECTED_INT_KIND

Example

SELECTED_INT_KIND (6) = 4

SELECTED_REAL_KIND

Description: Returns the value of the kind parameter of an integer data type.
Syntax: result = SELECTED_INT_KIND (p)
Class: Transformational function; Generic
Arguments: p must be scalar and of type integer.
Results: The result is a scalar of type default integer. The result has a value equal to the

value of the kind parameter of the integer data type that represents all values n
in the range of values n with –10p < n < 10p.
If no such kind type parameter is available on the processor, the result is –1. If
more than one kind type parameter meets the criteria, the value returned is the
one with the smallest decimal exponent range. (For information on the integer
model, see “Model for Integer Data”.)

Description: Returns the value of the kind parameter of a real data type.
Syntax: result = SELECTED_REAL_KIND ([p] [, r])
Class: Transformational function; Generic
Arguments:
 p (opt) Must be scalar and of type integer.
 r (opt) Must be scalar and of type integer.
Results: The result is a scalar of type default integer. If both arguments are absent, the

result is zero. Otherwise, the result has a value equal to a value of the kind
parameter of a real data type with decimal precision, as returned by the function
PRECISION, of at least p digits and a decimal exponent range, as returned by
the function RANGE, of at least r.
9-129

9 Intel Fortran Language Reference
Example

 SELECTED_REAL_KIND (6, 70) = 8

SET_EXPONENT

Example

If 3.0 is a REAL(4) value, SET_EXPONENT (3.0, 1) has the value 1.5.

SHAPE

If no such kind type parameter is available on the processor, the result is as
follows:

-1 if the precision is not available

-2 if the exponent range is not available

-3 if neither is available

If more than one kind type parameter value meets the criteria, the value
returned is the one with the smallest decimal precision. (For information on the
real model, see “Model for Real Data”.)

Description: Returns the value of the exponent part (of the model for the argument) set to a
specified value.

Syntax: result = SET_EXPONENT (x, i)
Class: Elemental function; Generic
Arguments:
 x Must be of type real.
 i Must be of type integer.
Results: The result type is the same as x. The result has the value x x bi–e. Parameters b

and e are defined in “Model for Real Data”. If x has the value zero, the result is
zero.

Description: Returns the shape of an array or scalar argument.
Syntax: result = SHAPE (source [, kind])
Class: Inquiry function; Generic
9-130

Intrinsic Procedures 9
Example

SHAPE (2) has the value of a rank-one array of size zero.
If B is declared as B(2:4, –3:1), then SHAPE (B) has the value (3, 5).

SHIFTL

SHIFTR

Arguments:
 source Is a scalar or array (of any data type). It must not be an assumed-size array, a

disassociated pointer, or an allocatable array that is not allocated.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result is a rank-one integer array whose size is equal to the rank of source.

If kind is present, the kind parameter of the result is that specified by kind;
otherwise, the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result, the result is
undefined.
The value of the result is the shape of source.
The setting of compiler options specifying integer size can affect this function.

Description: Arithmetically shifts an integer left by a specified number of bits.
Syntax: result = SHIFTL (ivalue, ishift)
Class: Elemental function; Specific
Arguments:
 ivalue Must be of type INTEGER(4). This is the value to be shifted.
 ishift Must be of type INTEGER(4) and positive. This value is the number of

positions to shift.
Results: The result type is INTEGER(4). The result is the value of ivalue shifted left by

ishift bit positions. Bits shifted off the left end are lost; zeros are shifted in from
the opposite end.
SHIFTL (i, j) is the same as ISHA (i, j).

Description: Arithmetically shifts an integer right by a specified number of bits.
Syntax: result = SHIFTR (ivalue, ishift)
9-131

9 Intel Fortran Language Reference
SIGN

Class: Elemental function; Specific
Arguments:
 ivalue Must be of type INTEGER(4). This is the value to be shifted.
 ishift Must be of type INTEGER(4) and positive. This value is the number of

positions to shift.
Results: The result type is INTEGER(4). The result is the value of ivalue shifted right

by ishift bit positions. Bits shifted off the right end are lost; zeros are shifted in
from the opposite end.
SHIFTR (i, j) is the same as ISHA (i, –j).

Description: Returns the absolute value of a times the sign of b.
Syntax: result = SIGN (a, b)
Class: Elemental function; Generic
Arguments:
 a Must be of type integer or real.
 b Must have the same type and kind parameters as a.
Results: The result type is the same as a. The value of the result is | a | if and

–| a | if b < zero.
If b is of type real and zero, the value of the result is | a |. However, if the
processor can distinguish between positive and negative real zero and the
appropriate compiler option is specified, the following occurs:
• If b is positive real zero, the value of the result is | a |.
• If b is negative real zero, the value of the result is –| a |.

Specific Name Argument Type Result Type

BSIGN INTEGER(1) INTEGER(1)

IISIGN1 INTEGER(2) INTEGER(2)

ISIGN2 INTEGER(4) INTEGER(4)

KISIGN INTEGER(8) INTEGER(8)

SIGN REAL(4) REAL(4)

DSIGN REAL(8) REAL(8)

b zero≥
9-132

Intrinsic Procedures 9
Examples

SIGN (4.0, –6.0) has the value –4.0.
SIGN (–5.0, 2.0) has the value 5.0.

SIN

Examples

SIN (2.0) has the value 0.9092974.
SIN (0.8) has the value 0.7173561.

QSIGN REAL(16) REAL(16)

1. Or HSIGN.

2. Or JISIGN. For compatibility with older versions of Fortran, ISIGN can also be specified as a generic function.

Description: Produces the sine of x.
Syntax: result = SIN (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex. It must be in radians and is treated as modulo

2* .
If x is of type complex, its real part is regarded as a value in radians.

Results: The result type is the same as x.

Specific Name Argument Type Result Type

SIN REAL(4) REAL(4)

DSIN REAL(8) REAL(8)

QSIN REAL(16) REAL(16)

CSIN1

1. The setting of compiler options specifying real size can affect CSIN.

COMPLEX(4) COMPLEX(4)

CDSIN2

2. This function can also be specified as ZSIN.

COMPLEX(8) COMPLEX(8)

CQSIN COMPLEX(16) COMPLEX(16)

Specific Name Argument Type Result Type

π

9-133

9 Intel Fortran Language Reference
SIND

Examples

SIND (2.0) has the value 3.4899496E–02.
SIND (0.8) has the value 1.3962180E–02.

SINH

Examples

SINH (2.0) has the value 3.626860.
SINH (0.8) has the value 0.8881060.

Description: Produces the sine of x.
Syntax: result = SIND (x)
Class: Elemental function; Generic
Arguments: x must be of type real. It must be in degrees and is treated as modulo 360.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

SIND REAL(4) REAL(4)

DSIND REAL(8) REAL(8)

QSIND REAL(16) REAL(16)

Description: Produces a hyperbolic sine.
Syntax: result = SINH (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

SINH REAL(4) REAL(4)

DSINH REAL(8) REAL(8)

QSINH REAL(16) REAL(16)
9-134

Intrinsic Procedures 9

SIZE

Example

If B is declared as B(2:4, –3:1), then SIZE (B, DIM=2) has the value 5 and SIZE (B) has the value
15.

SIZEOF

Description: Returns the total number of elements in an array, or the extent of an array along
a specified dimension.

Syntax: result = SIZE (array [, dim] [, kind])
Class: Inquiry function; Generic
Arguments:
 array Must be an array (of any data type). It must not be a disassociated pointer or an

allocatable array that is not allocated. It can be an assumed-size array if dim is
present with a value less than the rank of array.

 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of
array.

 kind (opt) Must be a scalar integer initialization expression.
Results: The result is a scalar of type integer. If kind is present, the kind parameter of the

result is that specified by kind; otherwise, the kind parameter of the result is
that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.
If dim is present, the result is the extent of dimension dim in array; otherwise,
the result is the total number of elements in array.
The setting of compiler options specifying integer size can affect this function.

Description: Returns the number of bytes of storage used by the argument. It cannot be
passed as an actual argument.

Syntax: result = SIZEOF (x)
Class: Inquiry function; Generic
Arguments: x is a scalar or array (of any data type). It must not be an assumed-size array.
Results: The result type is INTEGER(4) on IA-32 processors; INTEGER(8) on Intel

Itanium processors. The result value is the number of bytes of storage used by
x.
9-135

9 Intel Fortran Language Reference
Examples

SIZEOF (3.44) has the value 4.
SIZEOF ('SIZE') has the value 4.

SPACING

Example

If 3.0 is a REAL(4) value, SPACING (3.0) has the value 2–22.

SPREAD

Description: Returns the absolute spacing of model numbers near the argument value.
Syntax: result = SPACING (x)
Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x. The result has the value be–p. Parameters b, e,

and p are defined in “Model for Real Data”.
If the result value is outside of the real model range, the result is TINY(X). (For
information on TINY, see “TINY”.)

Description: Creates a replicated array with an added dimension by making copies of
existing elements along a specified dimension.

Syntax: result = SPREAD (source, dim, ncopies)
Class: Transformational function; Generic
Arguments:
 source Must be a scalar or array (of any data type). The rank must be less than 7.
 dim Must be scalar and of type integer. It must have a value in the range 1 to n + 1

(inclusive), where n is the rank of source.
 ncopies Must be scalar and of type integer. It becomes the extent of the additional

dimension in the result.
Results: The result is an array of the same type as source and of rank that is one greater

than source.
If source is an array, each array element in dimension dim of the result is equal
to the corresponding array element in source.
9-136

Intrinsic Procedures 9
Examples

SPREAD ("B", 1, 4) is the character array (/"B", "B", "B", "B"/).
B is the array (3, 4, 5) and NC has the value 4.

SPREAD (B, DIM=1, NCOPIES=NC) produces the array .

SPREAD (B, DIM=2, NCOPIES=NC) produces the array .

SQRT

If source is a scalar, the result is a rank-one array with ncopies elements, each
with the value source.
If ncopies zero, the result is an array of size zero.

Description: Produces the square root of the argument.
Syntax: result = SQRT (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex. If x is type real, its value must be greater than

or equal to zero.
Results: The result type is the same as x. The result has a value equal to the square root

of x. A result of type complex is the principal value, with the real part greater
than or equal to zero. When the real part of the result is zero, the imaginary part
is greater than or equal to zero.

Specific Name Argument Type Result Type

SQRT REAL(4) REAL(4)

DSQRT REAL(8) REAL(8)

QSQRT REAL(16) REAL(16)

CSQRT1 COMPLEX(4) COMPLEX(4)

CDSQRT2 COMPLEX(8) COMPLEX(8)

 ≤

3 4 5
3 4 5
3 4 5
3 4 5

3 3 3 3
4 4 4 4
5 5 5 5
9-137

9 Intel Fortran Language Reference
Examples

SQRT (16.0) has the value 4.0.
SQRT (3.0) has the value 1.732051.

SUM

CQSQRT COMPLEX(16) COMPLEX(16)

1. The setting of compiler options specifying real size can affect CSQRT.

2. This function can also be specified as ZSQRT.

Description: Returns the sum of all the elements in an entire array or in a specified
dimension of an array.

Syntax: result = SUM (array [, dim] [, mask])
Class: Transformational function; Generic
Arguments:
 array Must be an array of type integer, real, or complex.
 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank of

array.
 mask (opt) Must be of type logical and conformable with array.
Results: The result is an array or a scalar of the same type as array.

The result is a scalar if dim is omitted or array has rank one.
The following rules apply if dim is omitted:
• If SUM (array) is specified, the result is the sum of all elements of array. If

array has size zero, the result is zero.
• If SUM (array, MASK=mask) is specified, the result is the sum of all

elements of array corresponding to true elements of mask. If array has size
zero, or every element of mask has the value .FALSE., the result is zero.

Specific Name Argument Type Result Type
9-138

Intrinsic Procedures 9
Examples

SUM ((/2, 3, 4/)) returns the value 9 (sum of 2 + 3 + 4). SUM ((/2, 3, 4/), DIM=1) returns the same
result.
SUM (B, MASK=B .LT. 0.0) returns the arithmetic sum of the negative elements of B.

C is the array .

SUM (C, DIM=1) returns the value (5, 7, 9), which is the sum of all elements in each column. 5 is
the sum of 1 + 4 in column 1. 7 is the sum of 2 + 5 in column 2, and so forth. SUM (C, DIM=2)
returns the value (6, 15), which is the sum of all elements in each row. 6 is the sum of 1 + 2 + 3 in
row 1. 15 is the sum of 4 + 5 + 6 in row 2.

SYSTEM_CLOCK

The following rules apply if dim is specified:
• If array has rank one, the value is the same as SUM (array

[,MASK=mask]).
• An array result has a rank that is one less than array, and shape (d1, d2, ...,

dDIM–1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is the shape of array.
• The value of element (s1, s2, ..., sDIM–1, sDIM+1, ..., sn) of SUM (array, dim

[,mask]) is equal to SUM (array (s1, s2, ..., sDIM–1, :, sDIM+1 ..., sn) [,MASK
= mask (s1, s2, ..., sDIM–1, :, sDIM+1, ..., sn)].

Description: Returns integer data from a real-time clock.
SYSTEM_CLOCK returns the number of seconds from 00:00 Coordinated
Universal Time (CUT) on 1 JAN 1970. The number is returned with no bias.
To get the elapsed time, you must call SYSTEM_CLOCK twice, and subtract
the starting time value from the ending time value.

Syntax: CALL SYSTEM_CLOCK ([count] [, count_rate] [, count_max])
Class: Subroutine
Arguments: There are three optional arguments:1
 count (opt) Must be scalar and of type integer. It is set to a value based on the current

value of the processor clock. The value is increased by one for each clock
count until the value count_max is reached, and is reset to zero at the next
count. (count lies in the range 0 to count_max.)

1 2 3
4 5 6
9-139

9 Intel Fortran Language Reference
All arguments used must have the same integer kind parameter.

Example

Consider the following:
 integer(2) :: ic2, crate2, cmax2

 integer(4) :: ic4, crate4, cmax4

 call system_clock(count=ic2, count_rate=crate2, count_max=cmax2)

 call system_clock(count=ic4, count_rate=crate4, count_max=cmax4)

 print *, ic2, crate2, cmax2

 print *, ic4, crate4, cmax4

 end

This program was run on Thursday Dec 11, 1997 at 14:23:55 EST and produced the following
output:
 13880 1000 32767

 1129498807 10000 2147483647

TAN

 count_rate (opt) Must be scalar and of type integer. It is set to the number of processor clock
counts per second.
If the type is INTEGER(2), count_rate is 1000. If the type is INTEGER(4),
count_rate is 10000. If the type is INTEGER(8), count_rate is 1000000.

 count_max (opt) Must be scalar and of type integer. It is set to the maximum value that count
can have, HUGE(0). For more information on HUGE, see “HUGE”.

1. All are INTENT(OUT) arguments. (See “INTENT Attribute and Statement”.)

Description: Produces the tangent of x.
Syntax: result = TAN (x)
Class: Elemental function; Generic
Arguments: x must be of type real or complex. It must be in radians and is treated as modulo

2 * .
If x is of type complex, its real part is regarded as a value in radians.

Results: The result type is the same as x.

Specific Name Argument Type Result Type

TAN REAL(4) REAL(4)

π

9-140

Intrinsic Procedures 9
Examples

TAN (2.0) has the value –2.185040.
TAN (0.8) has the value 1.029639.

TAND

Examples

TAND (2.0) has the value 3.4920771E–02.
TAND (0.8) has the value 1.3963542E–02.

TANH

DTAN REAL(8) REAL(8)

QTAN REAL(16) REAL(16)

CTAN1 COMPLEX(4) COMPLEX(4)

CDTAN2 COMPLEX(8) COMPLEX(8)

CQTAN COMPLEX(16) COMPLEX(16)

1. The setting of compiler options specifying real size can affect CTAN.

2. This function can also be specified as ZTAN.

Description: Produces the tangent of x.
Syntax: result = TAND (x)
Class: Elemental function; Generic
Arguments: x must be of type real. It must be in degrees and is treated as modulo 360.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

TAND REAL(4) REAL(4)

DTAND REAL(8) REAL(8)

QTAND REAL(16) REAL(16)

Description: Produces a hyperbolic tangent.
Syntax: result = TANH (x)

Specific Name Argument Type Result Type
9-141

9 Intel Fortran Language Reference
Examples

TANH (2.0) has the value 0.9640276.
TANH (0.8) has the value 0.6640368.

TIME

The date is returned as an 8-byte ASCII character string taking the form hh:mm:ss, where:

If buf is of numeric type and smaller than 8 bytes, data corruption can occur.
If buf is of character type, its associated length is passed to the subroutine. If buf is smaller than 8
bytes, the subroutine truncates the date to fit in the specified length. If a CHARACTER array is
passed, the subroutine stores the date in the first array element, using the element length, not the
length of the entire array.

Examples

An example of a value returned from a call to TIME is 13:45:23 (a 24-hour clock is used).
Consider the following:

Class: Elemental function; Generic
Arguments: x must be of type real.
Results: The result type is the same as x.

Specific Name Argument Type Result Type

TANH REAL(4) REAL(4)

DTANH REAL(8) REAL(8)

QTANH REAL(16) REAL(16)

Description: Returns the current time as set within the system.
Syntax: CALL TIME (buf)
Class: Subroutine
Arguments: buf is an 8-byte variable, array, array element, or character substring.

hh is the 2-digit hour

mm is the 2-digit minute

ss is the 2-digit second
9-142

Intrinsic Procedures 9

CHARACTER*1 HOUR(8)

...

CALL TIME (HOUR)

The length of the first array element in CHARACTER array HOUR is passed to the TIME
subroutine. The subroutine then truncates the time to fit into the 1-character element, producing an
incorrect result.

TINY

Example

If X is of type REAL(4), TINY (X) has the value 2–126.

TRAILZ

Example

Consider the following:

Description: Returns the smallest number in the model representing the same type and kind
parameters as the argument.

Syntax: result = TINY (x)
Class: Inquiry function; Generic
Arguments: x must be of type real; it can be scalar or array valued.
Results: The result is a scalar with the same type and kind parameters as x. The result

has the value bemin–1. Parameters b and emin are defined in “Model for Real
Data”.

Description: Returns the number of trailing zero bits in an integer.
Syntax: result = TRAILZ (i)
Class: Elemental function; Generic
Arguments: i must be of type integer or logical.
Results: The result type is the same as i. The result value is the number of trailing zeros

in the binary representation of the integer i.
The model for the interpretation of an integer value as a sequence of bits is
shown in “Model for Bit Data”.
9-143

9 Intel Fortran Language Reference
 INTEGER*8 J, TWO

 PARAMETER (TWO=2)

 DO J= -1, 40

 TYPE *, TRAILZ(TWO**J) ! Prints 64, then 0 up to

 ENDDO ! 40 (trailing zeros)

 END

TRANSFER

Examples

TRANSFER (1082130432, 0.0) has the value 4.0 (on processors that represent the values 4.0 and
1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000).
TRANSFER ((/2.2, 3.3, 4.4/), ((0.0, 0.0))) results in a scalar whose value is (2.2, 3.3).

Description: Converts the bit pattern of source according to the type and kind parameters of
mold.

Syntax: result = TRANSFER (source, mold [, size])
Class: Transformational function; Generic
Arguments:
 source Must be a scalar or array (of any data type).
 mold Must be a scalar or array (of any data type). It provides the type characteristics

(not a value) for the result.
 size (opt) Must be scalar and of type integer. It provides the number of elements for the

output result.
Results: The result has the same type and type parameters as mold.

If mold is a scalar and size is omitted, the result is a scalar.
If mold is an array and size is omitted, the result is a rank-one array. Its size is
the smallest that is possible to hold all of source.
If size is present, the result is a rank-one array of size size.
If the physical representation of the result is larger than source, the result
contains source’s bit pattern in its right-most bits; the left-most bits of the result
are undefined.
If the physical representation of the result is smaller than source, the result
contains the right-most bits of source’s bit pattern.
9-144

Intrinsic Procedures 9

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/)) results in a complex rank-one array of length 2. Its
first element is (2.2,3.3) and its second element has a real part with the value 4.4 and an undefined
imaginary part.
TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/), 1) results in a complex rank-one array having one
element with the value (2.2, 3.3).

TRANSPOSE

Examples

B is the array . TRANSPOSE (B) has the value .

TRIM

Examples

TRIM (' NAME ') has the value ' NAME'.

Description: Transposes an array of rank two.
Syntax: result = TRANSPOSE (matrix)
Class: Transformational function; Generic
Arguments: matrix must be a rank-two array (of any data type).
Results: The result is a rank-two array with the same type and kind parameters as

matrix. Its shape is (n, m), where (m, n) is the shape of matrix. For example, if
the shape of matrix is (4,6), the shape of the result is (6,4).
Element (i, j) of the result has the value matrix (j, i), where i is in the range 1 to
n, and j is in the range 1 to m.

Description: Returns the argument with trailing blanks removed.
Syntax: result = TRIM (string)
Class: Transformational function; Generic
Arguments: string must be a scalar of type character.
Results: The result type is character with the same kind parameter as string. Its length is

the length of string minus the number of trailing blanks in string.
The value of the result is the same as string, except any trailing blanks are
removed. If string contains only blank characters, the result has zero length.

2 3 4
5 6 7
8 9 1

2 5 8
3 6 9
4 7 1

∆∆ ∆∆∆∆ ∆∆
9-145

9 Intel Fortran Language Reference
TRIM (' C D ') has the value ' C D'.

UBOUND

Examples

Consider the following:
 REAL ARRAY_A (1:3, 5:8)

 REAL ARRAY_B (2:8, -3:20)

Description: Returns the upper bounds for all dimensions of an array, or the upper bound
for a specified dimension.

Syntax: result = UBOUND (array [, dim] [, kind])
Class: Inquiry function; Generic
Arguments:
 array Must be an array (of any data type). It must not be an allocatable array that is

not allocated, or a disassociated pointer. It can be an assumed-size array if
dim is present with a value less than the rank of array.

 dim (opt) Must be a scalar integer with a value in the range 1 to n, where n is the rank
of array.

 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind
of the result, the result is undefined.
If dim is present, the result is a scalar. Otherwise, the result is a rank-one
array with one element for each dimension of array. Each element in the
result corresponds to a dimension of array.
If array is an array section or an array expression that is not a whole array or
array structure component, UBOUND (array, dim) has a value equal to the
number of elements in the given dimension.
If array is a whole array or array structure component, UBOUND (array,
dim) has a value equal to the upper bound for subscript dim of array, if dim is
nonzero. If dim has size zero, the corresponding element of the result has the
value zero.
The setting of compiler options specifying integer size can affect this
function.

∆∆ ∆∆ ∆∆∆∆∆ ∆∆ ∆∆
9-146

Intrinsic Procedures 9

UBOUND (ARRAY_A) is (3, 8). UBOUND (ARRAY_A, DIM=2) is 8.
UBOUND (ARRAY_B) is (8, 20). UBOUND (ARRAY_B (5:8, :)) is (4,24) because the number
of elements is significant for array section arguments.

UNPACK

Examples

N is the array , P is the array (2, 3, 4, 5), and Q is the array .

UNPACK (P, MASK=Q, FIELD=N) produces the result .

UNPACK (P, MASK=Q, FIELD=1) produces the result .

Description: Takes elements from a rank-one array and unpacks them into another (possibly
larger) array under the control of a mask.

Syntax: result = UNPACK (vector, mask, field)
Class: Transformational function; Generic
Arguments:
 vector Must be a rank-one array (of any data type). Its size must be at least t, where t is

the number of true elements in mask.
 mask Must be a logical array. It determines where elements of vector are placed when

they are unpacked.
 field Must be of the same type and type parameters as vector and conformable with

mask. Elements in field are inserted into the result array when the
corresponding mask element has the value false.

Results: The result is an array with the same shape as mask, and the same type and type
parameters as vector.
Elements in the result array are filled in array element order. If element i of
mask is true, the corresponding element of the result is filled by the next
element in vector. Otherwise, it is filled by field (if field is scalar) or the ith
element of field (if field is an array).

0 0 1
1 0 1
1 0 0

T F F

F T F

T T F2 0 1
1 4 1
3 5 0

2 1 1
1 4 1
3 5 1
9-147

9 Intel Fortran Language Reference
VERIFY

Examples

VERIFY ('CDDDC', 'C') has the value 2.
VERIFY ('CDDDC', 'C', BACK=.TRUE.) has the value 4.
VERIFY ('CDDDC', 'CD') has the value zero.

ZEXT

Description: Verifies that a set of characters contains all the characters in a string by
identifying the first character in the string that is not in the set.

Syntax: result = VERIFY (string, set [, back] [, kind])
Class: Elemental function; Generic
Arguments:
 string Must be of type character.
 set Must be of type character with the same kind parameter as string.
 back (opt) Must be of type logical.
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
If back is omitted (or is present with the value false) and string has at least one
character that is not in set, the value of the result is the position of the leftmost
character of string that is not in set.
If back is present with the value true and string has at least one character that is
not in set, the value of the result is the position of the rightmost character of
string that is not in set.
If each character of string is in set or the length of string is zero, the value of
the result is zero.
The setting of compiler options specifying integer size can affect this function.

Description: Extends an argument with zeros. This function is used primarily for
bit-oriented operations. It cannot be passed as an actual argument.
9-148

Intrinsic Procedures 9

Syntax: result = ZEXT (x [, kind])
Class: Elemental function; Generic
Arguments: Must be of type logical or integer.
 x
 kind (opt) Must be a scalar integer initialization expression.
Results: The result type is integer. If kind is present, the kind parameter of the result is

that specified by kind; otherwise, the kind parameter of the result is that of
default integer. If the processor cannot represent the result value in the kind of
the result, the result is undefined.
The result value is x extended with zeros and treated as an unsigned value.
The storage requirements for integer constants are never less than two bytes.
Integer constants within the range of constants that can be represented by a
single byte still require two bytes of storage.
The setting of compiler options specifying integer size can affect this function.

Specific Name 1 Argument Type Result Type

IZEXT LOGICAL(1) INTEGER(2)

LOGICAL(2) INTEGER(2)

INTEGER(1) INTEGER(2)

INTEGER(2) INTEGER(2)

JZEXT LOGICAL(1) INTEGER(4)

LOGICAL(2) INTEGER(4)

LOGICAL(4) INTEGER(4)

INTEGER(1) INTEGER(4)

INTEGER(2) INTEGER(4)

INTEGER(4) INTEGER(4)

KZEXT LOGICAL(1) INTEGER(8)

LOGICAL(2) INTEGER(8)

LOGICAL(4) INTEGER(8)

LOGICAL(8) INTEGER(8)

INTEGER(1) INTEGER(8)

INTEGER(2) INTEGER(8)

INTEGER(4) INTEGER(8)
9-149

9 Intel Fortran Language Reference
Examples

Consider the following:
INTEGER(2) W_VAR /'FFFF'X/

INTEGER(4) L_VAR

L_VAR = ZEXT(W_VAR)

This example stores an INTEGER(2) quantity in the low-order 16 bits of an INTEGER(4)
quantity, with the resulting value of L_VAR being '0000FFFF'X. If the ZEXT function had not
been used, the resulting value would have been 'FFFFFFFF'X, because W_VAR would have been
converted to the left-hand operand’s data type by sign extension.

INTEGER(8) INTEGER(8)

1. These specific functions cannot be passed as actual arguments.

Specific Name 1 Argument Type Result Type
9-150

Data Transfer I/O
Statements
 10
Input/Output (I/O) statements can be used for data transfer, file connection, file inquiry, and file
positioning.
This chapter discusses data transfer and contains information on the following topics:
• An overview of “Records and Files”
• “Components of Data Transfer Statements”
• Data transfer input statements:

— “READ Statements”
— “ACCEPT Statement”

• Data transfer output statements:
— “WRITE Statements”
— “PRINT and TYPE Statements”1

— “REWRITE Statement”
File connection, file inquiry, and file positioning I/O statements are discussed in Chapter 12, “File
Operation I/O Statements”.

Records and Files
A record is a sequence of values or a sequence of characters. There are three kinds of Fortran
records, as follows:
• Formatted

A record containing formatted data that requires translation from internal to external form.
Formatted I/O statements have explicit format specifiers (which can specify list-directed
formatting) or namelist specifiers (for namelist formatting). Only formatted I/O statements
can read formatted data.

1. TYPE statements are language extensions.
10-1

10 Intel Fortran Language Reference
• Unformatted
A record containing unformatted data that is not translated from internal form. An
unformatted record can also contain no data. The internal representation of unformatted data
is processor-dependent. Only unformatted I/O statements can read unformatted data.

• Endfile
The last record of a file. An endfile record can be explicitly written to a sequential file by an
ENDFILE statement (see “ENDFILE Statement”).

A file is a sequence of records. There are two types of Fortran files, as follows:
• External

A file that exists in a medium (such as computer disks) external to the executable program.
Records in an external file must be either all formatted or all unformatted. There are two ways
to access records in external files: sequential and direct access.
In sequential access, records are processed in the order in which they appear in the file. In
direct access, records are selected by record number, so they can be processed in any order.

• Internal
Memory (internal storage) that behaves like a file. This type of file provides a way to transfer
and convert data in memory from one format to another. The contents of these files are stored
as scalar character variables.

See Also

Your user’s guide for details on formatted and unformatted data transfers and external file access
methods

Components of Data Transfer Statements
Data transfer statements take one of the following forms:

io-keyword (io-control-list) [io-list]
io-keyword format [, io-list]

io-keyword
Is one of the following: ACCEPT, PRINT (or TYPE), READ, REWRITE, or WRITE.
io-control-list
Is one or more of the following input/output (I/O) control specifiers:

[UNIT=]io-unit [NML=]group END ERR REC
[FMT=]format ADVANCE EOR IOSTAT SIZE
10-2

Data Transfer I/O Statements 10

io-list
Is an I/O list, which can contain variables (except for assumed-size arrays) or implied-DO lists.
Output statements can contain constants or expressions.
format
Is the nonkeyword form of a control-list format specifier (no FMT=).
If a format specifier ([FMT=]format) or namelist specifier ([NML=]group) is present, the data
transfer statement is called a formatted I/O statement; otherwise, it is an unformatted I/O
statement.
If a record specifier (REC) is present, the data transfer statement is a direct-access I/O statement;
otherwise, it is a sequential-access I/O statement.
If an error, end-of-record, or end-of-file condition occurs during data transfer, file positioning and
execution are affected, and certain control-list specifiers (if present) become defined. (For more
information, see “Branch Specifiers”.)
The following sections discuss the “I/O Control List” and “I/O Lists”.

I/O Control List

The I/O control list specifies one or more of the following:
• The I/O unit to act upon ([UNIT=]io-unit)

This specifier must be present; the rest are optional.
• The format (explicit or list-directed) to use for data editing; if explicit, the keyword form must

appear ([FMT=]format)
• The namelist group name to act upon ([NML=]group)
• The number of a record to access (REC)
• The name of a variable that contains the completion status of an I/O operation (IOSTAT)
• The label of the statement that receives control if an error (ERR), end-of-file (END), or

end-of-record (EOR) condition occurs
• Whether you want to use advancing or nonadvancing I/O (ADVANCE)
• The number of characters read from a record (SIZE) by a nonadvancing READ statement
No control specifier can appear more than once, and the list must not contain both a format
specifier and namelist group name specifier.
Control specifiers can take any of the following forms:
• Keyword form
• When the keyword form (for example, UNIT=io-unit) is used for all control-list specifiers in

an I/O statement, the specifiers can appear in any order.
10-3

10 Intel Fortran Language Reference
• Nonkeyword form
When the nonkeyword form (for example, io-unit) is used for all control-list specifiers in an
I/O statement, the io-unit specifier must be the first item in the control list. If a format
specifier or namelist group name specifier is used, it must immediately follow the io-unit
specifier.

• Mixed form
When a mix of keyword and nonkeyword forms is used for control-list specifiers in an I/O
statement, the nonkeyword values must appear first. Once a keyword form of a specifier is
used, all specifiers to the right must also be keyword forms.

The following sections describe the control-list specifiers in detail.

Unit Specifier

The unit specifier identifies the I/O unit to be accessed. It takes the following form:
[UNIT=]io-unit

io-unit
For external files, it identifies a logical unit and is one of the following:
• A scalar integer expression that refers to a specific file, I/O device, or pipe. If necessary, the

value is converted to integer data type before use. The integer is in the range 0 through
2**31–1.
Units 5, 6, and 0 are associated with preconnected units.

• An asterisk (*). This is the default (or implicit) external unit, which is preconnected for
formatted sequential access.

For internal files, io-unit identifies a scalar or array character variable that is an internal file. An
internal file is designated internal storage space (a variable buffer) that is used with formatted
(including list-directed) sequential READ and WRITE statements.
The io-unit must be specified in a control list. If the keyword UNIT is omitted, the io-unit must be
first in the control list.
A unit number is assigned either explicitly through an OPEN statement or implicitly by the
system. If a READ statement implicitly opens a file, the file’s status is STATUS='OLD'. If a
WRITE statement implicitly opens a file, the file’s status is STATUS='UNKNOWN'.
If the internal file is a scalar character variable, the file has only one record; its length is equal to
that of the variable.
If the internal file is an array character variable, the file has a record for each element in the array;
each record’s length is equal to one array element.
10-4

Data Transfer I/O Statements 10

An internal file can be read only if the variable has been defined and a value assigned to each
record in the file. If the variable representing the internal file is a pointer, it must be associated; if
the variable is an allocatable array, it must be currently allocated.
Before data transfer, an internal file is always positioned at the beginning of the first character of
the first record.

See Also
• “OPEN Statement”
• Your user’s guide for details on implicit logical assignments, preconnected units, and using

internal files

Format Specifier

The format specifier indicates the format to use for data editing. It takes the following form:
[FMT=]format

format
Is one of the following:
• The statement label of a FORMAT statement

The FORMAT statement must be in the same scoping unit as the data transfer statement.
• An asterisk (*), indicating list-directed formatting
• A scalar default integer variable that has been assigned the label of a FORMAT statement

(through an ASSIGN statement)
The FORMAT statement must be in the same scoping unit as the data transfer statement.

• A character expression (which can be an array or character constant) containing the run-time
format
A default character expression must evaluate to a valid format specification. If the expression
is an array, it is treated as if all the elements of the array were specified in array element order
and were concatenated.

• The name of a numeric array (or array element) containing the format
If the keyword FMT is omitted, the format specifier must be the second specifier in the control
list; the io-unit specifier must be first.
If a format specifier appears in a control list, a namelist group specifier must not appear.

See Also
• “Interaction Between Format Specifications and I/O Lists”
• “Format Specifications” for details on FORMAT statements
• “Rules for List-Directed Sequential READ Statements” for details on list-directed input
10-5

10 Intel Fortran Language Reference
• “Rules for List-Directed Sequential WRITE Statements” for details on list-directed output

Namelist Specifier

The namelist specifier indicates namelist formatting and identifies the namelist group for data
transfer. It takes the following form:

[NML=]group
group
Is the name of a namelist group previously declared in a NAMELIST statement.
If the keyword NML is omitted, the namelist specifier must be the second specifier in the control
list; the io-unit specifier must be first.
If a namelist specifier appears in a control list, a format specifier must not appear.

See Also
• “Rules for Namelist Sequential READ Statements” for details on namelist input
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output

Record Specifier

The record specifier identifies the number of the record for data transfer in a file connected for
direct access. It takes the following form:

REC=r
r
Is a scalar numeric expression indicating the record number. The value of the expression must be
greater than or equal to 1, and less than or equal to the maximum number of records allowed in the
file.
If necessary, the value is converted to integer data type before use.
If REC is present, no END specifier, * format specifier, or namelist group name can appear in the
same control list.

See Also

“Alternative Syntax for a Record Specifier”

I/O Status Specifier

The I/O status specifier designates a variable to store a value indicating the status of a data transfer
operation. It takes the following form:

IOSTAT=i-var
10-6

Data Transfer I/O Statements 10

i-var
Is a scalar integer variable. When a data transfer statement is executed, i-var is set to one of the
following values:

Execution continues with the statement following the data transfer statement, or the statement
identified by a branch specifier (if any).
An end-of-file condition occurs only during execution of a sequential READ statement; an
end-of-record condition occurs only during execution of a nonadvancing READ statement.

See Also

Your user’s guide for details on the error numbers returned by IOSTAT

Branch Specifiers

A branch specifier identifies a branch target statement that receives control if an error, end-of-file,
or end-of-record condition occurs. There are three branch specifiers, taking the following forms:

ERR=label
END=label
EOR=label

label
Is the label of the branch target statement that receives control when the specified condition
occurs.
The branch target statement must be in the same scoping unit as the data transfer statement.
The following rules apply to these specifiers:
• ERR

The error specifier can appear in a sequential access READ or WRITE statement, a
direct-access READ statement, or a REWRITE statement.
If an error condition occurs, the position of the file is indeterminate, and execution of the
statement terminates.
If IOSTAT was specified, the IOSTAT variable becomes defined as a positive integer value. If
SIZE was specified (in a nonadvancing READ statement), the SIZE variable becomes defined
as an integer value. If an ERR=label was specified, execution continues with the labeled
statement.

A positive integer Indicating an error condition occurred.

A negative integer Indicating an end-of-file or end-of-record condition occurred. The
negative integers differ depending on which condition occurred.

Zero Indicating no error, end-of-file, or end-of-record condition occurred.
10-7

10 Intel Fortran Language Reference
• END
The end-of-file specifier can appear only in a sequential access READ statement.
An end-of-file condition occurs when no more records exist in a file during a sequential read,
or when an end-of-file record produced by the ENDFILE statement is encountered.
End-of-file conditions do not occur in direct-access READ statements.
If an end-of-file condition occurs, the file is positioned after the end-of-file record, and
execution of the statement terminates.
If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If an END=label was specified, execution continues with the labeled statement.

• EOR
The end-of-record specifier can appear only in a formatted, sequential access READ
statement that has the specifier ADVANCE='NO'(nonadvancing input).
An end-of-record condition occurs when a nonadvancing READ statement tries to transfer
data from a position after the end of a record.
If an end-of-record condition occurs, the file is positioned after the current record, and
execution of the statement terminates.
If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If PAD='YES' was specified for file connection, the record is padded with blanks (as
necessary) to satisfy the input item list and the corresponding data edit descriptor. If SIZE was
specified, the SIZE variable becomes defined as an integer value. If an EOR=label was
specified, execution continues with the labeled statement.

If one of the conditions occurs, no branch specifier appears in the control list, but an IOSTAT
specifier appears, execution continues with the statement following the I/O statement. If neither a
branch specifier nor an IOSTAT specifier appears, the program terminates.

See Also
• “Branch Statements” for details on branch target statements
• “I/O Status Specifier” for details on the IOSTAT specifier
• Your user’s guide for details on error processing

Advance Specifier

The advance specifier determines whether nonadvancing I/O occurs for a data transfer statement.
It takes the following form:

ADVANCE=c-expr
c-expr
Is a scalar character expression that evaluates to 'YES' for advancing I/O or 'NO' for nonadvancing
I/O. The default value is 'YES'.
10-8

Data Transfer I/O Statements 10

Trailing blanks in the expression are ignored.
The ADVANCE specifier can appear only in a formatted, sequential data transfer statement that
specifies an external unit. It must not be specified for list-directed or namelist data transfer.
Advancing I/O always positions a file at the end of a record, unless an error condition occurs.
Nonadvancing I/O can position a file at a character position within the current record.

See Also

Your user’s guide for details on advancing and nonadvancing I/O

Character Count Specifier

The character count specifier defines a variable to contain the count of how many characters are
read when a nonadvancing READ statement terminates. It takes the following form:

SIZE=i-var
i-var
Is a scalar integer variable.
If PAD='YES' was specified for file connection, blanks inserted as padding are not counted.
The SIZE specifier can appear only in a formatted, sequential READ statement that has the
specifier ADVANCE='NO' (nonadvancing input). It must not be specified for list-directed or
namelist data transfer.

I/O Lists

In a data transfer statement, the I/O list specifies the entities whose values will be transferred. The
I/O list is either an implied-DO list or a simple list of variables (except for assumed-size arrays).
In input statements, the I/O list cannot contain constants and expressions because these do not
specify named memory locations that can be referenced later in the program.
However, constants and expressions can appear in the I/O lists for output statements because the
compiler can use temporary memory locations to hold these values during the execution of the I/O
statement.
If an input item is a pointer, it must be currently associated with a definable target; data is
transferred from the file to the associated target. If an output item is a pointer, it must be currently
associated with a target; data is transferred from the target to the file.
If an input or output item is an array, it is treated as if the elements (if any) were specified in array
element order. For example, if ARRAY_A is an array of shape (2,1), the following input
statements are equivalent:
10-9

10 Intel Fortran Language Reference
READ *, ARRAY_A

READ *, ARRAY_A(1,1), ARRAY_A(2,1)

However, no element of that array can affect the value of any expression in the input list, nor can
any element appear more than once in an input list. For example, the following input statements
are invalid:
INTEGER B(50)

...

READ *, B(B)

READ *, B(B(1):B(10))

If an input or output item is an allocatable array, it must be currently allocated.
If an input or output item is a derived type, the following rules apply:
• Any derived-type component must be in the scoping unit containing the I/O statement.
• The derived type must not have a pointer component.
• In a formatted I/O statement, a derived type is treated as if all of the components of the

structure were specified in the same order as in the derived-type definition.
• In an unformatted I/O statement, a derived type is treated as a single object.
The following sections describe simple list items in I/O lists, and implied-DO lists in I/O lists.

Simple List Items in I/O Lists

In a data transfer statement, a simple list of items takes the following form:
item [, item]...

item
Is one of the following:
• For input statements: a variable name

The variable must not be an assumed-size array, unless one of the following appears in the
last dimension: a subscript, a vector subscript, or a section subscript specifying an upper
bound.

• For output statements: a variable name, expression, or constant
Any expression must not attempt further I/O operations on the same logical unit. For
example, it must not refer to a function subprogram that performs I/O on the same logical
unit.

The data transfer statement assigns values to (or transfers values from) the list items in the order in
which the items appear, from left to right.
When multiple array names are used in the I/O list of an unformatted input or output statement,
only one record is read or written, regardless of how many array name references appear in the list.
10-10

Data Transfer I/O Statements 10

Examples

The following example shows a simple I/O list:
WRITE (6,10) J, K(3), 4, (L+4)/2, N

When you use an array name reference in an I/O list, an input statement reads enough data to fill
every item of the array. An output statement writes all of the values in the array.
Data transfer begins with the initial item of the array and proceeds in the order of subscript
progression, with the leftmost subscript varying most rapidly. The following statement defines a
two-dimensional array:
DIMENSION ARRAY(3,3)

If the name ARRAY appears with no subscripts in a READ statement, that statement assigns
values from the input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and
so on through ARRAY(3,3).
An input record contains the following values:

1,3,721.73

The following example shows how variables in the I/O list can be used in array subscripts later in
the list:
DIMENSION ARRAY(3,3)

...

READ (1,30) J, K, ARRAY(J,K)

When the READ statement is executed, the first input value is assigned to J and the second to K,
establishing the subscript values for ARRAY(J,K). The value 721.73 is then assigned to
ARRAY(1,3). Note that the variables must appear before their use as array subscripts.
Consider the following derived-type definition and structure declaration:
TYPE EMPLOYEE

 INTEGER ID

 CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

...

TYPE(EMPLOYEE) :: CONTRACT ! A structure of type EMPLOYEE

The following statements are equivalent:
READ *, CONTRACT

READ *, CONTRACT%ID, CONTRACT%NAME

See Also

“I/O Lists”
10-11

10 Intel Fortran Language Reference
implied-DO Lists in I/O Lists

In a data transfer statement, an implied-DO list acts as though it were a part of an I/O statement
within a DO loop. It takes the following form:

(list, do-var = expr1, expr2 [, expr3])
list
Is a list of variables, expressions, or constants (see “Simple List Items in I/O Lists”).
do-var
Is the name of a scalar integer or real variable. The variable must not be one of the input items in
list.
expr
Are scalar numeric expressions of type integer or real. They do not all have to be the same type, or
the same type as the DO variable.
The implied-DO loop is initiated, executed, and terminated in the same way as a DO construct.
The list is the range of the implied-DO loop. Items in that list can refer to do-var, but they must not
change the value of do-var.
Two nested implied-DO lists must not have the same (or an associated) DO variable.
Use an implied-DO list to do the following:
• Specify iteration of part of an I/O list
• Transfer part of an array
• Transfer array items in a sequence different from the order of subscript progression
If the I/O statement containing an implied-DO list terminates abnormally (with an END, EOR, or
ERR branch or with an IOSTAT value other than zero), the DO variable becomes undefined.

Examples

The following two output statements are equivalent:
WRITE (3,200) (A,B,C, I=1,3) ! An implied-DO list

WRITE (3,200) A,B,C,A,B,C,A,B,C ! A simple item list

The following example shows nested implied-DO lists. Execution of the innermost list is repeated
most often:
WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

The inner DO loop is executed 10 times for each iteration of the outer loop; the second subscript
(L) advances from 1 through 10 for each increment of the first subscript (K). This is the reverse of
the normal array element order. Note that K is incremented by 2, so only the odd-numbered rows
of the array are output.
10-12

Data Transfer I/O Statements 10

In the following example, the entire list of the implied-DO list (P(1), Q(1,1), Q(1,2)...,Q(1,10)) are
read before I is incremented to 2:
READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)

The following example uses fixed subscripts and subscripts that vary according to the implied-DO
list:
READ (3,5555) (BOX(1,J), J=1,10)

Input values are assigned to BOX(1,1) through BOX(1,10), but other elements of the array are not
affected.
The following example shows how a DO variable can be output directly:
WRITE (6,1111) (I, I=1,20)

Integers 1 through 20 are written.

See Also
• “I/O Lists”
• “DO Constructs”

READ Statements
The READ statement is a data transfer input statement. Data can be input from external sequential
or direct-access records, or from internal records.

Forms for Sequentia l READ Statements

Sequential READ statements transfer input data from external sequential-access records. The
statements can be formatted with format specifiers (which can use list-directed formatting) or
namelist specifiers (for namelist formatting), or they can be unformatted.
Sequential READ statements take one of the following forms:
Formatted:

READ (eunit, format [, advance] [, size] [, iostat] [, err] [, end] [, eor]) [io-list]
READ form [, io-list]

Formatted - List-Directed:
READ (eunit, * [, iostat] [, err] [, end]) [io-list]
READ * [, io-list]

Formatted - Namelist:
READ (eunit, nml-group [, iostat] [, err] [, end])
READ nml
10-13

10 Intel Fortran Language Reference
Unformatted:
READ (eunit [, iostat] [, err] [, end]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).
format
Is a format specifier ([FMT=]format).
advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is 'YES', the statement uses
advancing input; if the value is 'NO', the statement uses nonadvancing input. The default value is
'YES'.
size
Is a character count specifier (SIZE=i-var). It can only be specified for nonadvancing READ
statements.
iostat
Is a status specifier (IOSTAT=i-var).
err, end, eor
Are branch specifiers if an error (ERR=label), end-of-file (END=label), or end-of-record
(EOR=label) condition occurs.
EOR can only be specified for nonadvancing READ statements.
io-list
Is an I/O list.
form
Is the nonkeyword form of a format specifier (no FMT=).
*
Is the format specifier indicating list-directed formatting. (It can also be specified as FMT=*.)
nml-group
Is a namelist specifier ([NML=]group) indicating namelist formatting.
nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist formatting.

See Also
• “I/O Control List” for details on I/O control-list specifiers
10-14

Data Transfer I/O Statements 10

• “I/O Lists” for details on the general rules for I/O lists
• “Advance Specifier” and your user’s guide for details on advancing I/O
• Your user’s guide for details on file sharing

Rules for Formatted Sequential READ Statements

Formatted, sequential READ statements translate data from character to binary form by using
format specifications for editing (if any). The translated data is assigned to the entities in the I/O
list in the order in which the entities appear, from left to right.
Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up these
structured objects.
For data transfer, the file must be positioned so that the record read is a formatted record or an
end-of-file record.
If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.
If the number of I/O list items is greater than the number of fields in an input record, the input
record is padded with blanks. However, if PAD='NO' was specified for file connection, the input
list and file specification must not require more characters from the record than it contains. If more
characters are required and nonadvancing input is in effect, an end-of-record condition occurs.
If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Example

The following example shows formatted, sequential READ statements:
READ (*, '(B)', ADVANCE='NO') C

READ (FMT="(E2.4)", UNIT=6, IOSTAT=IO_STATUS) A, B, C

Rules for List-Directed Sequential READ Statements

List-directed, sequential READ statements translate data from character to binary form by using
the data types of the corresponding I/O list item to determine the form of the data. The translated
data is then assigned to the entities in the I/O list in the order in which they appear, from left to
right.
If a slash (/) is encountered during execution, the READ statement is terminated, and any
remaining input list items are unchanged.
If the file is connected for unformatted I/O, list-directed data transfer is prohibited.
10-15

10 Intel Fortran Language Reference
List-Directed Records

A list-directed external record consists of a sequence of values and value separators. A value can
be any of the following:
• A constant

Each constant must be a literal constant of type integer, real, complex, logical, or character; or
a nondelimited character string. Binary, octal, hexadecimal, Hollerith, and named constants
are not permitted.
In general, the form of the constant must be acceptable for the type of the list item. The data
type of the constant determines the data type of the value and the translation from external to
internal form. The following rules also apply:
— A numeric list item can correspond only to a numeric constant, and a character list item

can correspond only to a character constant. If the data types of a numeric list element
and its corresponding numeric constant do not match, conversion is performed according
to the rules for arithmetic assignment (see Table 4-2).

— A complex constant has the form of a pair of real or integer constants separated by a
comma and enclosed in parentheses. Blanks can appear between the opening parenthesis
and the first constant, before and after the separating comma, and between the second
constant and the closing parenthesis.

— A logical constant represents true values (.TRUE. or any value beginning with T, .T, t, or
.t) or false values (.FALSE. or any value beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks if the
corresponding I/O list item is of type default character, and the following is true:
— The character string does not contain a blank, comma, or slash.
— The character string is not continued across a record boundary.
— The first nonblank character in the string is not an apostrophe or a quotation mark.
— The leading character is not a string of digits followed by an asterisk.
A nondelimited character string is terminated by the first blank, comma, slash, or
end-of-record encountered. Apostrophes and quotation marks within nondelimited character
strings are transferred as is.

• A null value
A null value is specified by two consecutive value separators (such as ,,) or a nonblank initial
value separator. (A value separator before the end of the record does not signify a null value.)
 A null value indicates that the corresponding list element remains unchanged. A null value
can represent an entire complex constant, but cannot be used for either part of a complex
constant.

• A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned, nonzero,
integer literal constant with no kind parameter, and no embedded blanks.
10-16

Data Transfer I/O Statements 10

A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks. When any of these appear in a character constant, they are considered part of
the constant, not value separators.
The end of a record is equivalent to a blank character, except when it occurs in a character
constant. In this case, the end of the record is ignored, and the character constant is continued with
the next record (the last character in the previous record is immediately followed by the first
character of the next record).
Blanks at the beginning of a record are ignored unless they are part of a character constant
continued from the previous record. In this case, the blanks at the beginning of the record are
considered part of the constant.

Example

Suppose the following statements are specified:
CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

Then suppose the following external record is read:
4 6.3 (3.4,4.2), (3, 2) , T,F,,3*14.6 ,'ABC,DEF/GHI''JK'/

The following values are assigned to the I/O list items:

I/O List Item Value Assigned

I 4

R 6.3

D (3.4,4.2)

E (3.0,2.0)

L .TRUE.

M .FALSE.

J Unchanged

K 14

S 14.6

T 14.6D0

C ABC,DEF/GHI' JK

A Unchanged
10-17

10 Intel Fortran Language Reference
See Also
• “Rules for Formatted Sequential READ Statements”
• “Intrinsic Data Types” for details on the literal constant forms of intrinsic data types
• “Rules for List-Directed Sequential WRITE Statements” for details on list-directed output

Rules for Namelist Sequential READ Statements

Namelist, sequential READ statements translate data from external to internal form by using the
data types of the objects in the corresponding NAMELIST statement to determine the form of the
data. The translated data is assigned to the specified objects in the namelist group in the order in
which they appear, from left to right.
If a slash (/) is encountered during execution, the READ statement is terminated, and any
remaining input list items are unchanged.
If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Namelist Records

A namelist external record takes the following form:
&group-name object = value [, object = value].../
group-name
Is the name of the group containing the objects to be given values. The name must have been
previously defined in a NAMELIST statement in the scoping unit. The name cannot contain
embedded blanks and must be contained within a single record.
object
Is the name (or subobject designator) of an entity defined in the NAMELIST declaration of the
group name. The object name must not contain embedded blanks except within the parentheses of
a subscript or substring specifier. Each object must be contained in a single record.
value
Is any of the following:

B Unchanged

I/O List Item Value Assigned
10-18

Data Transfer I/O Statements 10

• A constant

Each constant must be a literal constant of type integer, real, complex, logical, or character; or
a nondelimited character string. Binary, octal, hexadecimal, Hollerith, and named constants
are not permitted.
In general, the form of the constant must be acceptable for the type of the list item. The data
type of the constant determines the data type of the value and the translation from external to
internal form. The following rules also apply:
— A numeric list item can correspond only to a numeric constant, and a character list item

can correspond only to a character constant. If the data types of a numeric list element
and its corresponding numeric constant do not match, conversion is performed according
to the rules for arithmetic assignment (see Table 4-2).

— A complex constant has the form of a pair of real or integer constants separated by a
comma and enclosed in parentheses. Blanks can appear between the opening parenthesis
and the first constant, before and after the separating comma, and between the second
constant and the closing parenthesis.

— A logical constant represents true values (.TRUE. or any value beginning with T, .T, t, or
.t) or false values (.FALSE. or any value beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks if the
corresponding NAMELIST item is of type default character, and the following is true:
— The character string does not contain a blank, comma (,), slash (/), exclamation point(!),

ampersand (&), dollar sign ($), left parenthesis, equal sign (=), percent sign (%), or
period (.).

— The character string is not continued across a record boundary.
— The first nonblank character in the string is not an apostrophe or a quotation mark.
— The leading characters are not a string of digits followed by an asterisk.
A nondelimited character string is terminated by the first blank, comma, slash, end-of-record,
exclamation, ampersand, or dollar sign encountered. Apostrophes and quotation marks within
nondelimited character strings are transferred as is.
If an equal sign, percent sign, or period is encountered while scanning for a nondelimited
character string, the string is treated as a variable name (or part of one) and not as a
nondelimited character string.

• A null value
A null value is specified by two consecutive value separators (such as ,,) or a nonblank initial
value separator. (A value separator before the end of the record does not signify a null value.)
A null value indicates that the corresponding list element remains unchanged. A null value
can represent an entire complex constant, but cannot be used for either part of a complex
constant.
10-19

10 Intel Fortran Language Reference
• A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned, nonzero,
integer literal constant with no kind parameter, and no embedded blanks.

Blanks can precede or follow the beginning ampersand (&), follow the group name, precede or
follow the equal sign, or precede the terminating slash.
Comments (beginning with ! only) can appear anywhere in namelist input. The comment extends
to the end of the source line.
If an entity appears more than once within the input record for a namelist data transfer, the last
value is the one that is used.
If there is more than one object=value pair, they must be separated by value separators.
A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks. When any of these appear in a character constant, they are considered part of
the constant, not value separators.
The end of a record is equivalent to a blank character, except when it occurs in a character
constant. In this case, the end of the record is ignored, and the character constant is continued with
the next record (the last character in the previous record is immediately followed by the first
character of the next record).
Blanks at the beginning of a record are ignored unless they are part of a character constant
continued from the previous record. In this case, the blanks at the beginning of the record are
considered part of the constant.

Prompting for Namelist Group Information

During execution of a program containing a namelist READ statement, you can specify a question
mark character (?) or a question mark character preceded by an equal sign (=?) to get information
about the namelist group. The ? or =? must follow one or more blanks.
If specified for a unit capable of both input and output, the ? causes display of the group name and
the objects in that group. The =? causes display of the group name, objects within that group, and
the current values for those objects (in namelist output form). If specified for another type of unit,
the symbols are ignored.
For example, consider the following statements:
NAMELIST /NLIST/ A,B,C

REAL A /1.5/

INTEGER B /2/

CHARACTER*5 C /'ABCDE'/

READ (5,NML=NLIST)

WRITE (6,NML=NLIST)

END
10-20

Data Transfer I/O Statements 10

During execution, if a blank followed by ? is entered on a terminal device, the following values are
displayed:
 &NLIST

 A

 B

 C

 /

If a blank followed by =? is entered, the following values are displayed:
 &NLIST

 A = 1.500000 ,

 B = 2,

 C = ABCDE

 /

Examples

Suppose the following statements are specified:
NAMELIST /CONTROL/ TITLE, RESET, START, STOP, INTERVAL

CHARACTER*10 TITLE

REAL(KIND=8) START, STOP

LOGICAL(KIND=4) RESET

INTEGER(KIND=4) INTERVAL

READ (UNIT=1, NML=CONTROL)

The NAMELIST statement associates the group name CONTROL with a list of five objects. The
corresponding READ statement reads the following input data from unit 1:
&CONTROL

 TITLE='TESTT002AA',

 INTERVAL=1,

 RESET=.TRUE.,

 START=10.2,

 STOP =14.5

/

The following values are assigned to objects in group CONTROL:

Namelist Object Value Assigned

TITLE TESTT002AA

RESET T
10-21

10 Intel Fortran Language Reference
It is not necessary to assign values to all of the objects declared in the corresponding NAMELIST
group. If a namelist object does not appear in the input statement, its value (if any) is unchanged.
Similarly, when character substrings and array elements are specified, only the values of the
specified variable substrings and array elements are changed. For example, suppose the following
input is read:
&CONTROL TITLE(9:10)='BB' /

The new value for TITLE is TESTT002BB; only the last two characters in the variable change.
The following example shows an array as an object:
DIMENSION ARRAY_A(20)

NAMELIST /ELEM/ ARRAY_A

READ (UNIT=1,NML=ELEM)

Suppose the following input is read:
&ELEM

ARRAY_A=1.1, 1.2, , 1.4

/

The following values are assigned to the ARRAY_A elements:

When a list of values is assigned to an array element, the assignment begins with the specified
array element, rather than with the first element of the array. For example, suppose the following
input is read:
&ELEM

ARRAY_A(3)=34.54, 45.34, 87.63, 3*20.00

/

START 10.2

STOP 14.5

INTERVAL 1

Array Element Value Assigned

ARRAY_A(1) 1.1

ARRAY_A(2) 1.2

ARRAY_A(3) Unchanged

ARRAY_A(4) 1.4

ARRAY_A(5)...ARRAY_A(20) Unchanged

Namelist Object Value Assigned
10-22

Data Transfer I/O Statements 10

New values are assigned only to array ARRAY_A elements 3 through 8. The other element values
are unchanged.
Nondelimited character strings that are written out by using a NAMELIST write may not be read
in as expected by a corresponding NAMELIST read. Consider the following:
NAMELIST/TEST/ CHARR

CHARACTER*3 CHARR(4)

DATA CHARR/'AAA', 'BBB', 'CCC', 'DDD'/

OPEN (UNIT=1, FILE='NMLTEST.DAT')

WRITE (1, NML=TEST)

END

The output file NMLTEST.DAT will contain:
&TEST

CHARR = AAABBBCCCDDD

/

If an attempt is then made to read the data in NMLTEST.DAT with a NAMELIST read using
nondelimited character strings, as follows:
NAMELIST/TEST/ CHARR

CHARACTER*3 CHARR(4)

DATA CHARR/4*' '/

OPEN (UNIT=1, FILE='NMLTEST.DAT')

READ (1, NML=TEST)

PRINT *, 'CHARR read in >', CHARR(1),'< >',CHARR(2),'< >',

1 CHARR(3), '< >', CHARR(4), '<'

END

The result is the following:
CHARR read in >AAA< > < > < > <

See Also
• “Alternative Form for Namelist External Records”
• “Rules for Formatted Sequential READ Statements”
• “NAMELIST Statement” for the rules for objects in a namelist group
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output

Rules for Unformatted Sequential READ Statements

Unformatted, sequential READ statements transfer binary data (without translation) between the
current record and the entities specified in the I/O list. Only one record is read.
10-23

10 Intel Fortran Language Reference
Objects of intrinsic or derived types can be transferred.
For data transfer, the file must be positioned so that the record read is an unformatted record or an
end-of-file record.
The unformatted, sequential READ statement reads a single record. Each value in the record must
be of the same type as the corresponding entity in the input list, unless the value is real or complex.
If the value is real or complex, one complex value can correspond to two real list entities, or two
real values can correspond to one complex list entity. The corresponding values and entities must
have the same kind parameter.
If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields in an
input record, an error occurs.
If a statement contains no I/O list, it skips over one full record, positioning the file to read the
following record on the next execution of a READ statement.
If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Example

The following example shows an unformatted, sequential READ statement:
READ (UNIT=6, IOSTAT=IO_STATUS) A, B, C

Forms for Direct-A ccess READ Statements

Direct-access READ statements transfer input data from external records with direct access. (The
attributes of a direct-access file are established by the OPEN statement.)
A direct-access READ statement can be formatted or unformatted, and takes one of the following
forms:
Formatted:

READ (eunit, format, rec [, iostat] [, err]) [io-list]
Unformatted:

READ (eunit, rec [, iostat] [, err]) [io-list]
eunit
Is an external unit specifier ([UNIT=]io-unit).
format
Is a format specifier ([FMT=]format). It must not be an asterisk (*).
10-24

Data Transfer I/O Statements 10

rec
Is a record specifier (REC=r).
iostat
Is a status specifier (IOSTAT=i-var).
err
Is a branch specifier (ERR=label) if an error condition occurs.
io-list
Is an I/O list.

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• Your user’s guide for details on file sharing

Rules for Formatted Direct-Access READ Statements

Formatted, direct-access READ statements translate data from character to binary form by using
format specifications for editing (if any). The translated data is assigned to the entities in the I/O
list in the order in which the entities appear, from left to right.
Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up these
structured objects.
For data transfer, the file must be positioned so that the record read is a formatted record or an
end-of-file record.
If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.
If the number of I/O list items is greater than the number of fields in an input record, the input
record is padded with blanks. However, if PAD='NO' was specified for file connection, the input
list and file specification must not require more characters from the record than it contains. If more
characters are required and nonadvancing input is in effect, an end-of-record condition occurs.
If the format specification specifies another record, the record number is increased by one as each
subsequent record is read by that input statement.

Example

The following example shows a formatted, direct-access READ statement:
READ (2, REC=35, FMT=10) (NUM(K), K=1,10)
10-25

10 Intel Fortran Language Reference
Rules for Unformatted Direct-Access READ Statements

Unformatted, direct-access READ statements transfer binary data (without translation) between
the current record and the entities specified in the I/O list. Only one record is read.
Objects of intrinsic or derived types can be transferred.
For data transfer, the file must be positioned so that the record read is an unformatted record or an
end-of-file record.
The unformatted, direct-access READ statement reads a single record. Each value in the record
must be of the same type as the corresponding entity in the input list, unless the value is real or
complex.
If the value is real or complex, one complex value can correspond to two real list entities, or two
real values can correspond to one complex list entity. The corresponding values and entities must
have the same kind parameter.
If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields in an
input record, an error occurs.
If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Example

The following example shows unformatted, direct-access READ statements:
READ (1, REC=10) LIST(1), LIST(8)

READ (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms and Rules for In ternal READ Statements

Internal READ statements transfer input data from an internal file.
An internal READ statement can only be formatted. It must include format specifiers (which can
use list-directed formatting). Namelist formatting is not permitted.
An internal READ statement takes the following form:

READ (iunit, format [, iostat] [, err] [, end]) [io-list]
iunit
Is an internal unit specifier ([UNIT=]io-unit). It must be a character variable. It must not be an
array section with a vector subscript.
format
Is a format specifier ([FMT=]format). An asterisk (*) indicates list-directed formatting.
10-26

Data Transfer I/O Statements 10

iostat
Is a status specifier (IOSTAT=i-var).
err, end
Are branch specifiers if an error (ERR=label) or end-of-file (END=label) condition occurs.
io-list
Is an I/O list.
Formatted, internal READ statements translate data from character to binary form by using format
specifications for editing (if any). The translated data is assigned to the entities in the I/O list in the
order in which the entities appear, from left to right.
This form of READ statement behaves as if the format begins with a BN edit descriptor. (You can
override this behavior by explicitly specifying the BZ edit descriptor.)
Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up these
structured objects.
Before data transfer occurs, the file is positioned at the beginning of the first record. This record
becomes the current record.
If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.
If the number of I/O list items is greater than the number of fields in an input record, the input
record is padded with blanks. However, if PAD='NO' was specified for file connection, the input
list and file specification must not require more characters from the record than it contains.
In list-directed formatting, character strings have no delimiters.

Example

The following program segment reads a record and examines the first character to determine
whether the remaining data should be interpreted as decimal, octal, or hexadecimal. It then uses
internal READ statements to make appropriate conversions from character string representations
to binary.
INTEGER IVAL

CHARACTER TYPE, RECORD*80

CHARACTER*(*) AFMT, IFMT, OFMT, ZFMT

PARAMETER (AFMT='(Q,A)', IFMT= '(I10)', OFMT= '(O11)', &

 ZFMT= '(Z8)')

ACCEPT AFMT, ILEN, RECORD

TYPE = RECORD(1:1)

IF (TYPE .EQ. 'D') THEN
10-27

10 Intel Fortran Language Reference
 READ (RECORD(2:MIN(ILEN, 11)), IFMT) IVAL

ELSE IF (TYPE .EQ. 'O') THEN

 READ (RECORD(2:MIN(ILEN, 12)), OFMT) IVAL

ELSE IF (TYPE .EQ. 'X') THEN

 READ (RECORD(2:MIN(ILEN, 9)),ZFMT) IVAL

ELSE

 PRINT *, 'ERROR'

END IF

END

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• “Rules for List-Directed Sequential READ Statements” for details on list-directed input
• Your user’s guide for details on using internal files

ACCEPT Statement
The ACCEPT statement is a data transfer input statement. This statement is the same as a
formatted, sequential READ statement, except that an ACCEPT statement must never be
connected to user-specified I/O units.
An ACCEPT statement takes one of the following forms:
Formatted:

ACCEPT form [, io-list]
Formatted - List-Directed:

ACCEPT * [, io-list]
Formatted - Namelist:

ACCEPT nml
form
Is the nonkeyword form of a format specifier (no FMT=).
io-list
Is an I/O list.
*
Is the format specifier indicating list-directed formatting.
10-28

Data Transfer I/O Statements 10

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist formatting.

Example

In the following example, character data is read from the implicit unit and binary values are
assigned to each of the five elements of array CHARAR:
 CHARACTER*10 CHARAR(5)

 ACCEPT 200, CHARAR

200 FORMAT (5A10)

See Also
• “Forms for Sequential READ Statements”
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• “Rules for List-Directed Sequential READ Statements” for details on list-directed input
• “Rules for Namelist Sequential READ Statements” for details on namelist input
• Your user’s guide for details on formatted data and data transfers

WRITE Statements
The WRITE statement is a data transfer output statement. Data can be output to external sequential
or direct-access records, or to internal records.

Forms for Sequential WRITE Statements

Sequential WRITE statements transfer output data to external sequential access records. The
statements can be formatted by using format specifiers (which can use list-directed formatting) or
namelist specifiers (for namelist formatting), or they can be unformatted.
A sequential WRITE statement takes one of the following forms:
Formatted:

WRITE (eunit, format [, advance] [, iostat] [, err]) [io-list]
Formatted - List-Directed:

WRITE (eunit, * [, iostat] [, err]) [io-list]
Formatted - Namelist:

WRITE (eunit, nml-group [, iostat] [, err])
10-29

10 Intel Fortran Language Reference
Unformatted:
WRITE (eunit [, iostat] [, err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).
format
Is a format specifier ([FMT=]format).
advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is 'YES', the statement uses
advancing output; if the value is 'NO', the statement uses nonadvancing output. The default value
is 'YES'.
iostat
Is a status specifier (IOSTAT=i-var).
err
Is a branch specifier (ERR=label) if an error condition occurs.
io-list
Is an I/O list.
*
Is the format specifier indicating list-directed formatting. (It can also be specified as FMT=*.)
nml-group
Is a namelist specifier ([NML=]group) indicating namelist formatting.

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• “Advance Specifier” for details on advancing I/O

Rules for Formatted Sequential WRITE Statements

Formatted, sequential WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an external file that is
connected for sequential access.
Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.
10-30

Data Transfer I/O Statements 10

The output list and format specification must not specify more characters for a record than the
record size. (Record size is specified by RECL in an OPEN statement.)
If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Example

The following example shows formatted, sequential WRITE statements:
WRITE (UNIT=8, FMT='(B)', ADVANCE='NO') C

WRITE (*, "(F6.5)", ERR=25, IOSTAT=IO_STATUS) A, B, C

Rules for List-Directed Sequential WRITE Statements

List-directed, sequential WRITE statements transfer data from binary to character form by using
the data types of the corresponding I/O list item to determine the form of the data. The translated
data is then written to an external file.
In general, values transferred as output have the same forms as values transferred as input.
Table 10-1 shows the default output formats for each intrinsic data type.

Table 10-1 Default Formats for List-Directed Output

Data Type Output Format

BYTE I5

LOGICAL(1) L2

LOGICAL(2) L2

LOGICAL(4) L2

LOGICAL(8) L2

INTEGER(1) I5

INTEGER(2) I7

INTEGER(4) I12

INTEGER(8) I22

REAL(4) 1PG15.7E2

REAL(8) T_floating 1PG24.15E3

REAL(8) D_floating 1PG24.16E2

REAL(8) G_floating 1PG24.15E3

REAL(16) 1PG43.33E4

COMPLEX(4) '(',1PG14.7E2,',',1PG14.7E2,')'

COMPLEX(8) T_floating '(',1PG23.15E3,',',1PG23.15E3,')'

COMPLEX((8) D_floating '(',1PG23.16E2,',',1PG23.16E2,')'
10-31

10 Intel Fortran Language Reference
By default, character constants are not delimited by apostrophes or quotation marks, and each
internal apostrophe or quotation mark is represented externally by one apostrophe or quotation
mark.
This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:
• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited by

quotation marks and each internal quotation mark is represented externally by two
consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.
A literal character constant or complex constant can be longer than an entire record. For complex
constants, the end of the record can occur between the comma and the imaginary part, if the
imaginary part and closing right parenthesis cannot fit in the current record. For literal constants
that are longer than an entire record, the constant is continued onto as many records as necessary.
Each output record begins with a blank character for carriage control.
Slashes, octal values, null values, and repeated forms of values are not output.
If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

Example

Suppose the following statements are specified:
DIMENSION A(4)

DATA A/4*3.4/

WRITE (1,*) 'ARRAY VALUES FOLLOW'

WRITE (1,*) A,4

The following records are then written to external unit 1:
ARRAY VALUES FOLLOW

 3.400000 3.400000 3.400000 3.400000 4

COMPLEX((8) G_floating '(',1PG23.15E3,',',1PG23.15E3,')'

COMPLEX(16) '(',1PG42.33E4,',',1PG42.33E4,')'

CHARACTER Aw1

1. Where w is the length of the character expression.

Table 10-1 Default Formats for List-Directed Output

Data Type Output Format
10-32

Data Transfer I/O Statements 10

See Also
• “Rules for Formatted Sequential WRITE Statements”
• “Rules for List-Directed Sequential READ Statements” for details on list-directed input

Rules for Namelist Sequential WRITE Statements

Namelist, sequential WRITE statements translate data from internal to external form by using the
data types of the objects in the corresponding NAMELIST statement to determine the form of the
data. The translated data is then written to an external file.
In general, values transferred as output have the same forms as values transferred as input.
By default, character constants are not delimited by apostrophes or quotation marks, and each
internal apostrophe or quotation mark is represented externally by one apostrophe or quotation
mark.
This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:
• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited by

quotation marks and each internal quotation mark is represented externally by two
consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.
A literal character constant or complex constant can be longer than an entire record. In the case of
complex constants, the end of the record can occur between the comma and the imaginary part, if
the imaginary part and closing right parenthesis cannot fit in the current record.
Each output record begins with a blank character for carriage control, except for literal character
constants that are continued from the previous record.
Slashes, octal values, null values, and repeated forms of values are not output.
If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Example

Consider the following statements:
CHARACTER*19 NAME(2)/2*' '/

REAL PITCH, ROLL, YAW, POSITION(3)

LOGICAL DIAGNOSTICS

INTEGER ITERATIONS

NAMELIST /PARAM/ NAME, PITCH, ROLL, YAW, POSITION, &

 DIAGNOSTICS, ITERATIONS
10-33

10 Intel Fortran Language Reference
...

READ (UNIT=1,NML=PARAM)

WRITE (UNIT=2,NML=PARAM)

Suppose the following input is read:
&PARAM

 NAME(2)(10:)='HEISENBERG',

 PITCH=5.0, YAW=0.0, ROLL=5.0,

 DIAGNOSTICS=.TRUE.

 ITERATIONS=10

/

The following is then written to the file connected to unit 2:
&PARAM

NAME = ' ', ' HEISENBERG',

PITCH = 5.000000 ,

ROLL = 5.000000 ,

YAW = 0.0000000E+00,

POSITION = 3*0.0000000E+00,

DIAGNOSTICS = T,

ITERATIONS = 10

/

Note that character values are not enclosed in apostrophes unless the output file is opened with
DELIM='APOSTROPHE'. The value of POSITION is not defined in the namelist input, so the
current value of POSITION is written.

See Also
• “Rules for Formatted Sequential WRITE Statements”
• “Rules for Namelist Sequential READ Statements” for details on namelist input

Rules for Unformatted Sequential WRITE Statements

Unformatted, sequential WRITE statements transfer binary data (without translation) between the
entities specified in the I/O list and the current record. Only one record is written.
Objects of intrinsic or derived types can be transferred.
This form of WRITE statement writes exactly one record. If there is no I/O item list, the statement
writes one null record.
If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.
10-34

Data Transfer I/O Statements 10

Example

The following example shows an unformatted, sequential WRITE statement:
WRITE (UNIT=6, IOSTAT=IO_STATUS) A, B, C

Forms for Direct-Access WRITE Statements

Direct-access WRITE statements transfer output data to external records with direct access. (The
attributes of a direct-access file are established by the OPEN statement.)
A direct-access WRITE statement can be formatted or unformatted, and takes one of the following
forms:
Formatted:

WRITE (eunit, format, rec [, iostat] [, err]) [io-list]
Unformatted:

WRITE (eunit, rec [, iostat] [, err]) [io-list]
eunit
Is an external unit specifier ([UNIT=]io-unit).
format
Is a format specifier ([FMT=]format). It must not be an asterisk (*).
rec
Is a record specifier (REC=r).
iostat
Is a status specifier (IOSTAT=i-var).
err
Is a branch specifier (ERR=label) if an error condition occurs.
io-list
Is an I/O list.

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
10-35

10 Intel Fortran Language Reference
Rules for Formatted Direct-Access WRITE Statements

Formatted, direct-access WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an external file that is
connected for direct access.
Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.
If the values specified by the I/O list do not fill a record, blank characters are added to fill the
record. If the I/O list specifies too many characters for the record, an error occurs.
If the format specification specifies another record, the record number is increased by one as each
subsequent record is written by that output statement.

Example

The following example shows a formatted, direct-access WRITE statement:
WRITE (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access WRITE Statements

Unformatted, direct-access WRITE statements transfer binary data (without translation) between
the entities specified in the I/O list and the current record. Only one record is written.
Objects of intrinsic or derived types can be transferred.
If the values specified by the I/O list do not fill a record, blank characters are added to fill the
record. If the I/O list specifies too many characters for the record, an error occurs.
If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer is
prohibited.

Example

The following example shows unformatted, direct-access WRITE statements:
WRITE (1, REC=10) LIST(1), LIST(8)

WRITE (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms and Rules for Inte rnal WRITE Statements

Internal WRITE statements transfer output data to an internal file.
An internal WRITE statement can only be formatted. It must include format specifiers (which can
use list-directed formatting). Namelist formatting is not permitted.
An internal WRITE statement takes the following form:
10-36

Data Transfer I/O Statements 10

WRITE (iunit, format [, iostat] [, err]) [io-list]

iunit
Is an internal unit specifier ([UNIT=]io-unit). It must be a default character variable. It must not be
an array section with a vector subscript.
format
Is a format specifier ([FMT=]format). An asterisk (*) indicates list-directed formatting.
iostat
Is a status specifier (IOSTAT=i-var).
err
Is a branch specifier (ERR=label) if an error condition occurs.
io-list
Is an I/O list.
Formatted, internal WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an internal file.
Values can be transferred from objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred from the components of intrinsic types that ultimately make up these
structured objects.
f the number of characters written in a record is less than the length of the record, the rest of the
record is filled with blanks. The number of characters to be written must not exceed the length of
the record.
Character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

Example

The following example shows an internal WRITE statement:
INTEGER J, K, STAT_VALUE

CHARACTER*50 CHAR_50

...

WRITE (FMT=*, UNIT=CHAR_50, IOSTAT=STAT_VALUE) J, K

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• “Rules for List-Directed Sequential WRITE Statements” for details on list-directed output
• Your user’s guide for details on using internal files
10-37

10 Intel Fortran Language Reference
PRINT and TYPE Statements
The PRINT statement is a data transfer output statement. TYPE is a synonym for PRINT. All
forms and rules for the PRINT statement also apply to the TYPE statement.
The PRINT statement is the same as a formatted, sequential WRITE statement, except that the
PRINT statement must never transfer data to user-specified I/O units.
A PRINT statement takes one of the following forms:
Formatted:

PRINT form [, io-list]
Formatted - List-Directed:

PRINT * [, io-list]
Formatted - Namelist:

PRINT nml
form
Is the nonkeyword form of a format specifier (no FMT=).
io-list
Is an I/O list.
*
Is the format specifier indicating list-directed formatting.
nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist formatting.

Example

In the following example, one record (containing four fields of data) is printed to the implicit
output device:
 CHARACTER*16 NAME, JOB

 PRINT 400, NAME, JOB

400 FORMAT ('NAME=', A, 'JOB=', A)

See Also
• “Rules for Formatted Sequential WRITE Statements”
• “I/O Lists” for the general rules for I/O lists
• “Rules for List-Directed Sequential WRITE Statements” for details on list-directed output
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output
10-38

Data Transfer I/O Statements 10

• Your user’s guide for details on formatted data and data transfers

REWRITE Statement
The REWRITE statement is a data transfer output statement that rewrites the current record.
A REWRITE statement can be formatted or unformatted, and takes one of the following forms:
Formatted:

REWRITE (eunit, format [, iostat] [, err]) [io-list]
Unformatted:

REWRITE (eunit [, iostat] [, err]) [io-list]
eunit
Is an external unit specifier ([UNIT=]io-unit).
format
Is a format specifier ([FMT=]format).
iostat
Is a status specifier (IOSTAT=i-var).
err
Is a branch specifier (ERR=label) if an error condition occurs.
io-list
Is an I/O list.
In the REWRITE statement, data (translated if formatted; untranslated if unformatted) is written to
the current (existing) record in a file with direct access.
The current record is the last record accessed by a preceding, successful sequential or direct-access
READ statement.
Between a READ and REWRITE statement, you should not specify any other I/O statement
(except INQUIRE) on that logical unit. Execution of any other I/O statement on the logical unit
destroys the current-record context and causes the current record to become undefined.
Only one record can be rewritten in a single REWRITE statement operation.
The output list (and format specification, if any) must not specify more characters for a record than
the record size. (Record size is specified by RECL in an OPEN statement.)
If the number of characters specified by the I/O list (and format, if any) do not fill a record, blank
characters are added to fill the record.
10-39

10 Intel Fortran Language Reference
Example

In the following example, the current record (contained in the relative organization file connected
to logical unit 3) is updated with the values represented by NAME, AGE, and BIRTH:
 REWRITE (3, 10, ERR=99) NAME, AGE, BIRTH

10 FORMAT (A16, I2, A8)

See Also
• “I/O Control List” for details on I/O control-list specifiers
• “I/O Lists” for the general rules for I/O lists
• “RECL Specifier” for details on using the specifier in OPEN statements
• Your user’s guide for details on formatted data and data transfers
10-40

I/O Formatting
 11

A format appearing in an input or output (I/O) statement specifies the form of data being
transferred and the data conversion (editing) required to achieve that form. The format specified
can be explicit or implicit.
Explicit format is indicated in a format specification that appears in a FORMAT statement or a
character expression (the expression must evaluate to a valid format specification).
The format specification contains edit descriptors, which can be data edit descriptors, control edit
descriptors, or string edit descriptors.
Implicit format is determined by the processor and is specified using list-directed or namelist
formatting.
List-directed formatting is specified with an asterisk (*); namelist formatting is specified with a
namelist group name.
List-directed formatting can be specified for advancing sequential files and internal files. Namelist
formatting can be specified only for advancing sequential files.
This chapter contains information on the following topics:
• “Format Specifications”
• “Data Edit Descriptors”
• “Control Edit Descriptors”
• “Character String Edit Descriptors”
• “Nested and Group Repeat Specifications”
• “Variable Format Expressions”
• “Printing of Formatted Records”
• “Interaction Between Format Specifications and I/O Lists”

See Also
• “Rules for List-Directed Sequential READ Statements” for details on list-directed input
11-1

11 Intel Fortran Language Reference
• “Rules for List-Directed Sequential WRITE Statements” for details on list-directed output
• “Rules for Namelist Sequential READ Statements” for details on namelist input
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output

Format Specifications
A format specification can appear in a FORMAT statement or character expression. In a FORMAT
statement, it is preceded by the keyword FORMAT. A format specification takes the following
form:

(format-list)
format-list
Is a list of one or more of the following edit descriptors, separated by commas or slashes (/):

A comma can be omitted in the following cases:
• Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit

descriptor
• Before a slash (/) edit descriptor when the optional repeat specification is not present
• After a slash (/) edit descriptor
• Before or after a colon (:) edit descriptor
Edit descriptors can be nested and a repeat specification can precede data edit descriptors, the
slash edit descriptor, or a parenthesized list of edit descriptors.

Rules and Behavior

A FORMAT statement must be labeled.
Named constants are not permitted in format specifications.
If the associated I/O statement contains an I/O list, the format specification must contain at least
one data edit descriptor or the control edit descriptor Q.
Blank characters can precede the initial left parenthesis, and additional blanks can appear
anywhere within the format specification. These blanks have no meaning unless they are within a
character string edit descriptor.

Data edit descriptors: I, B, O, Z, F, E, EN, ES, D, G, L, and A

Control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, $, \, and Q
String edit descriptors: H, 'c', and "c", where c is a character constant
11-2

I/O Formatting 11

When a formatted input statement is executed, the setting of the BLANK specifier (for the relevant
logical unit) determines the interpretation of blanks within the specification. If the BN or BZ edit
descriptors are specified for a formatted input statement, they supersede the default interpretation
of blanks. (For more information on BLANK defaults, see “BLANK Specifier”.)
For formatted input, use the comma as an external field separator. The comma terminates the input
of fields (for noncharacter data types) that are shorter than the number of characters expected. It
can also designate null (zero-length) fields.
The first character of a record transmitted to a line printer or terminal is typically used for carriage
control; it is not printed. The first character of such a record should be a blank, 0, 1, $, +, or ASCII
NUL. Any other character is treated as a blank.
A format specification cannot specify more output characters than the external record can contain.
For example, a line printer record cannot contain more than 133 characters, including the carriage
control character.
Table 11-1 summarizes the edit descriptors that can be used in format specifications.

Table 11-1 Summary of Edit Descriptors

Code Form Effect

A A[w] Transfers character or Hollerith values. See “Character Editing (A)”.

B Bw[.m] Transfers binary values. See “B Editing”.

BN BN Ignores embedded and trailing blanks in a numeric input field. See “BN Editing”.

BZ BZ Treats embedded and trailing blanks in a numeric input field as zeros. See “BZ
Editing”.

D Dw.d Transfers real values with D exponents. See “E and D Editing”.

E Ew.d[Ee] Transfers real values with E exponents. See “E and D Editing”.

EN ENw.d[Ee] Transfers real values with engineering notation. See “EN Editing”.

ES ESw.d[Ee] Transfers real values with scientific notation. See “ES Editing”.

F Fw.d Transfers real values with no exponent. See “F Editing”.

G Gw.d[Ee] Transfers values of all intrinsic types. See “G Editing”.

H nHch[ch...] Transfers characters following the H edit descriptor to an output record. See “H
Editing”.

I Iw[.m] Transfers decimal integer values. See “I Editing”.

L Lw Transfers logical values: on input, transfers characters; on output, transfers T or F.
See “Logical Editing (L)”.

O Ow[.m] Transfers octal values. See “O Editing”.

P kP Interprets certain real numbers with a specified scale factor. See “Scale Factor
Editing (P)”.
11-3

11 Intel Fortran Language Reference
Character Format Specifications

In data transfer I/O statements, a format specifier ([FMT=]format) can be a character expression
that is a character array, character array element, or character constant. This type of format is also
called a run-time format because it can be constructed or altered during program execution.
The expression must evaluate to a character string whose leading part is a valid format
specification (including the enclosing parentheses).
If the expression is a character array element, the format specification must be contained entirely
within that element.
If the expression is a character array, the format specification can continue past the first element
into subsequent consecutive elements.
If the expression is a character constant delimited by apostrophes, use two consecutive
apostrophes ('') to represent an apostrophe character in the format specification; for example:

Q Q Returns the number of characters remaining in an input record. See “Character
Count Editing (Q)”.

S S Reinvokes optional plus sign (+) in numeric output fields; counters the action of SP
and SS. See “S Editing”.

SP SP Writes optional plus sign (+) into numeric output fields. See “SP Editing”.

SS SS Suppresses optional plus sign (+) in numeric output fields. See “SS Editing”.

T Tn Tabs to specified position. See “T Editing”.

TL TLn Tabs left the specified number of positions. See “TL Editing”.

TR TRn Tabs right the specified number of positions. See “TR Editing”.

X nX Skips the specified number of positions. See “X Editing”.

Z Zw[.m] Transfers hexadecimal values. See “Z Editing”.

$ $ Suppresses trailing carriage return during interactive I/O. See “Dollar Sign ($) and
Backslash (\) Editing”.

: : Terminates format control if there are no more items in the I/O list. See “Colon Editing
(:)”.

/ [r]/ Terminates the current record and moves to the next record. See “Slash Editing (/)”.

\ \ Continues the same record; same as $. See “Dollar Sign ($) and Backslash (\)
Editing”.

'c'1 'c' Transfers the character literal constant (between the delimiters) to an output record.
See “Character Constant Editing”.

1. These delimiters can also be quotation marks (").

Table 11-1 Summary of Edit Descriptors

Code Form Effect
11-4

I/O Formatting 11

PRINT '("NUM can''t be a real number")'

Similarly, if the expression is a character constant delimited by quotation marks, use two
consecutive quotation marks ("") to represent a quotation mark character in the format
specification.
To avoid using consecutive apostrophes or quotation marks, you can put the character constant in
an I/O list instead of a format specification, as follows:
PRINT "(A)", "NUM can't be a real number"

The following shows another character format specification:
WRITE (6, '(I12, I4, I12)') I, J, K

In the following example, the format specification changes with each iteration of the DO loop:
SUBROUTINE PRINT(TABLE)

REAL TABLE(10,5)

CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG, FMED, FSML

DATA FORCHR(0),RPAR /'(',')'/

DATA FBIG,FMED,FSML /'F8.2,','F9.4,','F9.6,'/

DO I=1,10

 DO J=1,5

 IF (TABLE(I,J) .GE. 100.) THEN

 FORCHR(J) = FBIG

 ELSE IF (TABLE(I,J) .GT. 0.1) THEN

 FORCHR(J) = FMED

 ELSE

 FORCHR(J) = FSML

 END IF

 END DO

 FORCHR(5)(5:5) = RPAR

 WRITE (6,FORCHR) (TABLE(I,J), J=1,5)

END DO

END

The DATA statement assigns a left parenthesis to character array element FORCHR(0), and (for
later use) a right parenthesis and three F edit descriptors to character variables.
Next, the proper F edit descriptors are selected for inclusion in the format specification. The
selection is based on the magnitude of the individual elements of array TABLE.
11-5

11 Intel Fortran Language Reference
A right parenthesis is added to the format specification just before the WRITE statement uses it.

See Also
• “Data Edit Descriptors”
• “Control Edit Descriptors”
• “Character String Edit Descriptors”
• “Nested and Group Repeat Specifications”
• “Printing of Formatted Records”

Data Edit Descriptors
A data edit descriptor causes the transfer or conversion of data to or from its internal
representation.
The part of a record that is input or output and formatted with data edit descriptors (or character
string edit descriptors) is called a field.
This section describes the forms for data edit descriptors and the individual descriptors,
themselves. It also describes general rules for numeric editing and default widths for data edit
descriptors.

Forms for Data Edit Descriptors

A data edit descriptor takes one of the following forms:
[r]c
[r]cw
[r]cw.m
[r]cw.d
[r]cw.d[Ee]

NOTE. Format specifications stored in arrays are recompiled at run time each
time they are used. If a Hollerith or character run-time format is used in a
READ statement to read data into the format itself, that data is not copied back
into the original array, and the array is unavailable for subsequent use as a
run-time format specification.
11-6

I/O Formatting 11

r
Is a repeat specification. The range of r is 1 through 2147483647 (2**31–1). If r is omitted, it is
assumed to be 1.
c
Is one of the following format codes: I, B, O, Z, F, E, EN, ES, D, G, L, or A.
w
Is the total number of digits in the field (the field width). If omitted, the system applies default
values (see “Default Widths for Data Edit Descriptors”). The range of w is 1 through 2147483647
(2**31–1) on Intel® Itanium® processors; 1 through 32767 (2**15–1) on IA-32 processors. For I,
B, O, Z, and F, the range can start at zero.
m
Is the minimum number of digits that must be in the field (including leading zeros). The range of
m is 0 through 32767 (2**15–1) on Intel Itanium processors; 0 through 255 (2**8–1) on IA-32
processors.
d
Is the number of digits to the right of the decimal point (the significant digits). The range of d is 0
through 32767 (2**15–1) on Intel Itanium processors; 0 through 255 (2**8–1) on IA-32
processors.
The number of significant digits is affected if a scale factor is specified for the data edit descriptor.
E
Identifies an exponent field.
e
Is the number of digits in the exponent. The range of e is 1 through 32767 (2**15–1) on Intel
Itanium processors; 1 through 255 (2**8–1) on IA-32 processors.

Rules and Behavior

Fortran 95/90 (and the previous standard) allows the field width to be omitted only for the A
descriptor. However, Intel® Fortran allows the field width to be omitted for any data edit
descriptor.
The r, w, m, d, and e must all be positive, unsigned, integer literal constants; or variable format
expressions; no kind parameter can be specified. They must not be named constants.
Actual useful ranges for r, w, m, d, and e may be constrained by record sizes (RECL) and the file
system.
The data edit descriptors have the following specific forms:
11-7

11 Intel Fortran Language Reference
The d must be specified with F, E, D, and G field descriptors even if d is zero. The decimal point is
also required. You must specify both w and d, or omit them both.
A repeat specification can simplify formatting. For example, the following two statements are
equivalent:
20 FORMAT (E12.4,E12.4,E12.4,I5,I5,I5,I5)

20 FORMAT (3E12.4,4I5)

See Also
• “General Rules for Numeric Editing”
• “Nested and Group Repeat Specifications”

General Rules for Numeric Editing

The following rules apply to input and output data for numeric editing (data edit descriptors I, B,
O, Z, F, E, EN, ES, D, and G).

Rules for Input Processing

Leading blanks in the external field are ignored. If BLANK='NULL' is in effect (or the BN edit
descriptor has been specified) embedded and trailing blanks are ignored; otherwise, they are
treated as zeros. An all-blank field is treated as a value of zero.
The following table shows how blanks are interpreted by default:

A minus sign must precede a negative value in an external field; a plus sign is optional before a
positive value.

Integer: Iw[.m], Bw[.m], Ow[.m], and Zw[.m]

Real and complex: Fw.d, Ew.d[Ee], ENw.d[Ee], ESw.d[Ee], Dw.d, and Gw.d[Ee]

Logical: Lw

Character: A[w]

Type of Unit of File Default

An explicitly OPENed unit BLANK='NULL'

An internal file BLANK='NULL'

A preconnected file1

1. For interactive input from preconnected files, you should explicitly specify the BN or BZ edit descriptor to ensure desired
behavior.

BLANK='NULL'
11-8

I/O Formatting 11

In input records, constants can include any valid kind parameter. Named constants are not
permitted.
If the data field in a record contains fewer than w characters, an input statement will read
characters from the next data field in the record. You can prevent this by padding the short field
with blanks or zeros, or by using commas to separate the input data. The comma terminates the
data field, and can also be used to designate null (zero-length) fields. For more information, see
“Terminating Short Fields of Input Data”.

Rules for Output Processing

The field width w must be large enough to include any leading plus or minus sign, and any decimal
point or exponent. For example, the field width for an E data edit descriptor must be large enough
to contain the following:
• For positive numbers: d+5 or d+e+3 characters
• For negative numbers: d+6 or d+e+4 characters
A positive or zero value (zero is allowed for I, B, O, Z, and F descriptors) can have a plus sign,
depending on which sign edit descriptor is in effect. If a value is negative, the leftmost nonblank
character is a minus sign.
If the value is smaller than the field width specified, leading blanks are inserted (the value is
right-justified). If the value is too large for the field width specified, the entire output field is filled
with asterisks (*).
When the value of the field width is zero, the compiler selects the smallest possible positive actual
field width that does not result in the field being filled with asterisks.

See Also
• “Format Specifications”
• “Forms for Data Edit Descriptors”
• Your user’s guide for details on compiler options

Integer Editing

Integer editing is controlled by the I (decimal), B (binary), O (octal), and Z (hexadecimal) data edit
descriptors.

I Editing

The I edit descriptor transfers decimal integer values. It takes the following form:
Iw[.m]
11-9

11 Intel Fortran Language Reference
The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.
The specified I/O list item must be of type integer or logical.
The G edit descriptor can be used to edit integer data; it follows the same rules as Iw.

Rules for Input Processing

On input, the I data edit descriptor transfers w characters from an external field and assigns their
integer value to the corresponding I/O list item. The external field data must be an integer
constant.
If the value exceeds the range of the corresponding input list item, an error occurs.
The following shows input using the I edit descriptor:

Rules for Output Processing

On output, the I data edit descriptor transfers the value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.
The field consists of zero or more blanks, followed by a sign (a plus sign is optional for positive
values, a minus sign is required for negative values), followed by an unsigned integer constant
with no leading zeros.
If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.
If m is zero, and the output list item has the value zero, the external field is filled with blanks.
The following shows output using the I edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

I4 2788 2788

I3 –26 –26

I9 312 312

Format Value Output

I3 284 284

I4 –284 –284

I4 0 0

I5 174 174

I2 3274 **

∆∆∆∆∆∆

∆∆∆

∆∆
11-10

I/O Formatting 11
See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

B Editing

The B data edit descriptor transfers binary (base 2) values. It takes the following form:
Bw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.
The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the B data edit descriptor transfers w characters from an external field and assigns their
binary value to the corresponding I/O list item. The external field must contain only binary digits
(0 or 1) or blanks.
If the value exceeds the range of the corresponding input list item, an error occurs.
The following shows input using the B edit descriptor:

Rules for Output Processing

On output, the B data edit descriptor transfers the binary value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.
The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
binary digits) with no leading zeros. A negative value is transferred in internal form.

I3 –473 ***

I7 29.812 An error; the decimal point is invalid

I4.0 0

I4.2 1 01

I4.4 1 00001

Format Input Value

B4 1001 9

B1 1 1

B2 0 0

Format Value Output

∆∆∆∆

∆∆
11-11

11 Intel Fortran Language Reference
If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.
If m is zero, and the output list item has the value zero, the external field is filled with blanks.
The following shows output using the B edit descriptor:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

O Editing

The O data edit descriptor transfers octal (base 8) values. It takes the following form:
Ow[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w (the
field width). The m has no effect on input, only output.
The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the O data edit descriptor transfers w characters from an external field and assigns their
octal value to the corresponding I/O list item. The external field must contain only octal digits (0
through 7) or blanks.
If the value exceeds the range of the corresponding input list item, an error occurs.
The following shows input using the O edit descriptor:

Rules for Output Processing

On output, the O data edit descriptor transfers the octal value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.

Format Value Output

B4 9 1001

B2 0 0

Format Input Value

O5 32767 32767

O4 16234 1623

O3 97 An error; the 9 is invalid in octal notation

∆

∆

11-12

I/O Formatting 11

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
octal digits) with no leading zeros. A negative value is transferred in internal form without a
leading minus sign.
If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.
If m is zero, and the output list item has the value zero, the external field is filled with blanks.
The following shows output using the O edit descriptor:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

Z Editing

The Z data edit descriptor transfers hexadecimal (base 16) values. It takes the following form:
Zw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of w
(the field width). The m has no effect on input, only output.
The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the Z data edit descriptor transfers w characters from an external field and assigns their
hexadecimal value to the corresponding I/O list item. The external field must contain only
hexadecimal digits (0 though 9 and A (a) through F(f)) or blanks.
If the value exceeds the range of the corresponding input list item, an error occurs.

Format Value Output

O6 32767 77777

O12 –32767 37777700001

O2 14261 **

O4 27 33

O5 10.5 41050

O4.2 7 07

O4.4 7 0007

∆

∆

∆∆

∆∆
11-13

11 Intel Fortran Language Reference
The following shows input using the Z edit descriptor:

Rules for Output Processing

On output, the Z data edit descriptor transfers the hexadecimal value of the corresponding I/O list
item, right-justified, to an external field that is w characters long.
The field consists of zero or more blanks, followed by an unsigned integer constant (consisting of
hexadecimal digits) with no leading zeros. A negative value is transferred in internal form without
a leading minus sign.
If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.
If m is zero, and the output list item has the value zero, the external field is filled with blanks.
The following shows output using the Z edit descriptor:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

Real and Complex Editing

Real and complex editing is controlled by the F, E, D, EN, ES, and G data edit descriptors.
If no field width (w) is specified for a real data edit descriptor, the system supplies default values.

Format Input Value

Z3 A94 A94

Z5 A23DEF A23DE

Z5 95.AF2 An error; the decimal point is invalid

Format Value Output

Z4 32767 7FFF

Z9 –32767 FFFF8001

Z2 16 10

Z4 –10.5 ****

Z3.3 2708 A94

Z6.4 2708 0A94

∆

∆∆
11-14

I/O Formatting 11

Real data edit descriptors can be affected by specified scale factors.

See Also
• “Scale Factor Editing (P)”
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”
• “Default Widths for Data Edit Descriptors” for details on system default values for data edit

descriptors

F Editing

The F data edit descriptor transfers real values. It takes the following form:
Fw.d

The value of d (the number of places after the decimal point) must not exceed the value of w (the
field width).
The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the F data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The external field data must be an integer or real
constant.
If the input field contains only an exponent letter or decimal point, it is treated as a zero value.
If the input field does not contain a decimal point or an exponent, it is treated as a real number of
w digits, with d digits to the right of the decimal point. (Leading zeros are added, if necessary.)
If the input field contains a decimal point, the location of that decimal point overrides the location
specified by the F descriptor.
If the field contains an exponent, that exponent is used to establish the magnitude of the value
before it is assigned to the list element.

NOTE. Do not use the real data edit descriptors when attempting to parse
textual input. These descriptors accept some forms that are purely textual as
valid numeric input values. For example, input values T and F are treated as
values –1.0 and 0.0, respectively, for .TRUE. and .FALSE..
11-15

11 Intel Fortran Language Reference
The following shows input using the F edit descriptor:

Rules for Output Processing

On output, the F data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.
The w must be greater than or equal to d+3 to allow for the following:
• A sign (optional if the value is positive and descriptor SP is not in effect)
• At least one digit to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
The following shows output using the F edit descriptor:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

E and D Editing

The E and D data edit descriptors transfer real values in exponential form. They take the following
form:

Ew.d[Ee]
Dw.d

Format Input Value

F8.5 123456789 123.45678

F8.5 –1234.567 –1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

Format Value Output

F8.5 2.3547188 2.35472

F9.3 8789.7361 8789.736

F2.1 51.44 **

F10.4 –23.24352 –23.2435

F5.2 325.013 ******

F5.2 –.2 –0.20

∆

∆

∆∆
11-16

I/O Formatting 11

For the E edit descriptor, the value of d (the number of places after the decimal point) plus e (the
number of digits in the exponent) must not exceed the value of w (the field width).
For the D edit descriptor, the value of d must not exceed the value of w.
The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the E and D data edit descriptors transfer w characters from an external field and assigns
their real value to the corresponding I/O list item. The E and D descriptors interpret and assign
input data in the same way as the F data edit descriptor (see “F Editing”).
The following shows input using the E and D edit descriptors:

Rules for Output Processing

On output, the E and D data edit descriptors transfer the real value of the corresponding I/O list
item, right-justified and rounded to d decimal positions, to an external field that is w characters
long.
The w should be greater than or equal to d+7 to allow for the following:
• A sign (optional if the value is positive and descriptor SP is not in effect)
• An optional zero to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The exponent
The exponent takes one of the following forms:

Format Input Value

E9.3 734.432E3 734432.0

E12.4 1022.43E–6 1022.43E–6

E15.3 52.3759663 52.3759663

E12.5 210.5271D+101

1. If the I/O list item is single-precision real, the E edit descriptor treats the D exponent indicator as an E indicator.

 210.5271E10

BZ,D10.2 12345 12345000.0D0

D10.2 123.45 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

∆∆

∆∆∆∆∆

∆∆∆∆∆

∆∆ ∆∆
11-17

11 Intel Fortran Language Reference
If the exponent value is too large to be converted into one of these forms, an error occurs.
The exponent field width (e) is optional for the E edit descriptor; if omitted, the default value is 2.
If e is specified, the w should be greater than or equal to d+e+5.

The following shows output using the E and D edit descriptors:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”
• “Scale Factor Editing (P)”

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponents

Ew.d E+nn E–nn

 +nnn –nnn

Ew.dEe E+n1n2...ne E–n1n2...ne

Dw.d D+nn or E+nn D–nn or E–nn

 +nnn –nnn

NOTE. The w can be as small as d+5 or d+e+3, if the optional fields for the
sign and the zero are omitted.

Format Value Output

E11.2 475867.222 0.48E+06

E11.5 475867.222 0.47587E+06

E12.3 0.00069 0.690E–03

E10.3 –0.5555 –0.556E+00

E5.3 56.12 *****

E14.5E4 –1.001 –1.10010E+0001

E13.3E6 0.000123 0.123E–000003

D14.3 0.0363 0.363D–1

D23.12 5413.87625793 0.541387625793D+04

D9.6 1.2 *********

exp 99≤

99 exp 999≤<

exp 10e 1–≤

exp 99≤

99 exp 999≤<

∆∆∆

∆∆∆

∆∆∆∆∆

∆∆∆∆∆
11-18

I/O Formatting 11

EN Editing

The EN data edit descriptor transfers values by using engineering notation. It takes the following
form:

ENw.d[Ee]
The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).
The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the EN data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The EN descriptor interprets and assigns input data in
the same way as the F data edit descriptor (see “F Editing”).
The following shows input using the EN edit descriptor:

Rules for Output Processing

On output, the EN data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.
The real value is output in engineering notation, where the decimal exponent is divisible by 3 and
the absolute value of the significand is greater than or equal to 1 and less than 1000 (unless the
output value is zero).
The w should be greater than or equal to d+9 to allow for the following:
• A sign (optional if the value is positive and descriptor SP is not in effect)
• One to three digits to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The exponent
The exponent takes one of the following forms:

Format Input Value

EN11.3 5.321E+00 5.32100

EN11.3 –600.00E–03 –.60000

EN12.3 3.150E–03 .00315

EN12.3 3.829E+03 3829.0

∆∆

∆∆∆

∆∆∆
11-19

11 Intel Fortran Language Reference

If the exponent value is too large to be converted into one of these forms, an error occurs.
The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the w
should be greater than or equal to d+e+5.
The following shows output using the EN edit descriptor:

See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

ES Editing

The ES data edit descriptor transfers values by using scientific notation. It takes the following
form:

ESw.d[Ee]
The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).
The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponents

ENw.d E+nn E–nn

 +nnn –nnn

ENw.dEe E+n1n2...ne E–n1n2...ne

Format Value Output

EN11.2 475867.222 475.87E+03

EN11.5 475867.222 ***********

EN12.3 0.00069 690.000E–06

EN10.3 –0.5555 **********

EN11.2 0.0 000.00E–03

exp 99≤

99 exp 999≤<

exp 10e 1–≤

∆

∆

∆

11-20

I/O Formatting 11

Rules for Input Processing

On input, the ES data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The ES descriptor interprets and assigns input data in
the same way as the F data edit descriptor (see “F Editing”).
The following shows input using the ES edit descriptor:

Rules for Output Processing

On output, the ES data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.
The real value is output in scientific notation, where the absolute value of the significand is greater
than or equal to 1 and less than 10 (unless the output value is zero).
The w should be greater than or equal to d+7 to allow for the following:
• A sign (optional if the value is positive and descriptor SP is not in effect)
• One digit to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The exponent
The exponent takes one of the following forms:

If the exponent value is too large to be converted into one of these forms, an error occurs.
The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the w
should be greater than or equal to d+e+5.
The following shows output using the ES edit descriptor:

Format Input Value

ES11.3 5.321E+00 5.32100

ES11.3 –6.000E–03 –.60000

ES12.3 3.150E–03 .00315

ES12.3 3.829E+03 3829.0

Edit
Descriptor

Absolute Value of
Exponent

Positive Form of
Exponent

Negative Form of
Exponents

ESw.d E+nn E–nn

 +nnn –nnn

ESw.dEe E+n1n2...ne E–n1n2...ne

∆∆

∆∆∆

∆∆∆

exp 99≤

99 exp 999≤<

exp 10e 1–≤
11-21

11 Intel Fortran Language Reference
See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”

G Editing

The G data edit descriptor generally transfers values of real type, but it can be used to transfer
values of any intrinsic type. It takes the following form:

Gw.d[Ee]
The value of d (the number of places after the decimal point) plus e (the number of digits in the
exponent) must not exceed the value of w (the field width).
The specified I/O list item can be of any intrinsic type.
When used to specify I/O for integer, logical, or character data, the edit descriptor follows the
same rules as Iw, Lw, and Aw, respectively, and d and e have no effect.

Rules for Real Input Processing

On input, the G data edit descriptor transfers w characters from an external field and assigns their
real value to the corresponding I/O list item. The G descriptor interprets and assigns input data in
the same way as the F data edit descriptor (see “F Editing”).

Rules for Real Output Processing

On output, the G data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.
The form in which the value is written is a function of the magnitude of the value, as described in
Table 11-2.

Format Value Output

ES11.2 473214.356 4.73E+05

ES11.5 473214.356 4.73214E+05

ES12.3 0.00069 6.900E–04

ES10.3 –0.5555 –5.555E–01

ES11.2 0.0 0.000E+00

∆∆∆

∆∆∆

∆

11-22

I/O Formatting 11

The 'b' is a blank following the numeric data representation. For Gw.d, n('b') is 4 blanks. For
Gw.dEe, n('b') is e+2 blanks.
The w should be greater than or equal to d+7 to allow for the following:
• A sign (optional if the value is positive and descriptor SP is not in effect)
• One digit to the left of the decimal point
• The decimal point
• The d digits to the right of the decimal point
• The 4-digit or e+2-digit exponent
If e is specified, the w should be greater than or equal to d+e+5.
The following shows output using the G edit descriptor and compares it to output using equivalent
F editing:

Table 11-2 Effect of Data Magnitude on G Format Conversions

Data Magnitude Equivalent Conversion

 Ew.d[Ee]

 F(w–n).(d–1), n('b')

 F(w–n).d, n('b')

 F(w–n).(d–1), n('b')

 F(w–n).(d–2), n('b')

 . .

 . .

 . .

 F(w–n).1, n('b')

 F(w–n).0, n('b')

 Ew.d[Ee]

Value Format Output with G Format Output with F

 0.01234567 G13.6 0.123457E–01 F13.6 0.012346

 –0.12345678 G13.6 –0.123457 F13.6 –0.123457

 1.23456789 G13.6 1.23457 F13.6 1.234568

 12.34567890 G13.6 12.3457 F13.6 12.345679

 123.45678901 G13.6 123.457 F13.6 123.456789

 –1234.56789012 G13.6 –1234.57 F13.6 –1234.567890

0 m 0.1 0.5 10 d– 1–×–< <

m 0=

0.1 0.5 10 d– 1–× m 1 0.5 10 d–×–<≤–

1 0.5 10 d–× m 10 0.5 10 d– 1+×–<≤–

10 0.5 10 d– 1+× m 100 0.5 10 d– 2+×–<≤–

10d 2– 0.5 10 2–× m 10d 1– 0.5 10 1–×–<≤–

10d 1– 0.5 10 1–× m 10d 0.5–<≤–

m 10d 0.5–≥

∆ ∆∆∆∆∆

∆∆∆∆ ∆∆∆∆

∆∆ ∆∆∆∆ ∆∆∆∆∆

∆∆ ∆∆∆∆ ∆∆∆∆

∆∆ ∆∆∆∆ ∆∆∆

∆ ∆∆∆∆ ∆
11-23

11 Intel Fortran Language Reference
See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”
• “Scale Factor Editing (P)”
• “I Editing” for details on the I data edit descriptor
• “Logical Editing (L)” for details on the L data edit descriptor
• “Character Editing (A)” for details on the A data edit descriptor

Complex Editing

A complex value is an ordered pair of real values. Complex editing is specified by a pair of real
edit descriptors, using any combination of the forms: Fw.d, Ew.d[Ee], Dw.d, ENw.d[Ee],
ESw.d[Ee], or Gw.d[Ee].

Rules for Input Processing

On input, the two successive fields are read and assigned to the corresponding complex I/O list
item as its real and imaginary part, respectively.
The following shows input using complex editing:

Rules for Output Processing

On output, the two parts of the complex value are transferred under the control of repeated or
successive real edit descriptors. The two parts are transferred consecutively without punctuation or
blanks, unless control or character string edit descriptors are specified between the pair of real edit
descriptors.
The following shows output using complex editing:

 12345.67890123 G13.6 12345.7 F13.6 12345.678901

 123456.78901234 G13.6 123457. F13.6 123456.789012

–1234567.89012345 G13.6 –0.123457E+07 F13.6 *************

Format Input Value

F8.5,F8.5 1234567812345.67 123.45678, 12345.67

E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Format Value Output

2F8.5 2.3547188, 3.456732 2.35472 3.45673

Value Format Output with G Format Output with F

∆∆ ∆∆∆∆ ∆

∆∆ ∆∆∆∆

∆ ∆
11-24

I/O Formatting 11
See Also
• “Forms for Data Edit Descriptors”
• “General Rules for Numeric Editing”
• “General Rules for Complex Constants”

Logical Editing (L)

The L data edit descriptor transfers logical values. It takes the following form:
Lw

The specified I/O list item must be of type logical or integer.
The G edit descriptor can be used to edit logical data; it follows the same rules as Lw.

Rules for Input Processing

On input, the L data edit descriptor transfers w characters from an external field and assigns their
logical value to the corresponding I/O list item. The value assigned depends on the external field
data, as follows:
• .TRUE. is assigned if the first nonblank character is .T, T, .t, or t. The logical constant .TRUE.

is an acceptable input form.
• .FALSE. is assigned if the first nonblank character is .F, F. .f, or f, or the entire field is filled

with blanks. The logical constant .FALSE. is an acceptable input form.
If an other value appears in the external field, an error occurs.

Rules for Output Processing

On output, the L data edit descriptor transfers the following to an external field that is w characters
long: w – 1 blanks, followed by a T or F (if the value is .TRUE. or .FALSE., respectively).
The following shows output using the L edit descriptor:

See Also

“Forms for Data Edit Descriptors”

E9.2,' ',E5.3 47587.222, 56.123 0.48E+06 , *****

Format Value Output

L5 .TRUE. T

L1 .FALSE. F

Format Value Output

∆∆ ∆ ∆ ∆

∆∆∆∆
11-25

11 Intel Fortran Language Reference
Character Editing (A)

The A data edit descriptor transfers character or Hollerith values. It takes the following form:
A[w]

If the corresponding I/O list item is of type character, character data is transferred. If the list item is
of any other type, Hollerith data is transferred.
The G edit descriptor can be used to edit character data; it follows the same rules as Aw.

Rules for Input Processing

On input, the A data edit descriptor transfers w characters from an external field and assigns them
to the corresponding I/O list item.
The maximum number of characters that can be stored depends on the size of the I/O list item, as
follows:
• For character data, the maximum size is the length of the corresponding I/O list item.
• For noncharacter data, the maximum size depends on the data type, as shown in Table 11-3.

Table 11-3 Size Limits for Noncharacter Data Using A Editing

I/O List Element Maximum Number of Character

BYTE 1

LOGICAL(1) or LOGICAL*1 1

LOGICAL(2) or LOGICAL*2 2

LOGICAL(4) or LOGICAL*4 4

LOGICAL(8) or LOGICAL*8 8

INTEGER(1) or INTEGER*1 1

INTEGER(2) or INTEGER*2 2

INTEGER(4) or INTEGER*4 4

INTEGER(8) or INTEGER*8 8

REAL(4) or REAL*4 4

DOUBLE PRECISION 8

REAL(8) or REAL*8 8

REAL(16) or REAL*16 16

COMPLEX(4) or COMPLEX*81 8

DOUBLE COMPLEX1 16

COMPLEX(8) or COMPLEX*161 16
11-26

I/O Formatting 11
If w is equal to or greater than the length (len) of the input item, the rightmost characters are
assigned to that item. The leftmost excess characters are ignored.
If w is less than len, or less than the number of characters that can be stored, w characters are
assigned to the list item, left-justified, and followed by trailing blanks.
The following shows input using the A edit descriptor:

Rules for Output Processing

On output, the A data edit descriptor transfers the contents of the corresponding I/O list item to an
external field that is w characters long.
If w is greater than the size of the list item, the data is transferred to the output field, right-justified,
with leading blanks. If w is less than or equal to the size of the list item, the leftmost w characters
are transferred.
The following shows output using the A edit descriptor:

COMPLEX(16) or COMPLEX*321 32

1. Complex values are treated as pairs of real numbers, so complex editing requires a pair of edit descriptors. (See
“Complex Editing”.)

Format Input Value Data Type

A6 PAGE # # CHARACTER(LEN=1)

A6 PAGE # E # CHARACTER(LEN=3)

A6 PAGE # PAGE # CHARACTER(LEN=6)

A6 PAGE # PAGE # CHARACTER(LEN=8)

A6 PAGE # # LOGICAL(1)

A6 PAGE # # INTEGER(2)

A6 PAGE # GE # REAL(4)

A6 PAGE # PAGE # REAL(8)

Format Value Output

A5 OHMS OHMS

A5 VOLTS VOLTS

A5 AMPERES AMPER

Table 11-3 Size Limits for Noncharacter Data Using A Editing

I/O List Element Maximum Number of Character

∆

∆ ∆

∆ ∆

∆ ∆ ∆∆

∆

∆ ∆

∆ ∆

∆ ∆ ∆∆

∆

11-27

11 Intel Fortran Language Reference
Default Widths for Data Edit Descriptors

If w (the field width) is omitted for the data edit descriptors, the system applies default values. For
the real data edit descriptors, the system also applies default values for d (the number of characters
to the right of the decimal point), and e (the number of characters in the exponent).
These defaults are based on the data type of the I/O list item, and are listed in Table 11-4.

Table 11-4 Default Widths for Data Edit Descriptors

Edit Descriptor Data Type of I/O List Item w:

I, B, O, Z, G BYTE 7

INTEGER(1), LOGICAL(1) 7

INTEGER(2), LOGICAL(2) 7

INTEGER(4), LOGICAL(4) 12

INTEGER(8), LOGICAL(8) 23

O, Z REAL(4) 12

REAL(8) 23

REAL(16) 44

CHARACTER*len MAX(7, 3*len)

L, G LOGICAL(1), LOGICAL(2) 2

LOGICAL(4), LOGICAL(8) 2

F, E, EN, ES, G, D REAL(4), COMPLEX(4) 15 d: 7 e: 2

REAL(8), COMPLEX(8) 25 d: 16 e: 2

REAL(16), COMPLEX(16) 42 d: 33 e: 3

A1, G

1. The default is the actual length of the corresponding I/O list item.

LOGICAL(1) 1

LOGICAL(2), INTEGER(2) 2

LOGICAL(4), INTEGER(4) 4

LOGICAL(8), INTEGER(8) 8

REAL(4), COMPLEX(4) 4

REAL(8), COMPLEX(8) 8

REAL(16), COMPLEX(16) 16

CHARACTER*len len
11-28

I/O Formatting 11

Terminating Short Fiel ds of Input Data

On input, an edit descriptor such as Fw.d specifies that w characters (the field width) are to be read
from the external field.
If the field contains fewer than w characters, the input statement will read characters from the next
data field in the record. You can prevent this by padding the short field with blanks or zeros, or by
using commas to separate the input data.

Padding Short Fields

You can use the OPEN statement specifier PAD='YES' to indicate blank padding for short fields of
input data. However, blanks can be interpreted as blanks or zeros, depending on which default
behavior is in effect at the time. Consider the following:
READ (2, '(I5)') J

If 3 is input for J, the value of J will be 30000 or 3 depending on which default behavior is in effect
(BLANK='NULL' or BLANK='ZERO'). This can give unexpected results.
To ensure that the desired behavior is in effect, explicitly specify the BN or BZ edit descriptor. For
example, the following ensures that blanks are interpreted as blanks (and not as zeros):
READ (2, '(BN, I5)') J

Using Commas to Separate Input Data

You can use a comma to terminate a short data field. The comma has no effect on the d part (the
number of characters to the right of the decimal point) of the specification.
The comma overrides the w specified for the I, B, O, Z, F, E, D, EN, ES, G, and L edit descriptors.
For example, suppose the following statements are executed:
 READ (5,100) I,J,A,B

100 FORMAT (2I6,2F10.2)

Suppose a record containing the following values is read:
1, -2, 1.0, 35

The following assignments occur:
I = 1

J = -2

A = 1.0

B = 0.35

A comma can only terminate fields less than w characters long. If a comma follows a field of w or
more characters, the comma is considered part of the next field.
11-29

11 Intel Fortran Language Reference
A null (zero-length) field is designated by two successive commas, or by a comma after a field of
w characters. Depending on the field descriptor specified, the resulting value assigned is 0, 0.0,
0.0D0, 0.0Q0, or .FALSE.

See Also

“General Rules for Numeric Editing” for details on input processing

Control Edit Descriptors
A control edit descriptor either directly determines how text is displayed or affects the conversions
performed by subsequent data edit descriptors.
This section describes the forms for control edit descriptors and the individual descriptors
themselves.

Forms for Control Edit Descriptors

A control edit descriptor takes one of the following forms:
c
cn
nc

c
Is one of the following format codes: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, \, $, and Q.
n
Is a number of character positions. It must be a positive integer literal constant or a variable format
expression. No kind parameter can be specified. It cannot be a named constant.
The range of n is 1 through 2147483647 (2**31–1) on Intel Itanium processors; 1 through 32767
(2**15–1) on IA-32 processors. Actual useful ranges may be constrained by record sizes (RECL)
and the file system.

Rules and Behavior

In general, control edit descriptors are nonrepeatable. The only exception is the slash (/) edit
descriptor, which can be preceded by a repeat specification.
The control edit descriptors have the following specific forms:

Positional: Tn, TLn, TRn, and nX

Sign: S, SP, and SS
11-30

I/O Formatting 11
The P edit descriptor is an exception to the general control edit descriptor syntax. It is preceded by
a scale factor, rather than a character position specifier.
Control edit descriptors can be grouped in parentheses and preceded by a group repeat
specification.

See Also
• “Format Specifications”
• “Nested and Group Repeat Specifications”

Positional Editing

The T, TL, TR, and X edit descriptors specify the position where the next character is transferred
to or from a record.
On output, these descriptors do not themselves cause characters to be transferred and do not affect
the length of the record. If characters are transferred to positions at or after the position specified
by one of these descriptors, positions skipped and not previously filled are filled with blanks. The
result is as if the entire record was initially filled with blanks.
The TR and X edit descriptors produce the same results.

T Editing

The T edit descriptor specifies a character position in an I/O record. It takes the following form:
Tn

The n is a positive integer literal constant (with no kind parameter) indicating the character
position of the record, relative to the left tab limit.
On input, the T descriptor positions the external record at the character position specified by n. On
output, the T descriptor indicates that data transfer begins at the nth character position of the
external record.

Examples

Suppose a file has a record containing the value ABC XYZ, and the following statements are
executed:
 READ (11,10) VALUE1, VALUE2

10 FORMAT (T7,A3,T1,A3)

Blank interpretation: BN and BZ

Scale factor: kP

Miscellaneous: :, /, \, $, and Q

∆∆∆
11-31

11 Intel Fortran Language Reference
The values read first are XYZ, then ABC.
Suppose the following statements are executed:
 PRINT 25

25 FORMAT (T51,'COLUMN 2',T21,'COLUMN 1')

The following line is printed at the positions indicated:
Position 20 Position 50

 | |

 COLUMN 1 COLUMN 2

Note that the first character of the record printed was reserved as a control character. (For more
information, see “Printing of Formatted Records”.)

TL Editing

The TL edit descriptor specifies a character position to the left of the current position in an I/O
record. It takes the following form:

TLn
The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the left of the current character.
If n is greater than or equal to the current position, the next character accessed is the first character
of the record.

TR Editing

The TR edit descriptor specifies a character position to the right of the current position in an I/O
record. It takes the following form:

TRn
The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.

X Editing

The X edit descriptor specifies a character position to the right of the current position in an I/O
record. It takes the following form:

nX
The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.
On output, the X edit descriptor does not output any characters when it appears at the end of a
format specification; for example:
11-32

I/O Formatting 11

 WRITE (6,99) K

99 FORMAT (' K=',I6,5X)

This example writes a record of only 9 characters. To cause n trailing blanks to be output at the end
of a record, specify a format of n(' ').

Sign Editing

The S, SP, and SS edit descriptors control the output of the optional plus (+) sign within numeric
output fields. These descriptors have no effect during execution of input statements.
Within a format specification, a sign editing descriptor affects all subsequent I, F, E, EN, ES, D,
and G descriptors until another sign editing descriptor occurs.

SP Editing

The SP edit descriptor causes the processor to produce a plus sign in any subsequent position
where it would be otherwise optional. It takes the following form:

SP

SS Editing

The SS edit descriptor causes the processor to suppress a plus sign in any subsequent position
where it would be otherwise optional. It takes the following form:

SS

S Editing

The S edit descriptor restores the plus sign as optional for all subsequent positive numeric fields. It
takes the following form:

S
The S edit descriptor restores to the processor the discretion of producing plus characters on an
optional basis.

Blank Editing

The BN and BZ descriptors control the interpretation of embedded and trailing blanks within
numeric input fields. These descriptors have no effect during execution of output statements.
Within a format specification, a blank editing descriptor affects all subsequent I, B, O, Z, F, E, EN,
ES, D, and G descriptors until another blank editing descriptor occurs.

∆

∆

11-33

11 Intel Fortran Language Reference
The blank editing descriptors override the effect of the BLANK specifier during execution of a
particular input data transfer statement. (For more information on the BLANK specifier in OPEN
statements, see “BLANK Specifier”.)

BN Editing

The BN edit descriptor causes the processor to ignore all embedded and trailing blanks in numeric
input fields. It takes the following form:

BN
The input field is treated as if all blanks have been removed and the remainder of the field is
right-justified. An all-blank field is treated as zero.

BZ Editing

The BZ edit descriptor causes the processor to interpret all embedded and trailing blanks in
numeric input fields as zeros. It takes the following form:

BZ

Scale Factor Editing (P)

The P edit descriptor specifies a scale factor, which moves the location of the decimal point in real
values and the two real parts of complex values. It takes the following form:

kP
The k is a signed (sign is optional if positive), integer literal constant specifying the number of
positions, to the left or right, that the decimal point is to move (the scale factor). The range of k is
–128 to 127.
At the beginning of a formatted I/O statement, the value of the scale factor is zero. If a scale
editing descriptor is specified, the scale factor is set to the new value, which affects all subsequent
real edit descriptors until another scale editing descriptor occurs.
To reinstate a scale factor of zero, you must explicitly specify 0P.
Format reversion does not affect the scale factor. (For more information on format reversion, see
“Interaction Between Format Specifications and I/O Lists”.)

Rules for Input Processing

On input, a positive scale factor moves the decimal point to the left, and a negative scale factor
moves the decimal point to the right. (On output, the effect is the reverse.)
11-34

I/O Formatting 11

On input, when an input field using an F, E, D, EN, ES, or G real edit descriptor contains an
explicit exponent, the scale factor has no effect. Otherwise, the internal value of the corresponding
I/O list item is equal to the external field data multiplied by 10–k. For example, a 2P scale factor
multiplies an input value by .01, moving the decimal point two places to the left. A –2P scale
factor multiplies an input value by 100, moving the decimal point two places to the right.
The following shows input using the P edit descriptor:

The scale factor must precede the first real edit descriptor associated with it, but it need not
immediately precede the descriptor. For example, the following all have the same effect:
(3P, I6, F6.3, E8.1)

(I6, 3P, F6.3, E8.1)

(I6, 3PF6.3, E8.1)

Note that if the scale factor immediately precedes the associated real edit descriptor, the comma
separator is optional.

Rules for Output Processing

On output, a positive scale factor moves the decimal point to the right, and a negative scale factor
moves the decimal point to the left. (On input, the effect is the reverse.)
On output, the effect of the scale factor depends on which kind of real editing is associated with it,
as follows:
• For F editing, the external value equals the internal value of the I/O list item multiplied by

10k. This changes the magnitude of the data.
• For E and D editing, the external decimal field of the I/O list item is multiplied by 10k, and k

is subtracted from the exponent. This changes the form of the data.
A positive scale factor decreases the exponent; a negative scale factor increases the exponent.
For a positive scale factor, k must be less than d + 2 or an output conversion error occurs.

• For G editing, the scale factor has no effect if the magnitude of the data to be output is within
the effective range of the descriptor (the G descriptor supplies its own scaling).
If the magnitude of the data field is outside G descriptor range, E editing is used, and the scale
factor has the same effect as E output editing.

• For EN and ES editing, the scale factor has no effect.

Format Input Value

3PE10.5 37.614 .037614

3PE10.5 37.614E2 3761.4

–3PE10.5 37.614 37614.0

∆∆∆ ∆

∆∆

∆∆∆∆
11-35

11 Intel Fortran Language Reference
The following shows output using the P edit descriptor:

The following shows a FORMAT statement containing a scale factor:
 DIMENSION A(6)

 DO 10 I=1,6

10 A(I) = 25.

 WRITE (6, 100) A

100 FORMAT(' ', F8.2, 2PF8.2, F8.2)

The preceding statements produce the following results:
 25.00 2500.00 2500.00

 2500.00 2500.00 2500.00

Slash Editing (/)

The slash edit descriptor terminates data transfer for the current record and starts data transfer for
a new record. It takes the following form:

[r]/
The r is a repeat specification. It must be a positive default integer literal constant; no kind
parameter can be specified.
The range of r is 1 through 2147483647 (2**31–1) on Intel Itanium processors; 1 through 32767
(2**15–1) on IA-32 processors. If r is omitted, it is assumed to be 1.
Multiple slashes cause the system to skip input records or to output blank records, as follows:
• When n consecutive slashes appear between two edit descriptors, n – 1 records are skipped on

input, or n – 1 blank records are output. The first slash terminates the current record. The
second slash terminates the first skipped or blank record, and so on.

• When n consecutive slashes appear at the beginning or end of a format specification, n
records are skipped or n blank records are output, because the opening and closing
parentheses of the format specification are themselves a record initiator and terminator,
respectively. For example, suppose the following statements are specified:

 WRITE (6,99)

99 FORMAT ('1',T51,'HEADING LINE'//T51,'SUBHEADING LINE'//)

Format Value Output

1PE12.3 –270.139 –2.701E+02

1P,E12.2 –270.139 –2.70E+02

–1PE12.2 –270.139 –0.03E+04

∆∆

∆∆∆

∆∆∆
11-36

I/O Formatting 11

The following lines are written:
 Column 50, top of page

 |

 HEADING LINE

(blank line)

 SUBHEADING LINE

(blank line)

(blank line)

Note that the first character of the record printed was reserved as a control character (see “Printing
of Formatted Records”).

Colon Editing (:)

The colon edit descriptor terminates format control if no more items are in the I/O list. For
example, suppose the following statements are specified:
 PRINT 1,3

 PRINT 2,13

1 FORMAT (' I=',I2,' J=',I2)

2 FORMAT (' K=',I2,:,' L=',I2)

The following lines are written:
I= 3 J=

K=13

If I/O list items remain, the colon edit descriptor has no effect.

Dollar Sign ($) and Backslash (\) Editing

The dollar sign and backslash edit descriptors modify the output of carriage control specified by
the first character of the record. They only affect carriage control for formatted files, and have no
effect on input.
If the first character of the record is a blank or a plus sign (+), the dollar sign and backslash
descriptors suppress carriage return (after printing the record).
For terminal device I/O, when this trailing carriage return is suppressed, a response follows output
on the same line. For example, suppose the following statements are specified:
 TYPE 100

100 FORMAT (' ENTER RADIUS VALUE ',$)

 ACCEPT 200, RADIUS

200 FORMAT (F6.2)

∆ ∆
11-37

11 Intel Fortran Language Reference
The following prompt is displayed:
ENTER RADIUS VALUE

Any response (for example, "12.") is then displayed on the same line:
ENTER RADIUS VALUE 12.

If the first character of the record is 0, 1, or ASCII NUL, the dollar sign and backslash descriptors
have no effect.
Consider the following:
 CHARACTER(20) MYNAME

 WRITE (*,9000)

9000 FORMAT ('0Please type your name:',\)

 READ (*,9001) MYNAME

9001 FORMAT (A20)

 WRITE (*,9002) ' ',MYNAME

9002 FORMAT (1X,A20)

This example advances two lines, prompts for input, awaits input on the same line as the prompt,
and prints the input.

Character Count Editing (Q)

The character count edit descriptor returns the remaining number of characters in the current input
record.
The corresponding I/O list item must be of type integer or logical. For example, suppose the
following statements are specified:
 READ (4,1000) XRAY, KK, NCHRS, (ICHR(I), I=1,NCHRS)

1000 FORMAT (E15.7,I4,Q,(80A1))

Two fields are read into variables XRAY and KK. The number of characters remaining in the
record is stored in NCHRS, and exactly that many characters are read into the array ICHR. (This
instruction can fail if the record is longer than 80 characters.)
If you place the character count descriptor first in a format specification, you can determine the
length of an input record.
On output, the character count edit descriptor causes the corresponding I/O list item to be skipped.

Character String Edit Descriptors
Character string edit descriptors control the output of character strings. The character string edit
descriptors are the character constant and H edit descriptor.
11-38

I/O Formatting 11

Although no string edit descriptor can be preceded by a repeat specification, a parenthesized group
of string edit descriptors can be preceded by a repeat specification (see “Nested and Group Repeat
Specifications”).

Character Constant Editing

The character constant edit descriptor causes a character string to be output to an external record.
It takes one of the following forms:

'string'
"string"

The string is a character literal constant; no kind parameter can be specified. Its length is the
number of characters between the delimiters; two consecutive delimiters are counted as one
character.
To include an apostrophe in a character constant that is enclosed by apostrophes, place two
consecutive apostrophes ('') in the format specification; for example:
50 FORMAT ('TODAY''S DATE IS: ',I2,'/',I2,'/',I2)

Similarly, to include a quotation mark in a character constant that is enclosed by quotation marks,
place two consecutive quotation marks ("") in the format specification.

See Also
• “Format Specifications”
• Character Constants in “Character Data Type”

H Editing

The H edit descriptor transfers data between the external record and the H edit descriptor itself.
The H edit descriptor is a deleted feature in Fortran 95; it was obsolescent in Fortran 90. Intel
Fortran fully supports features deleted in Fortran 95.
An H edit descriptor has the form of a Hollerith constant, as follows:

nHstring
n
Is an unsigned, positive default integer literal constant (with no kind parameter) indicating the
number of characters in string (including blanks and tabs).
The range of n is 1 through 2147483647 (2**31–1) on Intel Itanium processors; 1 through 32767
(2**15–1) on IA-32 processors. Actual useful ranges may be constrained by record sizes (RECL)
and the file system.

∆ ∆ ∆
11-39

11 Intel Fortran Language Reference
string
Is a string of printable ASCII characters.
On input, the H edit descriptor transfers n characters from the external field to the edit descriptor.
The first character appears immediately after the letter H. Any characters in the edit descriptor
before input are replaced by the input characters.
On output, the H edit descriptor causes n characters following the letter H to be output to an
external record.

See Also
• “Format Specifications”
• Appendix A, “Deleted and Obsolescent Language Features” for details on obsolescent

features in Fortran 95 and Fortran 90

Nested and Group Repeat Specifications
Format specifications can include nested format specifications enclosed in parentheses; for
example:
15 FORMAT (E7.2,I8,I2,(A5,I6))

35 FORMAT (A6,(L8(3I2)),A)

A group repeat specification can precede a nested group of edit descriptors. For example, the
following statements are equivalent, and the second statement shows a group repeat specification:
50 FORMAT (I8,I8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7,I5,I5)

50 FORMAT (2I8,3(F8.3,E15.7),2I5)

If a nested group does not show a repeat count, a default count of 1 is assumed.
Normally, the string edit descriptors and control edit descriptors cannot be repeated (except for
slash), but any of these descriptors can be enclosed in parentheses and preceded by a group repeat
specification. For example, the following statements are valid:
76 FORMAT ('MONTHLY',3('TOTAL'))

100 FORMAT (I8,4(T7),A4)

See Also
• “Forms for Data Edit Descriptors” for details on repeat specifications for data edit descriptors
• “Interaction Between Format Specifications and I/O Lists” for details on group repeat

specifications and format reversion
11-40

I/O Formatting 11

Variable Format Expressions

A variable format expression is a numeric expression enclosed in angle brackets (<>) that can be
used in a FORMAT statement or in character format specifications.
The numeric expression can be any valid Fortran expression, including function calls and
references to dummy arguments.
If the expression is not of type integer, it is converted to integer type before being used.
If the value of a variable format expression does not obey the restrictions on magnitude applying
to its use in the format, an error occurs.
Variable format expressions cannot be used with the H edit descriptor, and they are not allowed in
character format specifications.
Variable format expressions are evaluated each time they are encountered in the scan of the
format. If the value of the variable used in the expression changes during the execution of the I/O
statement, the new value is used the next time the format item containing the expression is
processed.

Examples

Consider the following statement:
FORMAT (I<J+1>)

When the format is scanned, the preceding statement performs an I (integer) data transfer with a
field width of J+1. The expression is reevaluated each time it is encountered in the normal format
scan.
Consider the following statements:
 DIMENSION A(5)

 DATA A/1.,2.,3.,4.,5./

 DO 10 I=1,10

 WRITE (6,100) I

100 FORMAT (I<MAX(I,5)>)

10 CONTINUE

 DO 20 I=1,5

 WRITE (6,101) (A(I), J=1,I)

101 FORMAT (<I>F10.<I-1>)

20 CONTINUE

END

On execution, these statements produce the following output:
11-41

11 Intel Fortran Language Reference
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1.

 2.0 2.0

 3.00 3.00 3.00

 4.000 4.000 4.000 4.000

 5.0000 5.0000 5.0000 5.0000 5.0000

See Also

“Interaction Between Format Specifications and I/O Lists”

Printing of Formatted Records
On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect or the file is
being processed by the fortpr format utility, the first character of a record transmitted to a line
printer or terminal is typically a character that is not printed, but used to control vertical spacing.
Table 11-5 lists the valid control characters for printing.

Table 11-5 Control Characters for Printing

Character Meaning Effect

+ Overprinting Outputs the record (at the current position in the current
line) and a carriage return.

 One line feed Outputs the record (at the beginning of the following
line) and a carriage return.

0 Two line feeds Outputs the record (after skipping a line) and a carriage
return.

1 Next page Outputs the record (at the beginning of a new page) and
a carriage return.

$ Prompting Outputs the record (at the beginning of the following
line), but no carriage return.

∆

11-42

I/O Formatting 11
Any other character is interpreted as a blank and is deleted from the print line. If you do not
specify a control character for printing, the first character of the record is not printed.

Interaction Between Format Specifications and I/O Lists
Format control begins with the execution of a formatted I/O statement. Each action of format
control depends on information provided jointly by the next item in the I/O list (if one exists) and
the next edit descriptor in the format specification.
Both the I/O list and the format specification are interpreted from left to right, unless repeat
specifications or implied-DO lists appear.
If an I/O list specifies at least one list item, at least one data edit descriptor (I, B, O, Z, F, E, EN,
ES, D, G, L, or A) or the Q edit descriptor must appear in the format specification; otherwise, an
error occurs.
Each data edit descriptor (or Q edit descriptor) corresponds to one item in the I/O list, except that
an I/O list item of type complex requires the interpretation of two F, E, EN, ES, D, or G edit
descriptors. No I/O list item corresponds to a control edit descriptor (X, P, T, TL, TR, SP, SS, S,
BN, BZ, $, or :), or a character string edit descriptor (H and character constants). For character
string edit descriptors, data transfer occurs directly between the external record and the format
specification.
When format control encounters a data edit descriptor in a format specification, it determines
whether there is a corresponding I/O list item specified. If there is such an item, it is transferred
under control of the edit descriptor, and then format control proceeds. If there is no corresponding
I/O list item, format control terminates.
If there are no other I/O list items to be processed, format control also terminates when the
following occurs:
• A colon edit descriptor is encountered.
• The end of the format specification is reached.
If additional I/O list items remain, part or all of the format specification is reused in format
reversion.
In format reversion, the current record is terminated and a new one is initiated. Format control
then reverts to one of the following (in order) and continues from that point:

ASCII NUL1 Overprinting with no
advance

Outputs the record (at the current position in the current
line), but no carriage return.

1. Specify as CHAR(0).

Table 11-5 Control Characters for Printing

Character Meaning Effect
11-43

11 Intel Fortran Language Reference
1. The group repeat specification whose opening parenthesis matches the next-to-last closing
parenthesis of the format specification

2. The initial opening parenthesis of the format specification
Format reversion has no effect on the scale factor, the sign control edit descriptors (S, SP, or SS),
or the blank interpretation edit descriptors (BN or BZ).

Example

The data in file FOR002.DAT is to be processed 2 records at a time. Each record starts with a
number to be put into an element of a vector B, followed by 5 numbers to be put in a row in matrix
A.
FOR002.DAT contains the following data:
001 0101 0102 0103 0104 0105

002 0201 0202 0203 0204 0205

003 0301 0302 0303 0304 0305

004 0401 0402 0403 0404 0405

005 0501 0502 0503 0504 0505

006 0601 0602 0603 0604 0605

007 0701 0702 0703 0704 0705

008 0801 0802 0803 0804 0805

009 0901 0902 0903 0904 0905

010 1001 1002 1003 1004 1005

Example 11-1 shows how several different format specifications interact with I/O lists to process
data in file FOR002.DAT.

Example 11-1 Interaction Between Format Specifications and I/O Lists

 INTEGER I, J, A(2,5), B(2)

 OPEN (unit=2, access='sequential', file='FOR002.DAT')

1 READ (2,100) (B(I), (A(I,J), J=1,5),I=1,2)

2 100 FORMAT (2 (I3, X, 5(I4,X), /))

3 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)
 999 FORMAT (' B is ', 2(I3, X), '; A is', /

 1 (' ', 5 (I4, X)))

4 READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2)
 200 FORMAT (2 (I3, X, 5(I4,X), :/))
11-44

I/O Formatting 11
1 This statement reads B(1); then A(1,1) through A(1,5); then B(2) and A(2,1) through A(2,5).
The first record read (starting with 001) starts the processing of the I/O list.
2 There are two records, each in the format I3, X, 5(I4, X). The slash (/) forces the reading of the
second record after A(1,5) is processed. It also forces the reading of the third record after A(2,5) is
processed; no data is taken from that record.
3 This statement produces the following output:

B is 1 2 ; A is

 101 102 103 104 105

 201 202 203 204 205

4 This statement reads the record starting with 004. The slash (/) forces the reading of the next
record after A(1,5) is processed. The colon (:) stops the reading after A(2,5) is processed, but
before the slash (/) forces another read.
5 This statement produces the following output:

B is 4 5 ; A is

 401 402 403 404 405

 501 502 503 504 505

6 This statement reads the record starting with 006. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I3.
7 This statement produces the following output:

B is 6 7 ; A is

 601 602 603 604 605

 701 702 703 704 705

8 This statement reads the record starting with 008. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I4.

5 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

6 READ (2,300) (B(I), (A(I,J), J=1,5),I=1,2)
 300 FORMAT ((I3, X, 5(I4,X)))

7 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

8 READ (2,400) (B(I), (A(I,J), J=1,5),I=1,2)
 400 FORMAT (I3, X, 5(I4,X))

9 WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)
 END

Example 11-1 Interaction Between Format Specifications and I/O Lists
11-45

11 Intel Fortran Language Reference
9 This statement produces the following output:
B is 8 90 ; A is

 801 802 803 804 805

 9010 9020 9030 9040 100

The record 009 0901 0902 0903 0904 0905 is processed with I4 as "009 " for B(2), which is 90. X
skips the next "0". Then "901 " is processed for A(2,1), which is 9010, "902 " for A(2,2), "903 "
for A(2,3), and "904 " for A(2,4). The repeat specification of 5 is now exhausted and the format
ends. Format reversion causes another record to be read and starts format processing at the left
parenthesis before the I4, so "010 " is read for A(2,5), which is 100.

See Also
• “Data Edit Descriptors”
• “Control Edit Descriptors”
• “Character String Edit Descriptors”
• “Scale Factor Editing (P)”
• “Character Count Editing (Q)” for details on the Q edit descriptor

11-46

File Operation I/O
Statements
 12
This chapter contains information on the following file connection, inquiry, and positioning
statements:
• The “BACKSPACE Statement”

Positions a sequential file at the beginning of the preceding record.
• The “CLOSE Statement”

Terminates the connection between a logical unit and a file or device.
• The “DELETE Statement”

Deletes a record from a relative file.
• The “ENDFILE Statement”

For sequential files, writes an end-of-file record to the file and positions the file after this
record. For direct access files, truncates the file after the current record.

• The “INQUIRE Statement”
Requests information on the status of specified properties of a file or logical unit.

• The “OPEN Statement”
Connects a Fortran logical unit to a file or device and declares attributes for read and write
operations.

• The “REWIND Statement”
Positions a sequential file at the beginning of the file.

• The “UNLOCK Statement”
Frees a record in a relative or sequential file that was locked by a previous READ statement.

See Also
• Chapter 10, “Data Transfer I/O Statements”
• “I/O Control List” for details on control specifiers
• Your user’s guide for details on record position, advancement, and transfer
12-1

12 Intel Fortran Language Reference
BACKSPACE Statement
The BACKSPACE statement positions a sequential file at the beginning of the preceding record,
making it available for subsequent I/O processing. It takes one of the following forms:

BACKSPACE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
BACKSPACE io-unit

io-unit
Is an external unit specifier.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.

Rules and Behavior

The I/O unit number must specify an open file on disk or magnetic tape.
Backspacing from the current record n is performed by rewinding to the start of the file and then
performing n–1 successive READs to reach the previous record.
A BACKSPACE statement must not be specified for a file that is open for direct or append access,
because n is not available to the Fortran I/O system.
If a file is already positioned at the beginning of a file, a BACKSPACE statement has no effect.

Examples

The following statement repositions the file connected to I/O unit 4 back to the preceding record:
BACKSPACE 4

Consider the following statement:
BACKSPACE (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 back to the preceding record. If an error
occurs, control is transferred to the statement labeled 10, and a positive integer is stored in variable
IOS.

See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
12-2

File Operation I/O Statements 12

• “ACCESS Specifier” for details on append access
• Your user’s guide for details on record position, advancement, and transfer

CLOSE Statement
The CLOSE statement disconnects a file from a unit. It takes the following form:

CLOSE ([UNIT=]io-unit [, =p] [, ERR=label] [, IOSTAT=i-var])
io-unit
Is an external unit specifier.
p
Is a scalar default character expression indicating the status of the file after it is closed. It has one
of the following values:

The default is 'DELETE' for scratch files and QuickWin applications (W*32, W*64). For all other
files, the default is 'KEEP'.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.

Rules and Behavior

The CLOSE statement specifiers can appear in any order. An I/O unit must be specified, but the
UNIT keyword is optional if the unit specifier is the first item in the I/O control list.

'KEEP' or 'SAVE' Retains the file after the unit closes.
'DELETE' Deletes the file after the unit closes.1

1. Unless OPEN(READONLY) is in effect.

'PRINT'2

2. Use only on sequential files.

Submits the file to the line printer spooler, then retains it.
'PRINT/DELETE'2 Submits the file to the line printer spooler, then deletes it.
'SUBMIT' Forks a process to execute the file.
'SUBMIT/DELETE' Forks a process to execute the file, then deletes the file after the fork is

completed.

STATUS
DISPOSE

DISP

12-3

12 Intel Fortran Language Reference
The status specified in the CLOSE statement supersedes the status specified in the OPEN
statement, except that a file opened as a scratch file cannot be saved, printed, or submitted, and a
file opened for read-only access cannot be deleted.
If a CLOSE statement is specified for a unit that is not open, it has no effect.

Example

Consider the following statement:
CLOSE (UNIT=J, STATUS='DELETE', ERR=99)

This statement closes the file connected to unit J and deletes it. If an error occurs, control is
transferred to the statement labeled 99.

See Also
• “READONLY Specifier”
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier

DELETE Statement
The DELETE statement deletes a record from a relative file. It takes the following form:

DELETE ([UNIT=]io-unit, REC=r [, ERR=label] [, IOSTAT=i-var])
io-unit
Is an external unit specifier.
r
Is a scalar numeric expression indicating the record number to be deleted.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.

Rules and Behavior

In a relative file, the DELETE statement deletes the direct access record specified by r. If REC=r
is omitted, the current record is deleted. When the direct access record is deleted, any associated
variable is set to the next record number.
12-4

File Operation I/O Statements 12

The DELETE statement logically removes the appropriate record from the specified file by
locating the record and marking it as a deleted record. It then frees the position formerly occupied
by the deleted record so that a new record can be written at that position.

Examples

The following statement deletes the fifth record in the file connected to I/O unit 10:
DELETE (10, REC=5)

Suppose the following statement is specified:
DELETE (UNIT=9, REC=10, IOSTAT=IOS, ERR=20)

The tenth record in the file connected to unit 9 is deleted. If an error occurs, control is transferred
to the statement labeled 20, and a positive integer is stored in the variable IOS.

See Also
• “Alternative Syntax for the DELETE Statement”
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
• “Record Specifier” for details on the REC control specifier
• Your user’s guide for details on compiler options

ENDFILE Statement
For sequential files, the ENDFILE statement writes an end-of-file record to the file and positions
the file after this record (the terminal point). For direct access files, the ENDFILE statement
truncates the file after the current record.
An ENDFILE statement takes one of the following forms:

ENDFILE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
ENDFILE io-unit

io-unit
Is an external unit specifier.

NOTE. You must use the compiler option specifying OpenVMS defaults for
READs to detect that a record has been deleted.
12-5

12 Intel Fortran Language Reference
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.

Rules and Behavior

If the unit specified in the ENDFILE statement is not open, the default file is opened for
unformatted output.
An end-of-file record can be written only to files with sequential organization that are accessed as
formatted-sequential or unformatted-segmented sequential files.
An ENDFILE statement performed on a direct access file always truncates the file.
End-of-file records should not be written in files that are read by programs written in a language
other than Fortran.

Examples

The following statement writes an end-of-file record to I/O unit 2:
ENDFILE 2

Suppose the following statement is specified:
ENDFILE (UNIT=9, IOSTAT=IOS, ERR=10)

An end-of-file record is written to the file connected to unit 9. If an error occurs, control is
transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
• Your user’s guide for details on record position, advancement, and transfer

NOTE. If you use the compiler option specifying OpenVMS defaults and an
ENDFILE is performed on a sequential unit, an actual one byte record
containing a CTRL+Z is written to the file. If this option is not specified, an
internal ENDFILE flag is set and the file is truncated. The option does not
affect ENDFILE on relative files; such files are truncated.
12-6

File Operation I/O Statements 12

INQUIRE Statement

The INQUIRE statement returns information on the status of specified properties of a file or
logical unit. It takes one of the following forms:
Inquiring by File:

INQUIRE (FILE=name [, ERR=label] [, IOSTAT=i-var] [, DEFAULTFILE=def], slist)
Inquiring by Unit:

INQUIRE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var], slist)
Inquiring by Output List:

INQUIRE (IOLENGTH=len) out-item-list
name
Is a scalar default character expression specifying the name of the file for inquiry.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.
slist
Is one or more inquiry specifiers. Each specifier can appear only once. (The inquiry specifiers are
described individually in the following sections.)
def
Is a scalar default character expression specifying a default file pathname string. (For more
information on the DEFAULTFILE specifier, see “DEFAULTFILE Specifier”.)
io-unit
Is an external unit specifier.
The unit does not have to exist, nor does it need to be connected to a file. If the unit is connected to
a file, the inquiry encompasses both the connection and the file.
len
Is a scalar integer variable that is assigned a value corresponding to the length of an unformatted,
direct-access record resulting from the use of the out-item-list in a WRITE statement.
The value is suitable to use as a RECL specifier value in an OPEN statement that connects a file
for unformatted, direct access.
12-7

12 Intel Fortran Language Reference
The unit of the value is 4-byte longwords, by default. However, if you specify the compiler option
specifying record length in bytes, the unit is bytes.
out-item-list
Is a list of one or more output items (see “I/O Lists”).

Rules and Behavior

The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and inquiry specifiers
can appear anywhere within the parentheses following INQUIRE. However, if the UNIT keyword
is omitted, the io-unit must appear first in the list.
An INQUIRE statement can be executed before, during, or after a file is connected to a unit. The
specifier values returned are those that are current when the INQUIRE statement executes.
To get file characteristics, specify the INQUIRE statement after opening the file.

Examples

The following are examples of INQUIRE statements:
INQUIRE (FILE='FILE_B', EXIST=EXT)

INQUIRE (4, FORM=FM, IOSTAT=IOS, ERR=20)

INQUIRE (IOLENGTH=LEN) A, B

In the last statement, you can use the length returned in LEN as the value for the RECL specifier in
an OPEN statement that connects a file for unformatted direct access. If you have already
specified a value for RECL, you can check LEN to verify that A and B are less than or equal to the
record length you specified.

See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
• “RECL Specifier” for details on using the specifier in OPEN statements
• “FILE Specifier” for details on using the specifier in OPEN statements
• “DEFAULTFILE Specifier” for details on using the specifier in OPEN statements

ACCESS Specifier

The ACCESS specifier asks how a file is connected. It takes the following form:
ACCESS = acc
12-8

File Operation I/O Statements 12

acc
Is a scalar default character variable that is assigned one of the following values:

ACTION Specifier

The ACTION specifier asks which I/O operations are allowed for a file. It takes the following
form:

ACTION = act
act
Is a scalar default character variable that is assigned one of the following values:

BINARY Specifier (W*32, W*64)

The BINARY specifier asks whether a file is connected to a binary file. It takes the following
form:

BINARY = bin
bin
Is a scalar default character variable that is assigned one of the following values:

BLANK Specifier

The BLANK specifier asks what type of blank control is in effect for a file. It takes the following
form:

'SEQUENTIAL' If the file is connected for sequential access
'DIRECT' If the file is connected for direct access
'UNDEFINED' If the file is not connected

'READ' If the file is connected for input only
'WRITE' If the file is connected for output only
'READWRITE' If the file is connected for both input and output
'UNDEFINED' If the file is not connected

'YES' If the file is connected to a binary file
'NO' If the file is connected to a nonbinary file
'UNKNOWN' If the file is not connected
12-9

12 Intel Fortran Language Reference
BLANK = blnk
blnk
Is a scalar default character variable that is assigned one of the following values:

BLOCKSIZE Specifier

The BLOCKSIZE specifier asks about the I/O buffer size. It takes the following form:
BLOCKSIZE = bks

bks
Is a scalar integer variable.
The bks is assigned the current size of the I/O buffer. If the unit or file is not connected, the value
assigned is zero.

BUFFERED Specifier

The BUFFERED specifier asks whether run-time buffering is in effect. It takes the following
form:

BUFFERED = bf
bf
Is a scalar default character variable that is assigned one of the following values:

CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier asks what type of carriage control is in effect for a file. It
takes the following form:

CARRIAGECONTROL = cc

'NULL' If null blank control is in effect for the file

'ZERO' If zero blank control is in effect for the file

'UNDEFINED' If the file is not connected, or it is not connected for formatted data
transfer

'YES' If the file or unit is connected and buffering is in effect
'NO' If the file or unit is connected and buffering is not in effect
'UNKNOWN' If the file or unit is not connected
12-10

File Operation I/O Statements 12

cc
Is a scalar default character variable that is assigned one of the following values:

CONVERT Specifier

The CONVERT specifier asks what type of data conversion is in effect for a file. It takes the
following form:

CONVERT = fm
fm
Is a scalar default character variable that is assigned one of the following values:

'FORTRAN' If the file is connected with Fortran carriage control in effect
'LIST' If the file is connected with implied carriage control in effect
'NONE' If the file is connected with no carriage control in effect
'UNKNOWN' If the file is not connected

'LITTLE_ENDIAN' If the file is connected with little endian integer and IEEE*
floating-point data conversion in effect

'BIG_ENDIAN' If the file is connected with big endian integer and IEEE floating-point
data conversion in effect

'CRAY' If the file is connected with big endian integer and CRAY*
floating-point data conversion in effect

'FDX' If the file is connected with little endian integer and VAX* processor
F_floating, D_floating, and IEEE X_floating data conversion in effect

'FGX' If the file is connected with little endian integer and VAX processor
F_floating, G_floating, and IEEE X_floating data conversion in effect

'IBM' If the file is connected with big endian integer and IBM* System\370
floating-point data conversion in effect

'VAXD' If the file is connected with little endian integer and VAX processor
F_floating, D_floating, and H_floating in effect

'VAXG' If the file is connected with little endian integer and VAX processor
F_floating, G_floating, and H_floating in effect

'NATIVE' If the file is connected with no data conversion in effect

'UNKNOWN' If the file or unit is not connected for unformatted data transfer
12-11

12 Intel Fortran Language Reference
DELIM Specifier

The DELIM specifier asks how character constants are delimited in list-directed and namelist
output. It takes the following form:

DELIM = del
del
Is a scalar default character variable that is assigned one of the following values:

DIRECT Specifier

The DIRECT specifier asks whether a file is connected for direct access. It takes the following
form:

DIRECT = dir
dir
Is a scalar default character variable that is assigned one of the following values:

EXIST Specifier

The EXIST specifier asks whether a file exists and can be opened. It takes the following form:
EXIST = ex

ex
Is a scalar default logical variable that is assigned one of the following values:

'APOSTROPHE' If apostrophes are used to delimit character constants in list-directed
and namelist output

'QUOTE' If quotation marks are used to delimit character constants in
list-directed and namelist output

'NONE' If no delimiters are used
'UNDEFINED' If the file is not connected, or is not connected for formatted data

transfer

'YES' If the file is connected for direct access
'NO' If the file is not connected for direct access
'UNKNOWN' If the file is not connected

.TRUE. If the specified file exists and can be opened, or if the specified unit
exists
12-12

File Operation I/O Statements 12
The unit exists if it is a number in the range allowed by the processor.

FORM Specifier

The FORM specifier asks whether a file is connected for formatted, unformatted, or binary (W*32,
W*64) data transfer. It takes the following form:

FORM = fm
fm
Is a scalar default character variable that is assigned one of the following values:

FORMATTED Specifier

The FORMATTED specifier asks whether a file is connected for formatted data transfer. It takes
the following form:

FORMATTED = fmt
fmt
Is a scalar default character variable that is assigned one of the following values:

IOFOCUS Specifier (W*32, W*64)

The IOFOCUS specifier asks if the indicated unit is the active window in a QuickWin application.
It takes the following form:

IOFOCUS = iof

.FALSE. If the specified file or unit does not exist or if the file exists but cannot
be opened

'FORMATTED' If the file is connected for formatted data transfer
'UNFORMATTED' If the file is connected for unformatted data transfer
'BINARY' If the file is connected for binary data transfer
'UNDEFINED' If the file is not connected

'YES' If the file is connected for formatted data transfer
'NO' If the file is not connected for formatted data transfer
'UNKNOWN' If the processor cannot determine whether the file is connected for

formatted data transfer
12-13

12 Intel Fortran Language Reference
iof
Is a scalar default logical variable that is assigned one of the following values:

If you use this specifier with a non-Windows* application, an error occurs.

MODE Specifier

MODE is a nonstandard synonym for ACTION (see “ACTION Specifier”).

NAME Specifier

The NAME specifier returns the name of a file. It takes the following form:
NAME = nme

nme
Is a scalar default character variable that is assigned the name of the file to which the unit is
connected. If the file does not have a name, nme is undefined.
The value assigned to nme is not necessarily the same as the value given in the FILE specifier.
However, the value that is assigned is always valid for use with the FILE specifier in an OPEN
statement, unless the value has been truncated in a way that makes it unacceptable. (Values are
truncated if the declaration of nme is too small to contain the entire value.)

See Also

The appropriate manual in your operating system documentation set for details on the maximum
size of file pathnames

NAMED Specifier

The NAMED specifier asks whether a file is named. It takes the following form:
NAMED = nmd

.TRUE. If the specified unit is the active window in a QuickWin application

.FALSE. If the specified unit is not the active window in a QuickWin
application

NOTE. The FILE and NAME specifiers are synonyms when used with the
OPEN statement, but not when used with the INQUIRE statement.
12-14

File Operation I/O Statements 12

nmd
Is a scalar default logical variable that is assigned one of the following values:

NEXTREC Specifier

The NEXTREC specifier asks where the next record can be read or written in a file connected for
direct access. It takes the following form:

NEXTREC = nr
nr
Is a scalar integer variable that is assigned a value as follows:
• If the file is connected for direct access and a record (r) was previously read or written, the

value assigned is r + 1.
• If no record has been read or written, the value assigned is 1.
• If the file is not connected for direct access, or if the file position cannot be determined

because of an error condition, the value assigned is zero.
• If the file is connected for direct access and a REWIND has been performed on the file, the

value assigned is 1.

NUMBER Specifier

The NUMBER specifier asks the number of the unit connected to a file. It takes the following
form:

NUMBER = num
num
Is a scalar integer variable.
The num is assigned the number of the unit currently connected to the specified file. If there is no
unit connected to the file, the value assigned is –1.

OPENED Specifier

The OPENED specifier asks whether a file is connected. It takes the following form:
OPENED = od

.TRUE. If the file has a name

.FALSE. If the file does not have a name
12-15

12 Intel Fortran Language Reference
od
Is a scalar default logical variable that is assigned one of the following values:

ORGANIZATION Specifier

The ORGANIZATION specifier asks how the file is organized. It takes the following form:
ORGANIZATION = org

org
Is a scalar default character variable that is assigned one of the following values:

PAD Specifier

The PAD specifier asks whether blank padding was specified for the file. It takes the following
form:

PAD = pd
pd
Is a scalar default character variable that is assigned one of the following values:

POSITION Specifier

The POSITION specifier asks the position of the file. It takes the following form:
POSITION = pos

pos
Is a scalar default character variable that is assigned one of the following values:

.TRUE. If the specified file or unit is connected

.FALSE. If the specified file or unit is not connected

'SEQUENTIAL' If the file is a sequential file
'RELATIVE' If the file is a relative file
'UNKNOWN' If the processor cannot determine the file’s organization

'YES' If the file or unit is not connected, or it was connected with PAD='YES'
'NO' If the file or unit was connected with PAD='NO'

'REWIND' If the file is connected with its position at its initial point
12-16

File Operation I/O Statements 12
See Also

Your user’s guide for details on record position, advancement, and transfer

READ Specifier

The READ specifier asks whether a file can be read. It takes the following form:
READ = rd

rd
Is a scalar default character variable that is assigned one of the following values:

READWRITE Specifier

The READWRITE specifier asks whether a file can be both read and written to. It takes the
following form:

READWRITE = rdwr
rdwr
Is a scalar default character variable that is assigned one of the following values:

RECL Specifier

The RECL specifier asks the maximum record length for a file. It takes the following form:

'APPEND' If the file is connected with its position at its terminal point (or before
its end-of-file record, if any)

'ASIS' If the file is connected without changing its position
'UNDEFINED' If the file is not connected, or is connected for direct access data

transfer and a REWIND statement has not been performed on the unit

'YES' If the file can be read
'NO' If the file cannot be read
'UNKNOWN' If the processor cannot determine whether the file can be read

'YES' If the file can be both read and written to
'NO' If the file cannot be both read and written to
'UNKNOWN' If the processor cannot determine whether the file can be both read and

written to
12-17

12 Intel Fortran Language Reference
RECL = rcl
rcl
Is a scalar integer variable that is assigned a value as follows:
• If the file or unit is connected, the value assigned is the maximum record length allowed.
• If the file does not exist, or is not connected, the value assigned is zero.
The assigned value is expressed in 4-byte units if the file is currently (or was previously)
connected for unformatted data transfer; otherwise, the value is expressed in bytes.

RECORDTYPE Specifier

The RECORDTYPE specifier asks which type of records are in a file. It takes the following form:
RECORDTYPE = rtype

rtype
Is a scalar default character variable that is assigned one of the following values:

SEQUENTIAL Specifier

The SEQUENTIAL specifier asks whether a file is connected for sequential access. It takes the
following form:

SEQUENTIAL = seq
seq
Is a scalar default character variable that is assigned one of the following values:

'FIXED' If the file is connected for fixed-length records
'VARIABLE' If the file is connected for variable-length records
'SEGMENTED' If the file is connected for unformatted sequential data transfer using

segmented records
'STREAM' If the file’s records are not terminated
'STREAM_CR' If the file’s records are terminated with a carriage return
'STREAM_LF' If the file’s records are terminated with a line feed
'UNKNOWN' If the file is not connected

'YES' If the file is connected for sequential access
'NO' If the file is not connected for sequential access
12-18

File Operation I/O Statements 12
SHARE Specifier (W*32, W*64)

The SHARE specifier asks the current share status of a file or unit. It takes the following form:
SHARE = shr

shr
Is a scalar default character variable that is assigned one of the following values:

UNFORMATTED Specifier

The UNFORMATTED specifier asks whether a file is connected for unformatted data transfer. It
takes the following form:

UNFORMATTED = unf
unf
Is a scalar default character variable that is assigned one of the following values:

WRITE Specifier

The WRITE specifier asks whether a file can be written to. It takes the following form:
WRITE = wr

wr
Is a scalar default character variable that is assigned one of the following values:

'UNKNOWN' If the processor cannot determine whether the file is connected for
sequential access

'DENYRW' If the file is connected for deny-read/write mode
'DENYWR' If the file is connected for deny-write mode
'DENYRD' If the file is connected for deny-read mode
'DENYNONE' If the file is connected for deny-none mode
'UNKNOWN' If the file or unit is not connected

'YES' If the file is connected for unformatted data transfer
'NO' If the file is not connected for unformatted data transfer
'UNKNOWN' If the processor cannot determine whether the file is connected for

unformatted data transfer
12-19

12 Intel Fortran Language Reference
OPEN Statement
The OPEN statement connects an external file to a unit, creates a new file and connects it to a unit,
creates a preconnected file, or changes certain properties of a connection.
The OPEN statement takes the following form:

OPEN ([UNIT=]io-unit [, FILE=name] [, ERR=label] [, IOSTAT=i-var], slist)
io-unit
Is an external unit specifier.
name
Is a character or numeric expression specifying the name of the file to be connected. For more
information, see “FILE Specifier”.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.
slist
Is one or more OPEN specifiers in the form specifier=value or specifier. Each specifier can appear
only once.
The OPEN specifiers and their acceptable values are summarized in Table 12-1.
The OPEN specifiers are described individually in the following sections. The control specifiers
that can be specified in an OPEN statement (UNIT, ERR, and IOSTAT) are discussed in “I/O
Control List”.

'YES' If the file can be written to
'NO' If the file cannot be written to
'UNKNOWN' If the processor cannot determine whether the file can be written to

Table 12-1 OPEN Statement Specifiers and Values

Specifier Values 1 Function Default

ACCESS 'SEQUENTIAL'
'DIRECT'

'APPEND'

Access mode 'SEQUENTIAL'
12-20

File Operation I/O Statements 12
ACTION
 (or MODE)

'READ'
'WRITE'
'READWRITE'

File access 'READWRITE'

ASSOCIATEVARIABLE var Next direct access record No default

BLANK 'NULL'
'ZERO'

Interpretation of blanks 'NULL'

BLOCKSIZE n_expr Physical block size Filesystem default

BUFFERCOUNT n_expr Number of I/O buffers One

BUFFERED 'YES'
'NO'

Buffering for WRITE
operations

'NO'

CARRIAGECONTROL 'FORTRAN'
'LIST'
'NONE'

Print control Formatted: 'LIST'2
Unformatted: 'NONE'

CONVERT 'LITTLE_ENDIAN'
'BIG_ENDIAN'
'CRAY'
'FDX'
'FGX'
'IBM'
'VAXD'
'VAXG'
'NATIVE'

Numeric format specification 'NATIVE'

DEFAULTFILE c_expr Default file pathname Current working directory

DELIM 'APOSTROPHE'
'QUOTE'
'NONE'

Delimiter for character
constants

'NONE'

DISPOSE
 (or DISP)

'KEEP' or 'SAVE'
'DELETE'
'PRINT'
'PRINT/DELETE'
'SUBMIT'
'SUBMIT/DELETE'

File disposition at close 'KEEP'

ERR label Error transfer control No default

FILE
 (or NAME)

c_expr File pathname (file name) fort.n3

FORM 'FORMATTED'
'UNFORMATTED'
'BINARY' 2

Format type Depends on ACCESS
setting

Table 12-1 OPEN Statement Specifiers and Values

Specifier Values 1 Function Default
12-21

12 Intel Fortran Language Reference
IOFOCUS2 .TRUE.
.FALSE.

Active window in QuickWin
application

.TRUE.4

IOSTAT var I/O status No default

MAXREC n_expr Direct access record limit No limit

ORGANIZATION 'SEQUENTIAL'
'RELATIVE'

File organization 'SEQUENTIAL'

PAD 'YES'
'NO'

Record padding 'YES'

POSITION 'ASIS'
'REWIND'
'APPEND'

File positioning 'ASIS'

READONLY No value Write protection No default

RECL
 (or RECORDSIZE)

n_expr Record length Depends on
RECORDTYPE,
ORGANIZATION, and
FORM settings5

RECORDTYPE 'FIXED'
'VARIABLE'
'SEGMENTED'
'STREAM'
'STREAM_CR'
'STREAM_LF'

Record type Depends on
ORGANIZATION, ACCESS,
CARRIAGECONTROL, and
FORM settings

SHARE2,6 'DENYRW'
'DENYWR'
'DENYRD'
'DENYNONE'

File locking 'DENYWR'

SHARED6 No value File sharing allowed L*X: SHARED
W*32, W*64: Not shared

STATUS
 (or TYPE)

'OLD'
'NEW'
'SCRATCH'
'REPLACE'
'UNKNOWN'

File status at open 'UNKNOWN'7

TITLE2 c_expr Title for child window in
QuickWin application

No default

UNIT n_expr Logical unit number No default; an io-unit must
be specified

Table 12-1 OPEN Statement Specifiers and Values

Specifier Values 1 Function Default
12-22

File Operation I/O Statements 12
Rules and Behavior

The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and OPEN specifiers can
appear anywhere within the parentheses following OPEN. However, if the UNIT keyword is
omitted, the io-unit must appear first in the list.
Specifier values that are scalar numeric expressions can be any integer or real expression. The
value of the expression is converted to integer data type before it is used in the OPEN statement.
Only one unit at a time can be connected to a file, but multiple OPENs can be performed on the
same unit. If an OPEN statement is executed for a unit that already exists, the following occurs:
• If FILE is not specified, or FILE specifies the same file name that appeared in a previous

OPEN statement, the current file remains connected.
If the file names are the same, the values for the BLANK, CARRIAGECONTROL,
CONVERT, DELIM, DISPOSE, ERR, IOSTAT, and PAD specifiers can be changed. Other
OPEN specifier values cannot be changed, and the file position is unaffected.

• If FILE specifies a different file name, the previous file is closed and the new file is connected
to the unit.

The ERR and IOSTAT specifiers from any previously executed OPEN statement have no effect on
any currently executing OPEN statement. If an error occurs, no file is opened or created.
Secondary operating system messages do not display when IOSTAT is specified. To display these
messages, remove IOSTAT or use a platform-specific method. (For more information, see your
user’s guide.)

USEROPEN func User program option No default

1. Key to Values:

 c_expr: A scalar default character expression

 func: An external function

 label: A statement label

 n_expr: A scalar numeric expression

 var: A scalar default integer variable

2. W*32, W*64

3. n is the unit number

4. If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

5. On Linux systems, the default depends only on the FORM setting

6. For information on file sharing, see your user’s guide.

7. The default differs under certain conditions (see “STATUS Specifier”).

Table 12-1 OPEN Statement Specifiers and Values

Specifier Values 1 Function Default
12-23

12 Intel Fortran Language Reference
Examples

You can specify character values at run time by substituting a character expression for a specifier
value in the OPEN statement. The character value can contain trailing blanks but not leading or
embedded blanks; for example:
CHARACTER*6 FINAL /' '/

...

IF (expr) FINAL = 'DELETE'

OPEN (UNIT=1, STATUS='NEW', DISP=FINAL)

The following statement creates a new sequential formatted file on unit 1 with the default file
name fort.1:
OPEN (UNIT=1, STATUS='NEW', ERR=100)

The following statement creates a file on magnetic tape:
OPEN (UNIT=I, FILE='/dev/rmt8', &

 STATUS='NEW', ERR=14, RECL=1024)

The following statement opens the file (created in the previous example) for input:
OPEN (UNIT=I, FILE='/dev/rmt8', READONLY, STATUS='OLD', &

 RECL=1024)

The following example opens the existing file /usr/users/someone/test.dat:
 OPEN (unit=10, DEFAULTFILE='/usr/users/someone/', FILE='test.dat',

1 FORM='FORMATTED', STATUS='OLD')

See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
• “INQUIRE Statement” for details on using INQUIRE to get file attributes of existing files
• Your user’s guide for details on Fortran I/O status, and details on OPEN statements and file

connection

ACCESS Specifier

The ACCESS specifier indicates the access method for the connection of the file. It takes the
following form:

ACCESS = acc
12-24

File Operation I/O Statements 12

acc
Is a scalar default character expression that evaluates to one of the following values:

The default is 'SEQUENTIAL'.
There are limitations on record access by file organization and record type. For more information,
see your user’s guide.

ACTION Specifier

The ACTION specifier indicates the allowed I/O operations for the file connection. It takes the
following form:

ACTION = act
act
Is a scalar default character expression that evaluates to one of the following values:

The default is 'READWRITE'. On Windows* systems, the default can be affected by a compiler
option. For more information, see your user’s guide.

ASSOCIATEVARIABLE Specifier

The ASSOCIATEVARIABLE specifier indicates a variable that is updated after each direct access
I/O operation, to reflect the record number of the next sequential record in the file. It takes the
following form:

ASSOCIATEVARIABLE = asv
asv
Is a scalar integer variable. It cannot be a dummy argument to the routine in which the OPEN
statement appears.

'DIRECT' Indicates direct access.
'SEQUENTIAL' Indicates sequential access.
'APPEND' Indicates sequential access, but the file is positioned at the end-of-file

record.

'READ' Indicates that only READ statements can refer to this connection.
'WRITE' Indicates that only WRITE, DELETE, and ENDFILE statements can

refer to this connection.
'READWRITE' Indicates that READ, WRITE, DELETE, and ENDFILE statements

can refer to this connection.
12-25

12 Intel Fortran Language Reference
Direct access READs, direct access WRITEs, and the FIND, DELETE, and REWRITE statements
can affect the value of asv.
This specifier is valid only for direct access; it is ignored for other access modes.

BLANK Specifier

The BLANK specifier indicates how blanks are interpreted in a file. It takes the following form:
BLANK = blnk

blnk
Is a scalar default character expression that evaluates to one of the following values:

The default is 'NULL' (for explicitly OPENed files, preconnected files, and internal files). If you
specify compiler option F66 (or OPTIONS/NOF77), the default is 'ZERO'. For the correct form of
this option, see your user’s guide.
If the BN or BZ edit descriptors are specified for a formatted input statement, they supersede the
default interpretation of blanks.

See Also

“Blank Editing” for details on the BN and BZ edit descriptors

BLOCKSIZE Specifier

The BLOCKSIZE specifier indicates the physical I/O transfer size for the file. It takes the
following form:

BLOCKSIZE = bks
bks
Is a scalar numeric expression. If necessary, the value is converted to integer data type before use.
If you specify a nonzero number for bks, it is rounded up to a multiple of 512 byte blocks.
If you do not specify BLOCKSIZE or you specify zero for bks, the filesystem default is assumed.

BUFFERCOUNT Specifier

The BUFFERCOUNT specifier indicates the number of buffers to be associated with the unit for
multibuffered I/O. It takes the following form:

'NULL' Indicates all blanks are ignored, except for an all-blank field (which
has a value of zero).

'ZERO' Indicates all blanks (other than leading blanks) are treated as zeros.
12-26

File Operation I/O Statements 12

BUFFERCOUNT = bc

bc
Is a scalar numeric expression in the range 1 through 127. If necessary, the value is converted to
integer data type before use.
The BLOCKSIZE specifier determines the size of each buffer. For example, if
BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of bytes allocated for buffers is
3*2048, or 6144 bytes.
If you do not specify BUFFERCOUNT or you specify zero for bc, the default is 1.

See Also
• “The BLOCKSIZE specifier indicates the physical I/O transfer size for the file. It takes the

following form:”
• Your user’s guide for details on obtaining optimal run-time performance

BUFFERED Specifier

The BUFFERED specifier indicates run-time library behavior following WRITE operations. It
takes the following form:

BUFFERED = bf
bf
Is a scalar default character expression that evaluates to one of the following values:

The default is 'NO'.
If BUFFERED='YES' is specified, the request may or may not be honored, depending on the
output device and other file or connection characteristics.
If BLOCKSIZE and BUFFERCOUNT have been specified for OPEN, their product determines
the size in bytes of the internal buffer. Otherwise, the default size of the internal buffer is 8192
bytes.

'YES' Requests that the run-time library accumulate output data in its internal
buffer, possibly across several WRITE operations, before the data is
sent to the file system.
Buffering may improve run-time performance for output-intensive
applications.

'NO' Requests that the run-time library send output data to the file system
after each WRITE operation.
12-27

12 Intel Fortran Language Reference

The internal buffer will grow to hold the largest single record but will never shrink.

CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier indicates the type of carriage control used when a file is
displayed at a terminal. It takes the following form:

CARRIAGECONTROL = cc
cc
Is a scalar default character expression that evaluates to one of the following values:

The default for binary (W*32, W*64) and unformatted files is 'NONE'. The default for formatted
files is 'LIST'. However, if you use the compiler option specifying OpenVMS defaults, and the
unit is connected to a terminal, the default is 'FORTRAN'.

CONVERT Specifier

The CONVERT specifier indicates a nonnative numeric format for unformatted data. It takes the
following form:

CONVERT = fm
fm
Is a scalar default character expression that evaluates to one of the following values:

NOTE. On Windows* systems, the default size of the internal buffer is 1024
bytes if compiler option /fpscomp:general is used.

'FORTRAN' Indicates normal Fortran interpretation of the first character.
'LIST' Indicates one line feed between records.
'NONE' Indicates no carriage control processing.

'LITTLE_ENDIAN'1 Little endian integer data2 and IEEE* floating-point data.3
'BIG_ENDIAN'1 Big endian integer data2 and IEEE floating-point data.3
'CRAY' Big endian integer data2 and CRAY* floating-point data of size

REAL(8) or COMPLEX(8).
12-28

File Operation I/O Statements 12
You can use CONVERT to specify multiple formats in a single program, usually one format for
each specified unit number.
When reading a nonnative format, the nonnative format on disk is converted to native format in
memory. If a converted nonnative value is outside the range of the native data type, a run-time
message appears.
There are other ways to specify numeric format for unformatted files: you can specify an
environment variable, the compiler option specifying CONVERT, or OPTIONS/CONVERT. The
following shows the order of precedence:

'FDX' Little endian integer data2 and VAX* floating-point data of format
F_floating for REAL(4) or COMPLEX(4), D_floating for size
REAL(8) or COMPLEX(8), and IEEE X_floating for REAL(16) or
COMPLEX(16).

'FGX' Little endian integer data2 and VAX processor floating-point data of
format F_floating for REAL(4) or COMPLEX(4), G_floating for size
REAL(8) or COMPLEX(8), and IEEE X_floating for REAL(16) or
COMPLEX(16).

'IBM' Big endian integer data2 and IBM* System\370 floating-point data of
size REAL(4) or COMPLEX(4) (IBM short 4), and size REAL(8) or
COMPLEX(8) (IBM long 8).

'VAXD' Little endian integer data2 and VAX processor floating-point data of
format F_floating for size REAL(4) or COMPLEX(4), D_floating for
size REAL(8) or COMPLEX(8), and H_floating for REAL(16) or
COMPLEX(16).

'VAXG' Little endian integer data2 and VAX processor floating-point data of
format F_floating for size REAL(4) or COMPLEX(4), G_floating for
size REAL(8) or COMPLEX(8), and H_floating for REAL(16) or
COMPLEX(16).

'NATIVE' No data conversion. This is the default.
1. INTEGER(1) data is the same for little endian and big endian.

2. Of the appropriate size: INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8).

3. Of the appropriate size and type: REAL(4), REAL(8), REAL(16), COMPLEX(4), COMPLEX*(8), or COMPLEX(16).

Method Used Precedence

An environment variable Highest

OPEN (CONVERT=) .

OPTIONS/CONVERT .
12-29

12 Intel Fortran Language Reference
The CONVERT compiler option and OPTIONS/CONVERT affect all unit numbers used by the
program, while environment variables and OPEN (CONVERT=) affect specific unit numbers.
The following example shows how to code the OPEN statement to read unformatted CRAY
numeric data from unit 15, which might be processed and possibly written in native little endian
format to unit 20:
 OPEN (CONVERT='CRAY', FILE='graph3.dat', FORM='UNFORMATTED',

1 UNIT=15)

 ...

 OPEN (FILE='graph3_native.dat', FORM='UNFORMATTED', UNIT=20)

See Also
• Chapter 3, “Data Types, Constants, and Variables” and your user’s guide for details on

supported ranges for data types
• Your user’s guide for details on compiler options, and details on using environment variables

to specify CONVERT options

DEFAULTFILE Specifier

The DEFAULTFILE specifier indicates a default file pathname string. It takes the following form:
DEFAULTFILE = def

def
Is a character expression indicating a default file pathname string.
The default file pathname string is used primarily when accepting file pathnames interactively.
File pathnames known to a user program normally appear in the FILE specifier.
DEFAULTFILE supplies a value to the Fortran I/O system that is prefixed to the name that
appears in FILE.
If def does not end in a slash (/), a slash is added.
If DEFAULTFILE is omitted, the Fortran I/O system uses the current working directory.

DELIM Specifier

The DELIM specifier indicates what characters (if any) are used to delimit character constants in
list-directed and namelist output. It takes the following form:

The CONVERT compiler option Lowest

Method Used Precedence
12-30

File Operation I/O Statements 12

DELIM = del

del
Is a scalar default character expression that evaluates to one of the following values:

The default is 'NONE'.
The DELIM specifier is only allowed for files connected for formatted data transfer; it is ignored
during input.

DISPOSE Specifier

The DISPOSE (or DISP) specifier indicates the status of the file after the unit is closed. It takes
one of the following forms:

DISPOSE = dis
DISP = dis

dis
Is a scalar default character expression that evaluates to one of the following values:

The default is 'DELETE' for scratch files. For all other files, the default is 'KEEP'.

APOSTROPHE' Indicates apostrophes delimit character constants. All internal
apostrophes are doubled.

'QUOTE' Indicates quotation marks delimit character constants. All internal
quotation marks are doubled.

'NONE' Indicates character constants have no delimiters. No internal
apostrophes or quotation marks are doubled.

'KEEP' or 'SAVE' Retains the file after the unit closes.
'DELETE' Deletes the file after the unit closes.
'PRINT'1

1. Use only on sequential files.

Submits the file to the line printer spooler and retains it.

'PRINT/DELETE'1 Submits the file to the line printer spooler and then deletes it.
'SUBMIT' Forks a process to execute the file.
'SUBMIT/DELETE' Forks a process to execute the file, and then deletes the file after the

fork is completed.
12-31

12 Intel Fortran Language Reference
FILE Specifier

The FILE specifier indicates the name of the file to be connected to the unit. It takes the following
form:

FILE = name
name
Is a character or numeric expression.
The name can be any pathname allowed by the operating system.
Any trailing blanks in the name are ignored.
If the following conditions occur:
• FILE is omitted
• The unit is not connected to a file
• STATUS='SCRATCH' is not specified
• The corresponding FORTn environment variable is not set for the unit number
Intel® Fortran generates a file name in the form fort.n, where n is the logical unit number. On
Windows systems, if compiler option /fpscomp:general is specified, omitting FILE implies
STATUS='SCRATCH'.
If the file name is stored in a numeric scalar or array, the name must consist of ASCII characters
terminated by an ASCII null character (zero byte). However, if it is stored in a character scalar or
array, it must not contain a zero byte.

See Also
• Your user’s guide for details on default file name conventions
• The appropriate manual in your system documentation set for details on allowable file

pathnames

FORM Specifier

The FORM specifier indicates whether the file is being connected for formatted, unformatted, or
binary (W*32, W*64) data transfer. It takes the following form:

FORM = fm
fm
Is a scalar default character expression that evaluates to one of the following values:

'FORMATTED' Indicates formatted data transfer.
'UNFORMATTED' Indicates unformatted data transfer.
12-32

File Operation I/O Statements 12
The default is 'FORMATTED' for sequential access files, and 'UNFORMATTED' for direct access
files.

IOFOCUS Specifier (W*32, W*64)

The IOFOCUS specifier indicates whether a particular unit is the active window in a QuickWin
application. It takes the following form:

IOFOCUS = iof
iof
Is a scalar default logical expression that evaluates to one of the following values:

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..
A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or
PRINT statement to that window.

See Also

The Windows system online help for details on QuickWin applications.

MAXREC Specifier

The MAXREC specifier indicates the maximum number of records that can be transferred from or
to a direct access file while the file is connected. It takes the following form:

MAXREC = mr
mr
Is a scalar numeric expression. If necessary, the value is converted to integer data type before use.
The default is an unlimited number of records.

MODE Specifier

MODE is a nonstandard synonym for ACTION (see “ACTION Specifier”).

NAME Specifier

NAME is a nonstandard synonym for FILE (see “FILE Specifier”).

'BINARY' Indicates binary data transfer.

.TRUE. Indicates the QuickWin child window is the active window.

.FALSE. Indicates the QuickWin child window is not the active window.
12-33

12 Intel Fortran Language Reference
ORGANIZATION Specifier

The ORGANIZATION specifier indicates the internal organization of the file. It takes the
following form:

ORGANIZATION = org
org
Is a scalar default character expression that evaluates to one of the following values:

The default is 'SEQUENTIAL'.

PAD Specifier

The PAD specifier indicates whether a formatted input record is padded with blanks when an input
list and format specification requires more data than the record contains.
The PAD specifier takes the following form:

PAD = pd
pd
Is a scalar default character expression that evaluates to one of the following values:

The default is 'YES'.
This behavior is different from FORTRAN 77, which never pads short records with blanks. For
example, consider the following:
READ (5,'(I5)') J

If you enter 123 followed by a carriage return, FORTRAN 77 turns the I5 into an I3 and J is
assigned 123.
However, Intel Fortran pads the 123 with 2 blanks unless you explicitly open the unit with
PAD='NO'.
You can override blank padding by explicitly specifying the BN edit descriptor.
The PAD specifier is ignored during output.

'SEQUENTIAL' Indicates a sequential file.
'RELATIVE' Indicates a relative file.

'YES' Indicates the record will be padded with blanks when necessary.
'NO' Indicates the record will not be padded with blanks. The input record

must contain the data required by the input list and format
specification.
12-34

File Operation I/O Statements 12

POSITION Specifier

The POSITION specifier indicates the position of a file connected for sequential access. It takes
the following form:

POSITION = pos
pos
Is a scalar default character expression that evaluates to one of the following values:

The default is 'ASIS'. (On Fortran I/O systems, this is the same as 'REWIND'.)
A new file (whether specified as new explicitly or by default) is always positioned at its initial
point.

See Also

Your user’s guide for details on record position, advancement, and transfer

READONLY Specifier

The READONLY specifier indicates only READ statements can refer to this connection. It takes
the following form:

READONLY
READONLY is similar to specifying ACTION='READ', but READONLY prevents deletion of
the file if it is closed with STATUS='DELETE' in effect.
The Fortran I/O system’s default privileges for file access are READWRITE. If access is denied,
the I/O system automatically retries accessing the file for READ access.
However, if you use the compiler option specifying OpenVMS defaults, the I/O system does not
retry accessing for READ access. So, run-time I/O errors can occur if the file protection does not
permit WRITE access. To prevent such errors, if you wish to read a file for which you do not have
write access, specify READONLY.

'ASIS' Indicates the file position is unchanged if the file exists and is already
connected. The position is unspecified if the file exists but is not
connected.

'REWIND' Indicates the file is positioned at its initial point.
'APPEND' Indicates the file is positioned at its terminal point (or before its

end-of-file record, if any).
12-35

12 Intel Fortran Language Reference
RECL Specifier

The RECL specifier indicates the length of each record in a file connected for direct access, or the
maximum length of a record in a file connected for sequential access.
The RECL specifier takes the following form:

RECL = rl
rl
Is a positive numeric expression indicating the length of records in the file. If necessary, the value
is converted to integer data type before use.
If the file is connected for formatted data transfer, the value must be expressed in bytes
(characters). Otherwise, the value is expressed in 4-byte units (longwords).
If the file is connected for unformatted data transfer, the value can be expressed in bytes if
compiler option ASSUME BYTERECL is specified. (For the correct form of this option, see your
user’s guide.)
Except for segmented records, the rl is the length for record data only, it does not include space for
control information.
The length specified is interpreted depending on the type of records in the connected file, as
follows:
• For segmented records, RECL indicates the maximum length for any segment (including the

four bytes of control information).
• For fixed-length records, RECL indicates the size of each record; it must be specified. If the

records are unformatted, the size must be expressed as an even multiple of four.
You can use the RECL specifier in an INQUIRE statement to get the record length before
opening the file (see “RECL Specifier”).

• For variable-length records, RECL indicates the maximum length for any record.
If you read a fixed-length file with a record length different from the one used to create the file,
indeterminate results can occur.
The maximum length for rl depends on the record type and the setting of the
CARRIAGECONTROL specifier, as shown in Table 12-2.

Table 12-2 Maximum Record Lengths (RECL)

Record Type CARRIAGECONTROL Formatted (size in bytes)

Fixed-length 'NONE' 2147483647 (2**31–1)1

Variable-length 'NONE' 2147483640 (2**31–8)

Segmented 'NONE' 32764 (2**15–4)

Stream 'NONE' 2147483647 (2**31–1)
12-36

File Operation I/O Statements 12
The default value depends on the setting of the RECORDTYPE specifier, as shown in Table 12-3.

RECORDSIZE Specifier

RECORDSIZE is a nonstandard synonym for RECL (see “RECL Specifier”).

RECORDTYPE Specifier

The RECORDTYPE specifier indicates the type of records in a file. It takes the following form:
RECORDTYPE = typ

typ
Is a scalar default character expression that evaluates to one of the following values:

Stream_CR 'LIST' 2147483647 (2**31–1)

'FORTRAN' 2147483646 (2**31–2)

Stream_LF 'LIST' 2147483647 (2**31–1)2

'FORTRAN' 2147483646 (2**31–2)

1. Subtract 1 if the compiler option specifying OpenVMS defaults is used.

2. L*X only

Table 12-3 Default Record Lengths (RECL)

RECORDTYPE RECL Value

'FIXED' None; value must be explicitly specified.

All other settings 132 bytes for formatted records;
510 longwords for unformatted records.

'FIXED' Indicates fixed-length records.
'VARIABLE' Indicates variable-length records.
'SEGMENTED' Indicates segmented records.
'STREAM' Indicates stream-type variable length records.
'STREAM_LF' Indicates stream-type variable length records, terminated with a line

feed.
'STREAM_CR' Indicates stream-type variable length records, terminated with a

carriage-return.

Table 12-2 Maximum Record Lengths (RECL)

Record Type CARRIAGECONTROL Formatted (size in bytes)
12-37

12 Intel Fortran Language Reference
When you open a file, default record types are as follows:

A segmented record is a logical record consisting of segments that are physical records. Since the
length of a segmented record can be greater than 65,535 bytes, only use segmented records for
unformatted sequential access to disk or raw magnetic tape files.
Files containing segmented records can be accessed only by unformatted sequential data transfer
statements.
If an output statement does not specify a full record for a file containing fixed-length records, the
following occurs:
• In formatted files, the record is filled with blanks
• In unformatted files, the record is filled with zeros

See Also

Your user’s guide for details on record types and file organization

SHARE Specifier (W*32, W*64)

The SHARE specifier indicates whether file locking is implemented while the unit is open. It takes
the following form:

SHARE = shr
shr
Is a scalar default character expression that evaluates to one of the following values:

The default is 'DENYWR'. However, if compiler option /fpscomp=general or the SHARED
specifier is used, the default is 'DENYNONE'.

'FIXED' For relative files
'FIXED' For direct access sequential files
'STREAM_LF' For formatted sequential access files
'VARIABLE' For unformatted sequential access files

'DENYRW' Indicates deny-read/write mode. No other process can open the file.
'DENYWR' Indicates deny-write mode. No process can open the file with write

access.
'DENYRD' Indicates deny-read mode. No process can open the file with read

access.
'DENYNONE' Indicates deny-none mode. Any process can open the file in any mode.
12-38

File Operation I/O Statements 12

See Also

Your user’s guide for details on limitations on record access

SHARED Specifier

The SHARED specifier indicates that the file is connected for shared access by more than one
program executing simultaneously. It takes the following form:

SHARED
On Linux* systems, shared access is the default for the Fortran I/O system. On Windows*
systems, it is the default if SHARED or compiler option /fpscomp:general is specified.

See Also

Your user’s guide for details on file sharing

STATUS Specifier

The STATUS specifier indicates the status of a file when it is opened. It takes the following form:
STATUS = sta

sta
Is a scalar default character expression that evaluates to one of the following values:

Scratch files go into a temporary directory and are visible while they are open. (For more
information, see your user’s guide.)

'OLD' Indicates an existing file.
'NEW' Indicates a new file; if the file already exists, an error occurs. Once the

file is created, its status changes to 'OLD'.
'SCRATCH' Indicates a new file that is unnamed (called a scratch file). When the

file is closed or the program terminates, the scratch file is deleted.
'REPLACE' Indicates the file replaces another. If the file to be replaced exists, it is

deleted and a new file is created with the same name. If the file to be
replaced does not exist, a new file is created and its status changes to
'OLD'.

'UNKNOWN' Indicates the file may or may not exist. If the file does not exist, a new
file is created and its status changes to 'OLD'.
12-39

12 Intel Fortran Language Reference
The default is 'UNKNOWN'. This is also the default if you implicitly open a file by using WRITE.
However, if you implicitly open a file using READ, the default is 'OLD'. If you specify compiler
option F66 (or OPTIONS /NOF77), the default is 'NEW'. For the correct form of this option, see
your user’s guide.

TITLE Specifier (W*32, W*64)

The TITLE specifier indicates the name of a child window in a QuickWin application. It takes the
following form:

TITLE = name
name
Is a character expression.
If TITLE is specified in a non-Quickwin application, a run-time error occurs.

See Also

The Windows system online help for details on QuickWin applications.

TYPE Specifier

TYPE is a nonstandard synonym for STATUS (see “STATUS Specifier”).

USEROPEN Specifier

The USEROPEN specifier indicates a user-written external function that controls the opening of
the file. It takes the following form:

USEROPEN = function-name
function-name
Is the name of the user-written function to receive control.
The function must be declared in a previous EXTERNAL statement; if it is typed, it must be of
type INTEGER(4) (INTEGER*4).

NOTE. The STATUS specifier can also appear in CLOSE statements to
indicate the file’s status after it is closed. However, in CLOSE statements the
status values are the same as those listed for the DISPOSE specifier (see
“DISPOSE Specifier”).
12-40

File Operation I/O Statements 12

The USEROPEN specifier lets experienced users use additional features of the operating system
that are not normally available in Fortran.

See Also

Your user’s guide for details on user-supplied functions to use with USEROPEN, including
examples

REWIND Statement
The REWIND statement positions a sequential or direct access file at the beginning of the file (the
initial point). It takes one of the following forms:

REWIND ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
REWIND io-unit

io-unit
Is an external unit specifier.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.

Rules and Behavior

The unit number must refer to a file on disk or magnetic tape, and the file must be open for
sequential, direct, or append access.
If a REWIND is done on a direct access file, the NEXTREC specifier is assigned a value of 1.
If a file is already positioned at the initial point, a REWIND statement has no effect.
If a REWIND statement is specified for a unit that is not open, it has no effect.

Examples

The following statement repositions the file connected to I/O unit 3 to the beginning of the file:
REWIND 3

Consider the following statement:
REWIND (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 at the beginning of the file. If an error occurs,
control is transferred to the statement labeled 10, and a positive integer is stored in variable IOS.
12-41

12 Intel Fortran Language Reference
See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
• “I/O Status Specifier” for details on the IOSTAT control specifier
• Your user’s guide for details on record position, advancement, and transfer

UNLOCK Statement
The UNLOCK statement frees a record in a relative or sequential file that was locked by a
previous READ statement.
The UNLOCK statement takes one of the following forms:

UNLOCK ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var])
UNLOCK io-unit

io-unit
Is an external unit specifier.
label
Is the label of the branch target statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.
If no record is locked, the UNLOCK statement has no effect.

Examples

The following statement frees any record previously read and locked in the file connected to I/O
unit 4:
UNLOCK 4

Consider the following statement:
UNLOCK (UNIT=9, IOSTAT=IOS, ERR=10)

This statement frees any record previously read and locked in the file connected to unit 9. If an
error occurs, control is transferred to the statement labeled 10, and a positive integer is stored in
variable IOS.

See Also
• “Unit Specifier” for details on the UNIT control specifier
• “Branch Specifiers” for details on the ERR control specifier
12-42

File Operation I/O Statements 12

• “I/O Status Specifier” for details on the IOSTAT control specifier
• Your user’s guide for details on shared files and locked records
12-43

12 Intel Fortran Language Reference
12-44

Compilation Control
Statements
13
In addition to specifying options on the compiler command line, you can specify the following
statements in a program unit to influence compilation:
• The “INCLUDE Statement”

Incorporates external source code into programs.
• The “OPTIONS Statement”

Sets options usually specified in the compiler command line. OPTIONS statement settings
override command line options.

INCLUDE Statement
The INCLUDE statement directs the compiler to stop reading statements from the current file and
read statements in an included file or text module.
The INCLUDE statement takes the following form:

INCLUDE 'file-name [/[NO]LIST]'
file-name
Is a character string specifying the name of the file to be included; it must not be a named constant.
The form of the file name must be acceptable to the operating system, as described in your system
documentation.
/[NO]LIST
Specifies whether the incorporated code is to appear in the compilation source listing. In the
listing, a number precedes each incorporated statement. The number indicates the "include"
nesting depth of the code. The default is /NOLIST. /LIST and /NOLIST must be spelled
completely.
You can only use /[NO]LIST if you specify the compiler option that sets OpenVMS defaults.
13-1

13 Intel Fortran Language Reference
Rules and Behavior

An INCLUDE statement can appear anywhere within a scoping unit. The statement can span more
than one source line, but no other statement can appear on the same line. The source line cannot be
labeled.
An included file or text module cannot begin with a continuation line, and each Fortran statement
must be completely contained within a single file.
An included file or text module can contain any source text, but it cannot begin or end with an
incomplete Fortran statement.
The included statements, when combined with the other statements in the compilation, must
satisfy the statement-ordering restrictions shown in Figure 2-1.
Included files or text modules can contain additional INCLUDE statements, but they must not be
recursive. INCLUDE statements can be nested until system resources are exhausted.
When the included file or text module completes execution, compilation resumes with the
statement following the INCLUDE statement.

Example

In Example 13-1, a file named COMMON.FOR (in the current working directory) is included and
read as input.

Example 13-1 Including Text from a File

Main Program File COMMON.FOR File

PROGRAM

 INCLUDE 'COMMON.FOR' INTEGER, PARAMETER :: M=100

 REAL, DIMENSION(M) :: Z REAL, DIMENSION(M) :: X, Y

 CALL CUBE COMMON X, Y

 DO I = 1, M

 Z(I) = X(I) + SQRT(Y(I))

 ...

 END DO

END
13-2

Compilation Control Statements 13
The file COMMON.FOR defines a named constant M, and defines arrays X and Y as part of blank
common.

See Also

Your user’s guide for details on compiler options

OPTIONS Statement
The OPTIONS statement overrides or confirms the compiler options in effect for a program unit. It
takes the following form:

OPTIONS option [option...]
option
Is one of the following:

SUBROUTINE CUBE

 INCLUDE 'COMMON.FOR'

 DO I=1,M

 X(I) = Y(I)**3

 END DO

 RETURN

END

/ASSUME = [NO]UNDERSCORE
/CHECK = ALL

[NO]BOUNDS
[NO]OVERFLOW
NONE

/NOCHECK
/CONVERT = BIG_ENDIAN

CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

/NOEXTENDSOURCE

Example 13-1 Including Text from a File
13-3

13 Intel Fortran Language Reference
Note that an option must always be preceded by a slash (/).
Some OPTIONS statement options are equivalent to compiler options.

Rules and Behavior

The OPTIONS statement must be the first statement in a program unit, preceding the PROGRAM,
SUBROUTINE, FUNCTION, MODULE, and BLOCK DATA statements.
OPTIONS statement options override compiler options, but only until the end of the program unit
for which they are defined. If you want to override compiler options in another program unit, you
must specify the OPTIONS statement before that program unit.

Examples

The following are valid OPTIONS statements:
OPTIONS /CHECK=ALL/F77

OPTIONS /I4

See Also

Your user’s guide for details on compiler options

/NOF77
/NOI4
/NORECURSIVE
13-4

Directive Enhanced
Compilation
 14
Directive enhanced compilation is performed by using compiler directives. Compiler directives
are special commands that let you perform various tasks during compilation. They are similar to
compiler options, but can provide more control within your program.
Compiler directives are preceded by a special prefix that identifies them to the compiler.
This chapter contains information on the following topics:
• “Syntax Rules for Compiler Directives”
• “General Compiler Directives”

Perform general-purpose tasks during compilation.
• “OpenMP* Fortran Compiler Directives”

Specify parallel regions and characteristics of data and threads for shared access of data in
memory.

Syntax Rules for Compiler Directives
The following syntax rules apply to all general and OpenMP* Fortran compiler directives. You
must follow these rules precisely to compile your program properly and obtain meaningful results.
A directive prefix (tag) takes one of the following forms:
General compiler directives:

cDEC$
OpenMP Fortran compiler directives:

c$OMP
c
Is one of the following: C (or c), !, or *.
The following prefix forms can be used in place of cDEC$: cDIR$ or cMS$.
14-1

14 Intel Fortran Language Reference
The following are source form rules for directive prefixes:
• Prefixes beginning with C (or c) and * are only allowed in fixed and tab source forms.

In these source forms, the prefix must appear in columns 1 through 5; column 6 must be a
blank or tab1. From column 7 on, blanks are insignificant, so the directive can be positioned
anywhere on the line after column 6.

• Prefixes beginning with ! are allowed in all source forms.
The prefix can appear in any valid column, but it cannot be preceded by any nonblank
characters on the same line. It can only be preceded by whitespace.

A compiler directive ends in column 72 (or column 132, if a compiler option is specified).
General compiler directives cannot be continued. OpenMP Fortran directives can be continued.
A comment can follow a compiler directive on the same line.
Additional Fortran statements (or directives) cannot appear on the same line as the compiler
directive.
Compiler directives cannot appear within a continued Fortran statement.
If a blank common is used in a compiler directive, it must be specified as two slashes (/ /).
If the source line starts with a valid directive prefix but the directive is not recognized, the
compiler prints an informational message and ignores the line.

General Compiler Directives
Intel® Fortran provides several general-purpose compiler directives to perform tasks during
compilation. You do not need to specify a compiler option to enable general directives.
This section describes the following directives:
• “ALIAS Directive”

Specifies an alternate external name to be used when referring to external subprograms.
• “ATTRIBUTES Directive”

Specifies properties for data objects and procedures.
• “DECLARE and NODECLARE Directives”

Generate or disable warnings for variables that have been used but not declared.
• “DEFINE and UNDEFINE Directives”

Define (or undefine) a symbolic variable whose existence (or value) can be tested during
conditional compilation.

1. Except for prefix cMS$
14-2

Directive Enhanced Compilation 14

• “DISTRIBUTE POINT Directive”

Specifies distribution for a DO loop.
• “FIXEDFORMLINESIZE Directive”

Sets the line length for fixed-form source code.
• “FREEFORM and NOFREEFORM Directives”

Specify free-format or fixed-format source code.
• “IDENT Directive”

Specifies an identifier for an object module.
• “IF and IF DEFINED Directives”

Specify a conditional compilation construct.
• “INTEGER Directive”

Specifies the default integer kind.
• “IVDEP Directive”

Assists the compiler’s dependence analysis of iterative DO loops.
• “LOOP COUNT Directive”

Specifies the loop count for a DO loop; this assists the optimizer.
• “MESSAGE Directive”

Specifies a character string to be sent to the standard output device during the first compiler
pass.

• “OBJCOMMENT Directive”
Specifies a library search path in an object file.

• “OPTIONS Directive”
Affects data alignment and warnings about data alignment.

• “PACK Directive”
Specifies the memory starting addresses of derived-type items.

• “PARALLEL and NOPARALLEL Directives”
Enables or disables auto-parallelization for an immediately following DO loop.

• “PREFETCH and NOPREFETCH Directives”
Enables or disables a data prefetch from memory.

• “PSECT Directive”
Modifies certain characteristics of a common block.

• “REAL Directive”
Specifies the default real kind.
14-3

14 Intel Fortran Language Reference
• “STRICT and NOSTRICT Directives”
Disables or enables language features not found in the language standard specified on the
command line (Fortran 95 or Fortran 90).

• “SWP and NOSWP Directives (i64 only)”
Enables or disables software pipelining for a DO loop.

• “TITLE and SUBTITLE Directives”
Specifies a title or subtitle for a listing header.

• “UNROLL and NOUNROLL Directives”
Tells the compiler’s optimizer how many times to unroll a DO loop or disables the unrolling
of a DO loop.

• “VECTOR ALIGNED and VECTOR UNALIGNED Directives (i32 only)”
Specifies that all data in a DO loop is aligned or not aligned.

• “VECTOR ALWAYS and NOVECTOR Directives (i32 only)”
Enables or disables vectorization of a DO loop.

• “VECTOR NONTEMPORAL Directive (i32 only)”
Enables streaming storage.

Rules for General Directi ves that Affect DO Loops

This table lists the general directives that affect DO loops:

The following rules apply to all of these directives:
• The directive must precede the DO statement for each DO loop it affects.
• No source code lines, other than the following, can be placed between the directive statement

and the DO statement:
— One of the other general directives that affect DO loops
— An OpenMP* Fortran PARALLEL DO directive

DISTRIBUTE POINT NOUNROLL VECTOR ALIGNED1

1. i32 only

IVDEP NOVECTOR1 VECTOR ALWAYS1

LOOP COUNT PARALLEL VECTOR NONTEMPORAL1

NOPARALLEL PREFETCH VECTOR UNALIGNED1

NOPREFETCH SWP2

2. i64 only

NOSWP2 UNROLL
14-4

Directive Enhanced Compilation 14

— Comment lines
— Blank lines

Other rules may apply to these directives. For more information, see the description of each
directive.

ALIAS Directive

The ALIAS directive lets you specify an alternate external name to be used when referring to
external subprograms. This can be useful when compiling applications written for other platforms
that have different naming conventions.
The ALIAS directive takes the following form:

cDEC$ ALIAS internal-name, external-name
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
internal-name
Is the name of the subprogram as used in the current program unit.
external-name
Is a name, or a character constant delimited by apostrophes or quotation marks.

Rules and Behavior

If a name is specified, the name (in uppercase) is used as the external name for the specified
internal-name. If a character constant is specified, it is used as is; the string is not changed to
uppercase, nor are blanks removed.
The ALIAS directive affects only the external name used for references to the specified
internal-name.
Names that are not acceptable to the linker will cause link-time errors.

See Also
• ld(1) for details on the linker for Linux* systems
• The online help on the linker for details on the linker for Windows* systems

ATTRIBUTES Directive

The ATTRIBUTES directive lets you specify properties for data objects and procedures. It takes
the following form:

cDEC$ ATTRIBUTES att [, att]... :: object [, object]...
14-5

14 Intel Fortran Language Reference
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
att
Is one of the following properties (or options):

object
Is the name of a data object or procedure.
The following table shows which ATTRIBUTES properties can be used with various objects:

ALIAS DEFAULT NO_ARG_CHECK

ALIGN DLLEXPORT1

1. W*32, W*64

NOINLINE

ALLOCATABLE DLLIMPORT1 NOMIXED_STR_LEN_ARG

ALLOW_NULL EXTERN REFERENCE

ARRAY_VISUALIZER2

2. W*32 only

FORCEINLINE STDCALL

C IGNORE_LOC VALUE

DECORATE INLINE VARYING

Property
Variable and Array
Declarations

Common
Block Names 1

Subprogram Specification
and EXTERNAL Statements

ALIAS No Yes Yes

ALIGN Yes No No

ALLOCATABLE Yes2 No No

ALLOW_NULL Yes No No

ARRAY_VISUALIZER Yes2 No No

C No Yes Yes

DECORATE No No Yes

DEFAULT No Yes Yes

DLLEXPORT Yes 3 Yes Yes

DLLIMPORT Yes Yes Yes

EXTERN Yes No No

FORCEINLINE No No Yes

IGNORE_LOC Yes4 No No

INLINE No No Yes
14-6

Directive Enhanced Compilation 14
These properties can be used in function and subroutine definitions, in type declarations, and with
the INTERFACE and ENTRY statements.
Properties applied to entities available through use or host association are in effect during the
association. For example, consider the following:
MODULE MOD1

 INTERFACE

 SUBROUTINE SUB1

 !DEC$ ATTRIBUTES C, ALIAS:’othername’ :: NEW_SUB

 END SUBROUTINE

 END INTERFACE

 CONTAINS

 SUBROUTINE SUB2

 CALL NEW_SUB

 END SUBROUTINE

END MODULE

In this case, the call to NEW_SUB within SUB2 uses the C and ALIAS properties specified in the
interface block.
The following are ATTRIBUTES properties (or options):
• “ATTRIBUTES ALIAS”
• “ATTRIBUTES ALIGN”
• “ATTRIBUTES ALLOCATABLE”

NO_ARG_CHECK Yes No Yes5

NOINLINE No No Yes

NOMIXED_STR_LEN_ARG No No Yes

REFERENCE Yes No Yes

STDCALL No Yes Yes

VALUE Yes No No

VARYING No No Yes

1. A common block name is specified as [/]common-block-name[/].

2. This property can only be applied to arrays.

3. Module-level variables and arrays only

4. This property can only be applied to interface blocks.

5. This property cannot be applied to EXTERNAL statements.

Property
Variable and Array
Declarations

Common
Block Names 1

Subprogram Specification
and EXTERNAL Statements
14-7

14 Intel Fortran Language Reference
• “ATTRIBUTES ALLOW_NULL”
• “ATTRIBUTES ARRAY_VISUALIZER (W*32 only)”
• “ATTRIBUTES C and STDCALL”
• “ATTRIBUTES DECORATE”
• “ATTRIBUTES DEFAULT”
• “ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)”
• “ATTRIBUTES EXTERN”
• “ATTRIBUTES IGNORE_LOC”
• “ATTRIBUTES INLINE, NOINLINE, and FORCEDINLINE”
• “ATTRIBUTES NO_ARG_CHECK”
• “ATTRIBUTES NOMIXED_STR_LEN_ARG”
• “ATTRIBUTES REFERENCE and VALUE”
• “ATTRIBUTES VARYING”
Properties C, STDCALL, REFERENCE, VALUE, and VARYING affect the calling conventions
of routines:
• You can specify C, STDCALL, REFERENCE, and VARYING for an entire routine.
• You can specify VALUE and REFERENCE for individual arguments.

See Also

Your user’s guide for details on using the cDEC$ ATTRIBUTES directive

ATTRIBUTES ALIAS

The ATTRIBUTES directive option ALIAS specifies an alternate external name to be used when
referring to external subprograms. It takes the following form:

cDEC$ ATTRIBUTES ALIAS: external-name :: subprogram
external-name
Is a character constant delimited by apostrophes or quotation marks. The character constant is used
as is; the string is not changed to uppercase, nor are blanks removed.
subprogram
Is an external subprogram.
The ALIAS property overrides the C (and STDCALL) property. If both C and ALIAS are
specified for a subprogram, the subprogram is given the C calling convention, but not the C
naming convention. It instead receives the name given for ALIAS, with no modifications.
ALIAS cannot be used with internal procedures, and it cannot be applied to dummy arguments.
14-8

Directive Enhanced Compilation 14

The following example gives the subroutine happy the name "_OtherName@4" outside this
scoping unit:
INTERFACE

 SUBROUTINE happy(i)

 !DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:’OtherName’ :: happy

 INTEGER i

 END SUBROUTINE

END INTERFACE

cDEC$ ATTRIBUTES ALIAS has the same effect as the “ALIAS Directive”.

ATTRIBUTES ALIGN

The ATTRIBUTES directive option ALIGN specifies the byte alignment for a variable. It takes
the following form:

cDEC$ ATTRIBUTES ALIGN: n:: var
n
Is the number of bytes for the alignment boundary.
var
Is the variable to be aligned.

ATTRIBUTES ALLOCATABLE

The ATTRIBUTES directive option ALLOCATABLE is provided for compatibility with older
programs. It lets you delay allocation of storage for a particular declared entity until some point at
run time when you explicitly call a routine that dynamically allocates storage for the entity. The
ALLOCATABLE option takes the following form:

cDEC$ ATTRIBUTES ALLOCATABLE :: entity
entity
Is the name of the entity that should have allocation delayed.
The recommended method for dynamically allocating storage is to use the “ALLOCATABLE
Attribute and Statement”.

ATTRIBUTES ALLOW_NULL

The ATTRIBUTES directive option ALLOW_NULL enables a corresponding dummy argument
to pass a NULL pointer (defined by a zero or the NULL intrinsic) by value for the argument. It
takes the following form:

cDEC$ ATTRIBUTES ALLOW_NULL :: arg
14-9

14 Intel Fortran Language Reference
arg
Is the name of the argument.
ALLOW_NULL is only valid if the REFERENCE property is also specified; otherwise, it has no
effect.

ATTRIBUTES ARRAY_VISUALIZER (W*32 only)

The ATTRIBUTES directive option ARRAY_VISUALIZER enhances the performance of the
Intel® Array Visualizer. It takes the following form:

cDEC$ ATTRIBUTES ARRAY_VISUALIZER :: array
array
Is the array to be viewed using the Intel® Array Viewer.
When declaring allocatable arrays to be viewed using the Array Viewer, this option can improve
the performance of the Array Viewer. For example:
 real(4), allocatable :: MyArray(:, :)

 !DEC$ ATTRIBUTES array_visualizer :: MyArray

When this property is used, array memory is shared between the Array Viewer and your
application. Otherwise, the array data is copied during each faglUpdate call.
The ARRAY_VISUALIZER option is not useful unless the array is viewed in the Array Visualizer
by using fagl* calls.
For more information on fagl* routines, see your online documentation for the Array Visualizer.

ATTRIBUTES C and STDCALL

The ATTRIBUTES directive options C and STDCALL specify how data is to be passed when you
use routines written in C or assembler with FORTRAN or Fortran 95/90 routines. They take the
following forms:

cDEC$ ATTRIBUTES C :: object [, object] ...
cDEC$ ATTRIBUTES STDCALL :: object [, object] ...

object
Is the name of a data object or procedure.
On IA-32 processors, C and STDCALL have slightly different meanings; on all other platforms,
they are interpreted as synonyms.
When applied to a subprogram, these propertiess define the subprogram as having a specific set of
calling conventions.
14-10

Directive Enhanced Compilation 14

The following table summarizes the differences between the calling conventions:

If C or STDCALL is specified for a subprogram, arguments (except for arrays and characters) are
passed by value. Subprograms using standard Fortran 95/90 conventions pass arguments by
reference.
On IA-32 processors, an underscore (_) is placed at the beginning of the external name of a
subprogram. If STDCALL is specified, an at sign (@) followed by the number of argument bytes
being passed is placed at the end of the name. For example, a subprogram named SUB1 that has
three INTEGER(4) arguments and is defined with STDCALL is assigned the external name
_sub1@12.
Character arguments are passed as follows:
• By default:

— On Linux systems, hidden lengths are put at the end of the argument list.
— On Windows systems, hidden lengths immediately follow the variable. You can get the

Linux behavior by specifying the appropriate compiler option.
• If C or STDCALL (only) is specified:

On all systems, the first character of the string is passed (and padded with zeros out to
INTEGER(4) length).

Convention C 1

1. C and STDCALL are synonyms on L*X systems.

STDCALL 1 Default 2

2. The Fortran 95/90 calling convention

Arguments passed by value Yes Yes No

Case of external subprogram
names

L*X: Lowercase

W*32, W*64:
Lowercase

L*X: Lowercase

W*32, W*64:
Lowercase

L*X: Lowercase

W*32, W*64:
Uppercase

L*X only:

Trailing underscore added No No Yes3

3. If there are one or more underscores in the external name, two trailing underscores are added; if there are no underscores, one is added.

W*32, W*64 only:

Leading underscore added Yes Yes Yes4

4. W*32 only

Number of arguments added No Yes No

Caller stack cleanup Yes No Yes

Variable number of
arguments

Yes No Yes
14-11

14 Intel Fortran Language Reference
• If C or STDCALL is specified, and REFERENCE is specified for the argument:
On all systems, the string is passed with no length.

• If C or STDCALL is specified, and REFERENCE is specified for the routine (but
REFERENCE is not specified for the argument, if any):
On all systems, the string is passed with the length.

For more details, see information on mixed-language programming in your user’s guide. See also
the description of REFERENCE in “ATTRIBUTES REFERENCE and VALUE”.

ATTRIBUTES DECORATE

The ATTRIBUTES directive option DECORATE specifies that the external name used in cDEC$
ALIAS or cDEC$ ATTRIBUTES ALIAS should have the prefix and postfix decorations
performed on it that are associated with the calling mechanism that is in effect. These are the same
decorations performed on the procedure name when ALIAS is not specified.
The DECORATE option takes the following form:

cDEC$ ATTRIBUTES DECORATE :: exname
exname
Is an external name.
The case of the ALIAS external name is not modified.
If ALIAS is not specified, this option has no effect.
See also the example in the description of “ATTRIBUTES ALIAS”, and the summary of prefix
and postfix decorations in the description of “ATTRIBUTES C and STDCALL”.

ATTRIBUTES DEFAULT

The ATTRIBUTES directive option DEFAULT overrides certain compiler options that can affect
external routine and COMMON block declarations. It takes the following form:

cDEC$ ATTRIBUTES DEFAULT :: entity
entity
Is an external procedure or COMMON block.
It specifies that the compiler should ignore compiler options that change the default conventions
for external symbol naming and argument passing for routines and COMMON blocks.
This property can be combined with other ATTRIBUTES options, such as STDCALL, C,
REFERENCE, ALIAS, etc. to specify properties different from the compiler defaults.
This property is useful when declaring INTERFACE blocks for external routines, since it prevents
compiler options from changing calling or naming conventions.
14-12

Directive Enhanced Compilation 14

ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)

The ATTRIBUTES directive options DLLEXPORT and DLLIMPORT define a dynamic-link
library’s (DLL) interface for processes that use them. The properties can be assigned to data
objects or procedures. They take the following forms:

cDEC$ ATTRIBUTES DLLEXPORT :: object [, object] ...
cDEC$ ATTRIBUTES DLLIMPORT :: object [, object] ...

object
Is the name of a data object or procedure.
DLLEXPORT specifies that procedures or data are being exported to other applications or DLLs.
This causes the compiler to produce efficient code, eliminating the need for a module definition
(.def) file to export symbols.
DLLEXPORT should be specified in the routine to which it applies.
Symbols defined in a DLL are imported by programs that use them. The program must link with
the import DLL and use the DLLIMPORT property inside the program unit that imports the
symbol. DLLIMPORT is specified in a declaration, not a definition, since you cannot define a
symbol you are importing.
For details on working with DLL applications, see your user’s guide.

ATTRIBUTES EXTERN

The ATTRIBUTES directive option EXTERN specifies that a variable is allocated in another
source file. EXTERN can be used in global variable declarations, but it must not be applied to
dummy arguments. It takes the following form:

cDEC$ ATTRIBUTES EXTERN :: var
var
Is the variable to be allocated.
This option must be used when accessing variables declared in other languages.

ATTRIBUTES IGNORE_LOC

The ATTRIBUTES directive option IGNORE_LOC enables %LOC to be stripped from an
argument. It takes the following form:

cDEC$ ATTRIBUTES IGNORE_LOC :: arg
arg
Is the name of an argument.
IGNORE_LOC is only valid if the REFERENCE property is also specified; otherwise, it has no
effect.
14-13

14 Intel Fortran Language Reference
ATTRIBUTES INLINE, NOINLINE, and FORCEDINLINE

The ATTRIBUTES directive options INLINE, NOINLINE, and FORCEINLINE can be used to
control inline decisions made by the compiler. You should place the directive option in the
procedure that calls the routine whose inlining you want to influence.
The INLINE option specifies that a function or subroutine can be inlined. The inlining can be
ignored by the compiler if inline heuristics determine it may have a negative impact on
performance or will cause too much of an increase in code size. It takes the following form:

cDEC$ ATTRIBUTES INLINE :: procedure
procedure
Is the function or subroutine that can be inlined.
The NOINLINE option disables inlining of a function. It takes the following form:

cDEC$ ATTRIBUTES NOINLINE :: procedure
procedure
Is the function or subroutine that must not be inlined.
The FORCEINLINE option specifies that a function or subroutine must be inlined unless it will
cause errors. It takes the following form:

cDEC$ ATTRIBUTES FORCEINLINE :: procedure
procedure
Is the function or subroutine that must be inlined.

ATTRIBUTES NO_ARG_CHECK

The ATTRIBUTES directive option NO_ARG_CHECK specifies that type and shape matching
rules related to explicit interfaces are to be ignored. This permits the construction of an
INTERFACE block for an external procedure or a module procedure that accepts an argument of
any type or shape; for example, a memory copying routine. The NO_ARG_CHECK option takes
the following form:

cDEC$ ATTRIBUTES NO_ARG_CHECK :: object
object
Is the name of an argument or procedure.
NO_ARG_CHECK can appear only in an INTERFACE block for a non-generic procedure or in a
module procedure. It can be applied to an individual dummy argument name or to the routine
name, in which case the property is applied to all dummy arguments in that interface.
14-14

Directive Enhanced Compilation 14

NO_ARG_CHECK cannot be used for procedures with the PURE or ELEMENTAL prefix. If an
argument has an INTENT or OPTIONAL attribute, any NO_ARG_CHECK specification is
ignored.

ATTRIBUTES NOMIXED_STR_LEN_ARG

The ATTRIBUTES directive option NOMIXED_STR_LEN_ARG specifies that hidden lengths
be placed in sequential order at the end of the argument list. It takes the following form:

cDEC$ ATTRIBUTES NOMIXED_STR_LEN_ARG :: args
args
Is a list of arguments.

ATTRIBUTES REFERENCE and VALUE

The ATTRIBUTES directive options REFERENCE and VALUE specify how a dummy argument
is to be passed. They take the following form:

cDEC$ ATTRIBUTES REFERENCE :: arg
cDEC$ ATTRIBUTES VALUE :: arg

arg
Is the name of a dummy argument.
REFERENCE specifies a dummy argument’s memory location is to be passed instead of the
argument’s value.
VALUE specifies a dummy argument’s value is to be passed instead of the argument’s memory
location.
When a dummy argument has the VALUE property, the actual argument passed to it can be of a
different type. If necessary, type conversion is performed before the subprogram is called.
When a complex (KIND=4 or KIND=8) argument is passed by value, two floating-point
arguments (one containing the real part, the other containing the imaginary part) are passed by
immediate value.
Character values, substrings, assumed-size arrays, and adjustable arrays cannot be passed by
value.
If REFERENCE (only) is specified for a character argument, the following occurs:
• On Linux systems, the string is passed with no length.
• On Windows systems, hidden lengths immediately follow the variable. You can get the Linux

behavior by specifying the /iface:nomixed_str_len_arg compiler option.
14-15

14 Intel Fortran Language Reference
If REFERENCE is specified for a character argument, and C (or STDCALL) has been specified
for the routine, the string is passed with no length. This is true even if REFERENCE is also
specified for the routine. If REFERENCE and C (or STDCALL) are specified for a routine, but
REFERENCE has not been specified for the argument, the string is passed with the length.
VALUE is the default if the C or STDCALL property is specified in the subprogram definition.
In the following example integer x is passed by value:
 SUBROUTINE Subr (x)

 INTEGER x

!DEC$ ATTRIBUTES VALUE :: x

See Also
• “ATTRIBUTES C and STDCALL”
• "Adjusting Calling Conventions in Mixed-Language Programming" in your user’s guide.

ATTRIBUTES VARYING

The ATTRIBUTES directive option VARYING allows a variable number of calling arguments. It
takes the following form:

cDEC$ ATTRIBUTES VARYING :: var [, var] ...
Is the name of a variable.
Either the first argument must be a number indicating how many arguments to process, or the last
argument must be a special marker (such as –1) indicating it is the final argument. The sequence of
the arguments, and types and kinds must be compatible with the called procedure.
If VARYING is specified, the C property must also be specified.

DECLARE and NODECL ARE Directives

The DECLARE directive generates warnings for variables that have been used but have not been
declared (like the IMPLICIT NONE statement). The NODECLARE directive (the default)
disables these warnings.
These directives take the following form:

cDEC$ DECLARE
cDEC$ NODECLARE

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
The DECLARE directive is primarily a debugging tool that locates variables that have not been
properly initialized, or that have been defined but never used.
14-16

Directive Enhanced Compilation 14

See Also

“IMPLICIT Statement” for details on the IMPLICIT NONE statement

DEFINE and UNDEFINE Directives

The DEFINE directive creates a symbolic variable whose existence or value can be tested during
conditional compilation. The UNDEFINE directive removes a defined symbol.
These directives take the following form:

cDEC$ DEFINE name [=val]
cDEC$ UNDEFINE name

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
name
Is the name of the variable.
val
Is an INTEGER(4) value assigned to name.

Rules and Behavior

DEFINE creates and UNDEFINE removes variables for use with the IF (or IF DEFINED)
directive. Symbols defined with the DEFINE directive are local to the directive. They cannot be
declared in the Fortran program.
Because Fortran programs cannot access the named variables, the names can duplicate Fortran
keywords, intrinsic functions, or user-defined names without conflict.
To test whether a symbol has been defined, use the IF DEFINED (name) directive. You can assign
an integer value to a defined symbol. To test the assigned value of name, use the IF directive. IF
test expressions can contain most logical and arithmetic operators.
Attempting to undefine a symbol which has not been defined produces a compiler warning.
The DEFINE and UNDEFINE directives can appear anywhere in a program, enabling and
disabling symbol definitions.

Example

Consider the following:
!DEC$ DEFINE testflag

!DEC$ IF DEFINED (testflag)

 WRITE (*,*) 'Compiling first line'
14-17

14 Intel Fortran Language Reference
!DEC$ ELSE

 WRITE (*,*) 'Compiling second line'

!DEC$ ENDIF

!DEC$ UNDEFINE testflag

See Also

“IF and IF DEFINED Directives”

DISTRIBUTE POINT Directive

The DISTRIBUTE POINT directive specifies distribution for a DO loop. This directive takes the
following form:

cDEC$ DISTRIBUTE POINT
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

Loop distribution may cause large loops be distributed into smaller ones, which may cause
software pipelining to be applied to more loops.
If the directive is placed before a loop, the compiler will determine where to distribute; data
dependencies are observed.
If the directive is placed inside a loop, the distribution is performed after the directive and any
loop-carried dependencies are ignored. Currently only one distribute directive is supported if the
directive is placed inside the loop.

Example

Consider the following:
!DEC$ DISTRIBUTE POINT

 do i =1, m

 b(i) = a(i) +1

 c(i) = a(i) + b(i) ! Compiler will decide

 ! where to distribute.

 ! Data dependencies are

 ! observed

 d(i) = c(i) + 1
14-18

Directive Enhanced Compilation 14

 enddo

 do i =1, m

 b(i) = a(i) +1

!DEC$ DISTRIBUTE POINT

 call sub(a, n)! Distribution will start here,

 ! ignoring all loop-carried

 ! depedencies

 c(i) = a(i) + b(i)

 d(i) = c(i) + 1

 enddo

See Also

“Rules for General Directives that Affect DO Loops”

FIXEDFORMLINESIZE Directive

The FIXEDFORMLINESIZE directive sets the line length for fixed-form source code. The
directive takes the following form:

cDEC$ FIXEDFORMLINESIZE:{72 | 80 | 132}
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

You can set FIXEDFORMLINESIZE to 72 (the default), 80, or 132 characters. The
FIXEDFORMLINESIZE setting remains in effect until the end of the file, or until it is reset.
The FIXEDFORMLINESIZE directive sets the source-code line length in include files, but not in
USE modules, which are compiled separately. If an include file resets the line length, the change
does not affect the host file.
This directive has no effect on free-form source code.

Example

Consider the following:
 cDEC$ NOFREEFORM

 cDEC$ FIXEDFORMLINESIZE:132

 WRITE (*,*) 'Sentence that goes beyond the 72nd column'
14-19

14 Intel Fortran Language Reference
See Also

“Fixed and Tab Source Forms” for details on fixed-format source code

FREEFORM and NOFREEFORM Directives

The FREEFORM directive specifies that source code is in free-form format. The NOFREEFORM
directive specifies that source code is in fixed-form format.
These directives take the following form:

cDEC$ FREEFORM
cDEC$ NOFREEFORM

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
When the FREEFORM or NOFREEFORM directives are used, they remain in effect for the
remainder of the file, or until the opposite directive is used. When in effect, they apply to include
files, but do not affect USE modules, which are compiled separately.

See Also

“Source Forms” for details on free-form and fixed-form source code

IDENT Directive

The IDENT directive specifies a string that identifies an object module. The compiler places the
string in the identification field of an object module when it generates the module for each source
program unit. The IDENT directive takes the following form:

cDEC$ IDENT string
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
string
Is a character constant containing up to 31 printable characters.
Only the first IDENT directive is effective; the compiler ignores any additional IDENT directives
in a program unit or module.

IF and IF DEFINED Directives

The IF and IF DEFINED directives specify a conditional compilation construct. IF tests whether a
logical expression is .TRUE. or .FALSE.. IF DEFINED tests whether a symbol has been defined.
14-20

Directive Enhanced Compilation 14

The directive-initiated construct takes the following form:

cDEC$ IF (expr) [or cDEC$ IF DEFINED (name)]
block

[cDEC$ ELSE IF (expr)
block]...

[cDEC$ ELSE
block]

cDEC$ ENDIF
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
expr
Is a logical expression that evaluates to .TRUE. or .FALSE..
name
Is the name of a symbol to be tested for definition.
block
Are executable statements that are compiled (or not) depending on the value of logical expressions
in the IF directive construct.

Rules and Behavior

The IF and IF DEFINED directive constructs end with an ENDIF directive and can contain one or
more ELSEIF directives and at most one ELSE directive. If the logical condition within a directive
evaluates to .TRUE. at compilation, and all preceding conditions in the IF construct evaluate to
.FALSE., then the statements contained in the directive block are compiled.
A name can be defined with a DEFINE directive, and can optionally be assigned an integer value.
If the symbol has been defined, with or without being assigned a value, IF DEFINED (name)
evaluates to .TRUE.; otherwise, it evaluates to .FALSE..
If the logical condition in the IF or IF DEFINED directive is .TRUE., statements within the IF or
IF DEFINED block are compiled. If the condition is .FALSE., control transfers to the next
ELSEIF or ELSE directive, if any.
If the logical expression in an ELSEIF directive is .TRUE., statements within the ELSEIF block
are compiled. If the expression is .FALSE., control transfers to the next ELSEIF or ELSE
directive, if any.
If control reaches an ELSE directive because all previous logical conditions in the IF construct
evaluated to .FALSE., the statements in an ELSE block are compiled unconditionally.
14-21

14 Intel Fortran Language Reference
You can use any Fortran logical or relational operator or symbol in the logical expression of the
directive, including: .LT., <, .GT., >, .EQ., ==, .LE., <=, .GE., >=, .NE., /=, .EQV., .NEQV., .NOT.,
.AND., .OR., and .XOR.. The logical expression can be as complex as you like, but the whole
directive must fit on one line.

Example

Consider the following:
! When the following code is compiled and run,

! the output depends on whether one of the expressions

! tests .TRUE., or all test .FALSE.

!DEC$ DEFINE flag=3

!DEC$ IF (flag .LT. 2)

 WRITE (*,*) "This is compiled if flag less than 2."

!DEC$ ELSEIF (flag >= 8)

 WRITE (*,*) "Or this is compiled if flag greater than &

 or equal to 8."

!DEC$ ELSE

 WRITE (*,*) "Or this is compiled if all preceding &

 conditions .FALSE."

!DEC$ ENDIF

See Also

“DEFINE and UNDEFINE Directives”

INTEGER Directive

The INTEGER directive specifies the default integer kind. This directive takes the following form:
cDEC$ INTEGER:{1 | 2 | 4 | 8}

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

The INTEGER directive specifies a size of 1 (KIND=1), 2 (KIND=2), 4 (KIND=4), or 8
(KIND=8) bytes for default integer numbers.
When the INTEGER directive is effect, all default integer variables are of the kind specified in the
directive. Only numbers specified or implied as INTEGER without KIND are affected.
14-22

Directive Enhanced Compilation 14

The INTEGER directive can only appear at the top of a program unit. A program unit is a main
program, an external subroutine or function, a module or a block data program unit. The directive
cannot appear between program units, or at the beginning of internal subprograms. It does not
affect modules invoked with the USE statement in the program unit that contains it.
The default logical kind is the same as the default integer kind. So, when you change the default
integer kind you also change the default logical kind.

Example

Consider the following:
INTEGER i ! a 4-byte integer

WRITE(*,*) KIND(i)

CALL INTEGER2()

WRITE(*,*) KIND(i) ! still a 4-byte integer

 ! not affected by setting in subroutine

END

SUBROUTINE INTEGER2()

 !DEC$ INTEGER:2

 INTEGER j ! a 2-byte integer

 WRITE (*,*) KIND(j)

END SUBROUTINE

See Also
• “Integer Data Types”
• “REAL Directive”

IVDEP Directive

The IVDEP directive assists the compiler’s dependence analysis of iterative DO loops.
The IVDEP directive takes the following form:

cDEC$ IVDEP [: option]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
option
Is LOOP or BACK. This argument is only available on IA-32 processors.
14-23

14 Intel Fortran Language Reference
Rules and Behavior

The IVDEP directive is an assertion to the compiler’s optimizer about the order of memory
references inside a DO loop.
IVDEP:LOOP implies no loop-carried dependencies. IVDEP:BACK implies no backward
dependencies.
When no option is specified, the following occurs:
• On Intel® Itanium® processors, the behavior is the same as IVDEP:BACK. You can modify

the behavior to be the same as IVDEP:LOOP by using a compiler option.
• On IA-32 processors, the compiler begins dependence analysis by assuming all dependences

occur in the same forward direction as their appearance in the normal scalar execution order.
This contrasts with normal compiler behavior, which is for the dependence analysis to make
no initial assumptions about the direction of a dependence.

cDEC$ IVDEP with no option can also be spelled cDEC$ INIT_DEP_FWD (INITialize
DEPendences ForWarD).
The IVDEP directive is applied to a DO loop in which the user knows that dependences are in
lexical order. For example, if two memory references in the loop touch the same memory location
and one of them modifies the memory location, then the first reference to touch the location has to
be the one that appears earlier lexically in the program source code. This assumes that the
right-hand side of an assignment statement is "earlier" than the left-hand side.
The IVDEP directive informs the compiler that the program would behave correctly if the
statements were executed in certain orders other than the sequential execution order, such as
executing the first statement or block to completion for all iterations, then the next statement or
block for all iterations, and so forth. The optimizer can use this information, along with whatever
else it can prove about the dependences, to choose other execution orders.

Example

In the following example, the IVDEP directive provides more information about the dependences
within the loop, which may enable loop transformations to occur:
!DEC$ IVDEP

 DO I=1, N

 A(INDARR(I)) = A(INDARR(I)) + B(I)

 END DO

In this case, the scalar execution order follows:
1. Retrieve INDARR(I).
2. Use the result from step 1 to retrieve A(INDARR(I)).
3. Retrieve B(I).
14-24

Directive Enhanced Compilation 14

4. Add the results from steps 2 and 3.
5. Store the results from step 4 into the location indicated by A(INDARR(I)) from step 1.
IVDEP directs the compiler to initially assume that when steps 1 and 5 access a common memory
location, step 1 always accesses the location first because step 1 occurs earlier in the execution
sequence. This approach lets the compiler reorder instructions, as long as it chooses an instruction
schedule that maintains the relative order of the array references.
See Also

“Rules for General Directives that Affect DO Loops”

LOOP COUNT Directive

The LOOP COUNT directive specifies the loop count for a DO loop; this assists the optimizer
This directive takes the following form:

cDEC$ LOOP COUNT (n)
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
n
Is an integer constant.

Rules and Behavior

The value of the loop count affects heuristics used in software pipelining, vectorization, and
loop-transformations.

Example

Consider the following:
cDEC$ LOOP COUNT (10000)

 do i =1,m

 b(i) = a(i) +1 ! This is likely to enable

 ! the loop to get software-pipelined

 enddo

See Also

“Rules for General Directives that Affect DO Loops”
14-25

14 Intel Fortran Language Reference
MESSAGE Directive

The MESSAGE directive specifies a character string to be sent to the standard output device
during the first compiler pass; this aids debugging.
This directive takes the following form:

cDEC$ MESSAGE:string
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
string
Is a character constant specifying a message.

Example

Consider the following:
 !DEC$ MESSAGE:'Compiling Sound Speed Equations'

OBJCOMMENT Directive

The OBJCOMMENT directive specifies a library search path in an object file. This directive takes
the following form:

cDEC$ OBJCOMMENT LIB:library
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
library
Is a character constant specifying the name and, if necessary, the path of the library that the linker
is to search.

Rules and Behavior

The linker searches for the library named by the OBJCOMMENT directive as if you named it on
the command line, that is, before default library searches. You can place multiple library search
directives in the same source file. Each search directive appears in the object file in the order it is
encountered in the source file.
If the OBJCOMMENT directive appears in the scope of a module, any program unit that uses the
module also contains the directive, just as if the OBJCOMMENT directive appeared in the source
file using the module.
If you want to have the OBJCOMMENT directive in a module, but do not want it in the program
units that use the module, place the directive outside the module that is used.
14-26

Directive Enhanced Compilation 14

Example

Consider the following:
! MOD1.F90

MODULE a

 !DEC$ OBJCOMMENT LIB: "opengl32.lib"

END MODULE a

! MOD2.F90

!DEC$ OBJCOMMENT LIB: "graftools.lib"

MODULE b

!

END MODULE b

! USER.F90

PROGRAM go

 USE a ! library search contained in MODULE a

 ! included here

 USE b ! library search not included

END

OPTIONS Directive

The OPTIONS directive affects data alignment and warnings about data alignment. It takes the
following form:

cDEC$ OPTIONS option [option]
...
cDEC$ END OPTIONS

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
option
Is one (or both) of the following:
• /WARN=[NO]ALIGNMENT

Controls whether warnings are issued by the compiler for data that is not naturally aligned.
By default, you receive compiler messages when misaligned data is encountered
(/WARN=ALIGNMENT).
14-27

14 Intel Fortran Language Reference
• /[NO]ALIGN[= p]
Controls alignment of fields in record structures and data items in common blocks. The fields
and data items can be naturally aligned (for performance reasons) or they can be packed
together on arbitrary byte boundaries.
p
Is a specifier with one of the following forms:

[class =] rule
(class = rule,...)
ALL
NONE

class
Is one of the following keywords:
— COMMONS: For common blocks
— RECORDS: For records
— STRUCTURES: A synonym for RECORDS
rule
Is one of the following keywords:
— PACKED

Packs fields in records or data items in common blocks on arbitrary byte boundaries.
— NATURAL

Naturally aligns fields in records and data items in common blocks on up to 64-bit
boundaries (inconsistent with the Fortran 95/90 standard).
This keyword causes the compiler to naturally align all data in a common block,
including INTEGER(8), REAL(8), and all COMPLEX data.

— STANDARD
Naturally aligns data items in common blocks on up to 32-bit boundaries (consistent with
the Fortran 95/90 standard).
This keyword only applies to common blocks; so, you can specify
/ALIGN=COMMONS=STANDARD, but you cannot specify /ALIGN=STANDARD.

ALL
Is the same as specifying OPTIONS /ALIGN, OPTIONS /ALIGN=NATURAL, and
OPTIONS /ALIGN=(RECORDS=NATURAL,COMMONS=NATURAL).
NONE
Is the same as specifying OPTIONS /NOALIGN, OPTION /ALIGN=PACKED, and
OPTIONS/ALIGN=(RECORDS=PACKED,COMMONS=PACKED).
14-28

Directive Enhanced Compilation 14

Rules and Behavior

The OPTIONS (and accompanying END OPTIONS) directives must come after OPTIONS,
SUBROUTINE, FUNCTION, and BLOCK DATA statements (if any) in the program unit, and
before the executable part of the program unit.
The OPTIONS directive supersedes the compiler option that sets alignment.
For performance reasons, Intel Fortran aligns local data items on natural boundaries. However,
EQUIVALENCE, COMMON, RECORD, and STRUCTURE data declaration statements can
force misaligned data. If /WARN=NOALIGNMENT is specified, warnings will not be issued if
misaligned data is encountered.

If you want aligned data in common blocks, do one of the following:
• Specify /ALIGN=COMMONS=STANDARD for data items up to 32 bits in length.
• Specify /ALIGN=COMMONS=NATURAL for data items up to 64 bits in length.
• Place source data declarations within the common block in descending size order, so that each

data item is naturally aligned.
If you want packed, unaligned data in a record structure, do one of the following:
• Specify /ALIGN=RECORDS=PACKED.
• Place source data declarations in the record structure so that the data is naturally aligned.
An OPTIONS directive must be accompanied by an END OPTIONS directive; the directives can
be nested up to 100 levels. For example:
CDEC$ OPTIONS /ALIGN=PACKED ! Start of Group A

 declarations

CDEC$ OPTIONS /ALIGN=RECO=NATU ! Start of nested Group B

 more declarations

CDEC$ END OPTIONS ! End of Group B

 still more declarations

CDEC$ END OPTIONS ! End of Group A

The OPTIONS specification for Group B only applies to RECORDS; common blocks within
Group B will be PACKED. This is because COMMONS retains the previous setting (in this case,
from the Group A specification).

NOTE. Misaligned data significantly increases the time it takes to execute a
program. As the number of misaligned fields encountered increases, so does the
time needed to complete program execution. Specifying /ALIGN (or the
compiler option that sets alignment) minimizes misaligned data.
14-29

14 Intel Fortran Language Reference
See Also

Your user’s guide for details on alignment and data sizes, and details on compiler options

PACK Directive

The PACK directive specifies the memory starting addresses of derived-type items. This directive
takes the following form:

cDEC$ PACK[: [{1 | 2 | 4 | 8}]]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

Items of derived types and record structures are aligned in memory on the smaller of two sizes: the
size of the type of the item, or the current alignment setting. The current alignment setting can be
1, 2, 4, or 8 bytes. The default initial setting is 8 bytes (unless a compiler option specifies
otherwise). By reducing the alignment setting, you can pack variables closer together in memory.
The PACK directive lets you control the packing of derived-type or record structure items inside
your program by overriding the current memory alignment setting.
For example, if PACK:1 is specified, all variables begin at the next available byte, whether odd or
even. Although this slightly increases access time, no memory space is wasted. If PACK:4 is
specified, INTEGER(1), LOGICAL(1), and all character variables begin at the next available
byte, whether odd or even. INTEGER(2) and LOGICAL(2) begin on the next even byte; all other
variables begin on 4-byte boundaries.
If the PACK directive is specified without a number, packing reverts to the compiler option setting
(if any), or the default setting of 8.
The directive can appear anywhere in a program before the derived-type definition or record
structure definition. It cannot appear inside a derived-type or record structure definition.

Example

Consider the following:
! Use 4-byte packing for this derived type

! Note PACK is used outside of the derived-type definition

!DEC$ PACK:4

TYPE pair

 INTEGER a, b

END TYPE
14-30

Directive Enhanced Compilation 14

! revert to default or compiler option

!DEC$ PACK

See Also
• “Record Structures”
• Your user’s guide for details on compiler options that affect packing

PARALLEL and NOP ARALLEL Directives

The PARALLEL directive enables auto-parallelization for an immediately following DO loop.
The NOPARALLEL directive (the default) disables this auto-parallelization.
These directives take the following form:

cDEC$ PARALLEL
cDEC$ NOPARALLEL

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
Rules and Behavior
PARALLEL instructs the compiler to ignore dependencies that it assumes may exist and which
would prevent correct parallelization in the immediately following loop. However, if
dependencies are proven, they are not ignored.

Example

Consider the following:
program main

parameter (n=100)

integer x(n),a(n)

!DEC$ NOPARALLEL

 do i=1,n

 x(i) = i

 enddo

!DEC$ PARALLEL

 do i=1,n

 a(x(i)) = i

 enddo end

See Also

“Rules for General Directives that Affect DO Loops”
14-31

14 Intel Fortran Language Reference
PREFETCH and NOPREFETCH Directives

The PREFETCH directive enables a data prefetch from memory. Prefetching data can minimize
the effects of memory latency. The NOPREFETCH directive (the default) disables data
prefetching. These directives affect the heuristics used in the compiler.
The directives take the following form:

cDEC$ PREFETCH [var1 [: hint1 [: distance1]] [, var2 [: hint2 [: distance2]]]...]
cDEC$ NOPREFETCH [var1 [, var2]...]

c
Is one of the following: C (or c), !, or *. (See “Syntax Rules for Compiler Directives”.)
var
Is an optional memory reference.
hint
Is an optional integer initialization expression with the value 0, 1, 2, or 3. These are the same as
the values for hint in the intrinsic subroutine MM_PREFETCH. To use this argument, you must
also specify var.
distance
Is an optional integer initialization expression with a value greater than 0. It indicates the number
of loop iterations to perform before the prefetch. To use this argument, you must also specify var
and hint.
Rules and Behavior
To use these directives, compiler option /O3 must be set.
This directive affects the DO loop it precedes.
If you specify PREFETCH with no arguments, all arrays accessed in the DO loop will be
prefetched.
If a loop includes expression A(j), placing cDEC$ PREFETCH A in front of the loop, instructs the
compiler to insert prefetches for A(j + d) within the loop. The d is determined by the compiler.

Example

Consider the following:
cDEC$ NOPREFETCH c

cDEC$ PREFETCH a

do i = 1, m

 b(i) = a(c(i)) + 1

enddo
14-32

Directive Enhanced Compilation 14

See Also
• “Rules for General Directives that Affect DO Loops”
• intrinsic subroutine “MM_PREFETCH”

PSECT Directive

The PSECT directive modifies several characteristics of a common block. It takes the following
form:

cDEC$ PSECT /common-name/ a [, a] . . .
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
common-name
Is the name of the common block. The slashes (/) are required.
a
Is one of the following keywords:
• ALIGN=val or ALIGN=keyword

Specifies alignment for the common block.
The val is a constant ranging from 0 through 6 on Windows systems and 0 through 4 on Linux
systems. The specified number is interpreted as a power of 2. The value of the expression is
the alignment in bytes.
The keyword is one of the following:

• [NO]WRT
Determines whether the contents of a common block can be modified during program
execution.

Keyword Equivalent to val

BYTE 0

WORD 1

LONG 2

QUAD 3

OCTA 4

PAGE 1

1. Range is 0 to 13 except on L*X32, where the range is 0 to 12.

i32: 12

i64: 13
14-33

14 Intel Fortran Language Reference
Rules and Behavior

Global or local scope is significant for an image that has more than one cluster. Program sections
with the same name that are from different modules in different clusters are placed in separate
clusters if local scope is in effect. They are placed in the same cluster if global scope is in effect.
If one program unit changes one or more characteristics of a common block, all other units that
reference that common block must also change those characteristics in the same way.
Default characteristics apply if you do not modify them with a PSECT directive. Table 14-1 lists
the default characteristics of common blocks and how they can be modified by PSECT.

See Also
• ld(1) for details on the linker for Linux* systems
• The online help on the linker for details on the linker for Windows* systems
• Your user’s guide for details on compiler options

Table 14-1 Common Block Defaul ts and PSECT Modification

Default Characteristics PSECT Modification

Relocatable None

Overlaid None

Global scope Global or local scope

Not executable None

Not multilanguage Multilanguage or not multilanguage

Writable Writable or not writable

Readable None

No protection None

Octaword alignment1

1. An address that is an integral multiple of 16.

W*32, W*64: 0 through 62

L*X: 0 through 42

2. Or keywords BYTE through OCTA

On i64:

Not shareable Shareable or not shareable

Position dependent None

On i32:

Shareable Shareable or not shareable

Position independent None
14-34

Directive Enhanced Compilation 14

REAL Directive

The REAL directive specifies the default real kind. This directive takes the following form:
cDEC$ REAL:{ 4 | 8 | 16 }

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

The REAL directive specifies a size of 4 (KIND=4), 8 (KIND=8), or 16 (KIND=16) bytes for
default real numbers.
When the REAL directive is effect, all default real variables are of the kind specified in the
directive. Only numbers specified or implied as REAL without KIND are affected.
The REAL directive can only appear at the top of a program unit. A program unit is a main
program, an external subroutine or function, a module or a block data program unit. The directive
cannot appear between program units, or at the beginning of internal subprograms. It does not
affect modules invoked with the USE statement in the program unit that contains it.

Example

Consider the following:
REAL r ! a 4-byte REAL

WRITE(*,*) KIND(r)

CALL REAL8()

WRITE(*,*) KIND(r) ! still a 4-byte REAL

 ! not affected by setting in subroutine

END

SUBROUTINE REAL8()

 !DEC$ REAL:8

 REAL s ! an 8-byte REAL

 WRITE(*,*) KIND(s)

END SUBROUTINE

See Also
• “Real Data Types”
• “INTEGER Directive”
• Your user’s guide for details on compiler options that can affect REAL types
14-35

14 Intel Fortran Language Reference
STRICT and NOSTRICT Directives

The STRICT directive disables language features not found in the language standard specified on
the command line (Fortran 95 or Fortran 90). The NOSTRICT directive (the default) enables
these language features.
These directives take the following form:

cDEC$ STRICT
cDEC$ NOSTRICT

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

If STRICT is specified and no language standard is specified on the command line, the default is
to disable features not found in Fortran 90.
The STRICT and NOSTRICT directives can appear only appear at the top of a program unit. A
program unit is a main program, an external subroutine or function, a module, or a block data
program unit. The directives cannot appear between program units, or at the beginning of internal
subprograms. They do not affect any modules invoked with the USE statement in the program unit
that contains them.

Example

Consider the following:
! NOSTRICT by default

TYPE stuff

 INTEGER(4) k

 INTEGER(4) m

 CHARACTER(4) name

END TYPE stuff

TYPE (stuff) examp

DOUBLE COMPLEX cd ! non-standard data type, no error

cd = (3.0D0, 4.0D0)

examp.k = 4 ! non-standard component designation,

 ! no error

END

SUBROUTINE STRICTDEMO()

 !DEC$ STRICT

 TYPE stuff
14-36

Directive Enhanced Compilation 14

 INTEGER(4) k

 INTEGER(4) m

 CHARACTER(4) name

 END TYPE stuff

 TYPE (stuff) samp

 DOUBLE COMPLEX cd ! ERROR

 cd = (3.0D0, 4.0D0)

 samp.k = 4 ! ERROR

END SUBROUTINE

SWP and NOSWP Directives (i64 only)

The SWP directive enables software pipelining for a DO loop. The NOSWP directive (the default)
disables this software pipelining. These directives are only available on Intel Itanium processors.
The directives take the following form:

cDEC$ SWP
cDEC$ NOSWP

c
Is one of the following: C (or c), !, or *. (See “Syntax Rules for Compiler Directives”.)
Rules and Behavior
The SWP directive does not help data dependence, but overrides heuristics based on profile counts
or lop-sided control flow.
The software pipelining optimization specified by the SWP directive applies instruction
scheduling to certain innermost loops, allowing instructions within a loop to be split into different
stages.
This allows increased instruction level parallelism, which can reduce the impact of long-latency
operations, resulting in faster loop execution.
Loops chosen for software pipelining are always innermost loops containing procedure calls that
are inlined. Because the optimizer no longer considers fully unrolled loops as innermost loops,
fully unrolling loops can allow an additional loop to become the innermost loop (see the compiler
option for loop unrolling in your user’s guide).
You can request and view the optimization report to see whether software pipelining was applied
(see "Optimizer Report Generation" in your user’s guide, Volume II).

Example

Consider the following:
14-37

14 Intel Fortran Language Reference
!DEC$ SWP

 do i = 1, m

 if (a(i) .eq. 0) then

 b(i) = a(i) + 1

 else

 b(i) = a(i)/c(i)

 endif

 enddo

See Also

“Rules for General Directives that Affect DO Loops”

TITLE and SUBTITLE Directives

The TITLE directive specifies a string for the title field of a listing header. Similarly, SUBTITLE
specifies a string for the subtitle field of a listing header.
These directives take the following form:

cDEC$ TITLE string
cDEC$ SUBTITLE string

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
string
Is a character constant containing up to 31 printable characters.

Rules and Behavior

To enable TITLE and SUBTITLE directives, you must specify the compiler option that produces a
source listing file.
When TITLE or SUBTITLE appear on a page of a listing file, the specified string appears in the
listing header of the following page.
If two or more of either directive appear on a page, the last directive is the one in effect for the
following page.
If either directive does not specify a string, no change occurs in the listing file header.

See Also

Your user’s guide for details on compiler options
14-38

Directive Enhanced Compilation 14

UNROLL and NOUNROLL Directives

The UNROLL directive tells the compiler’s optimizer how many times to unroll a DO loop. The
NOUNROLL directive (the default) disables the unrolling of a DO loop. These directives can
only be applied to iterative DO loops.
The directives take the following form:

cDEC$ UNROLL [(n)]
cDEC$ NOUNROLL

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
n
Is an integer constant. The range of n is 0 through 255.

Rules and Behavior

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it is outside the
allowed range, the optimizer picks the number of times to unroll the loop.
The UNROLL directive overrides any setting of loop unrolling from the command line.
See Also

“Rules for General Directives that Affect DO Loops”

VECTOR ALIGNED and VECTOR UNALIGNED Directives (i32 only)

The VECTOR ALIGNED directive specifies that all data in a DO loop is aligned. The VECTOR
UNALIGNED directive specifies that the data in the loop is not aligned. These directives are only
available on IA-32 processors.
The directives take the following form:

cDEC$ VECTOR ALIGNED
cDEC$ VECTOR UNALIGNED

c
Is one of the following: C (or c), !, or *. (See “Syntax Rules for Compiler Directives”.)
Rules and Behavior
These directives override efficiency heuristics in the optimizer. The qualifiers UNALIGNED and
ALIGNED instruct the compiler to use, respectively, unaligned and aligned data movement
instructions for all array references. This disables all the advanced alignment optimizations of the
compiler, such as determining alignment properties from the program context or using dynamic
loop peeling to make references aligned.
14-39

14 Intel Fortran Language Reference

See Also

“Rules for General Directives that Affect DO Loops”

VECTOR ALWAYS and NO VECTOR Directives (i32 only)

The VECTOR ALWAYS directive enables vectorization of a DO loop. The NOVECTOR
directive disables this vectorization. These directives are only available IA-32 processors.
The directives take the following form:

cDEC$ VECTOR ALWAYS
cDEC$ NOVECTOR

c
Is one of the following: C (or c), !, or *. (See “Syntax Rules for Compiler Directives”.)
Rules and Behavior
The VECTOR ALWAYS and NOVECTOR directives override the default behavior of the
compiler. The VECTOR ALWAYS directive also overrides efficiency heuristics of the vectorizer,
but it only works if the loop can actually be vectorized. You should use the “IVDEP Directive” to
ignore assumed dependences.

Examples

The compiler normally does not vectorize DO loops that have a large number of non-unit stride
references (compared to the number of unit stride references).

CAUTION. The directives VECTOR ALIGNED and VECTOR
UNALIGNED should be used with care. Overriding the efficiency heuristics of
the compiler should only be done if you are absolutely sure the vectorization
will improve performance.
Furthermore, instructing the compiler to implement all array references with
aligned data movement instructions will cause a runtime exception if some of
the access patterns are actually unaligned.

CAUTION. The directive VECTOR ALWAYS should be used with care.
Overriding the efficiency heuristics of the compiler should only be done if you
are absolutely sure the vectorization will improve performance.
14-40

Directive Enhanced Compilation 14

In the following example, vectorization would be disabled by default, but the directive overrides
this behavior:
!DEC$ VECTOR ALWAYS

 do i = 1, 100, 2

 ! two references with stride 2 follow

 a(i) = b(i)

 enddo

There may be cases where you want to explicitly avoid vectorization of a loop; for example, if
vectorization would result in a performance regression rather than an improvement. In these cases,
you can use the NOVECTOR directive to disable vectorization of the loop.
In the following example, vectorization would be performed by default, but the directive overrides
this behavior:
!DEC$ NOVECTOR

 do i = 1, 100

 a(i) = b(i) + c(i)

 enddo

See Also

“Rules for General Directives that Affect DO Loops”

VECTOR NONTEMPORAL Directive (i32 only)

The VECTOR NONTEMPORAL directive enables streaming storage. This directive is only
available on IA-32 processors. It takes the following form:

cDEC$ VECTOR NONTEMPORAL
c
Is one of the following: C (or c), !, or *. (See “Syntax Rules for Compiler Directives”.)
Streaming storage may cause significant performance improvements over non-streaming storage
for large numbers on certain IA-32 processors.
For more information on this directive, including an example, see "Vectorization Support" in your
user's guide, Volume II: Optimizing Applications.

See Also

“Rules for General Directives that Affect DO Loops”
14-41

14 Intel Fortran Language Reference
OpenMP* Fortran Compiler Directives
Intel Fortran provides OpenMP* Fortran compiler directives that comply with OpenMP Fortran
Application Program Interface (API) specification Version 1.1 and most of Version 2.0.
To use these directives, you must specify the compiler option that enables the directives. For
information on the form for this compiler option and how to use these directives, see your user’s
guide.
This section discusses the following topics:
• “Data Scope Attribute Clauses”
• “Conditional Compilation Rules”
• “Nesting and Binding Rules”
• “ATOMIC Directive”

Specifies that a specific memory location is to be updated dynamically.
• “BARRIER Directive”

Synchronizes all the threads in a team.
• “CRITICAL Directive”

Restricts access for a block of code to only one thread at a time.
• “DO Directive”

Specifies that the iterations of the immediately following DO loop must be executed in
parallel.

• “FLUSH Directive”
Specifies synchronization points where the implementation must have a consistent view of
memory.

• “MASTER Directive”
Specifies a block of code to be executed by the master thread of the team.

• “ORDERED Directive”
Specifies a block of code to be executed sequentially.

• “PARALLEL Directive”
Defines a parallel region.

• “PARALLEL DO Directive”
Defines a parallel region that contains a single DO directive.

• “PARALLEL SECTIONS Directive”
Defines a parallel region that contains SECTIONS directives.

• “SECTIONS Directive”
Specifies a block of code to be divided among threads in a team (a worksharing area).
14-42

Directive Enhanced Compilation 14

• “SINGLE Directive”

Specifies a block of code to be executed by only one thread in a team.
• “THREADPRIVATE Directive”

Makes named common blocks private to a thread but global within the thread.
The OpenMP parallel directives can be grouped into the categories shown in Table 14-2.

Note that certain general directives and rules can affect DO loops. For more information, see
“Rules for General Directives that Affect DO Loops”.

Examples

The following examples are equivalent:
!$OMP PARALLEL DO &

!$OMP SHARED(A,B,C)

!$OMP PARALLEL &

!$OMP DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

See Also
• Your user’s guide (Volume II) for details on how to use these directives
• http://www.openmp.org/ for details on OpenMP

Table 14-2 Categories of OpenMP Fortran Parallel Directives

Category Description

Parallel region Defines a parallel region: PARALLEL

Work sharing Divide the execution of the enclosed block of code among the members of
the team that encounter it: DO and SECTIONS

Combined parallel work sharing Shortcut for denoting a parallel region that contains only one work-sharing
construct: PARALLEL DO and PARALLEL SECTIONS

Synchronization Provide various aspects of synchronization; for example, access to a block
of code, or execution order of statements within a block of code: ATOMIC,
BARRIER, CRITICAL, FLUSH, MASTER, and ORDERED

Data environment Control the data environment during the execution of parallel constructs:
THREADPRIVATE
14-43

http://www.openmp.org/

14 Intel Fortran Language Reference
Data Scope Attribute Clauses

Some of the OpenMP Fortran directives have clauses (or options) you can specify to control the
scope attributes of variables for the duration of the directive. This section discusses the following
data scope attribute clauses:
• “COPYIN Clause”
• “COPYPRIVATE Clause”
• “DEFAULT Clause”
• “FIRSTPRIVATE Clause”
• “LASTPRIVATE Clause”
• “PRIVATE Clause”
• “REDUCTION Clause”
• “SHARED Clause”
Other clauses (or options) are available for some OpenMP Fortran directives. For more
information, see each directive description.

COPYIN Clause

The COPYIN clause specifies that the data in the master thread of the team is to be copied to the
thread private copies of the common block at the beginning of the parallel region. It takes the
following form:

COPYIN (list)
list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).
The COPYIN clause applies only to common blocks declared as THREADPRIVATE.
You do not need to specify the whole THREADPRIVATE common block, you can specify named
variables within the common block.

COPYPRIVATE Clause

The COPYPRIVATE clause uses a private variable to broadcast a value, or a pointer to a shared
object, from one member of a team to the other members. The COPYPRIVATE clause can only
appear in the END SINGLE directive. It takes the following form:

COPYPRIVATE (list)
14-44

Directive Enhanced Compilation 14

list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).
Variables in the list must not appear in a PRIVATE or FIRSTPRIVATE clause for the SINGLE
directive construct.
If the directive is encountered in the dynamic extent of a parallel region, variables in the list must
be private in the enclosing context.
If a common block is specified, it must be declared as THREADPRIVATE; the effect is the same
as if the variable names in its common block object list were specified.
The effect of the COPYPRIVATE clause on the variables in its list occurs after the execution of the
code enclosed within the SINGLE construct, and before any threads in the team have left the
barrier at the end of the construct.

DEFAULT Clause

The DEFAULT clause lets you specify a scope for all variables in the lexical extent of a parallel
region. It takes the following form:

DEFAULT ()

The specifications have the following effects:
• PRIVATE — Makes all named objects in the lexical extent of the parallel region, including

common block variables but excluding THREADPRIVATE variables, private to a thread as if
you explicitly listed each variable in a PRIVATE clause.

• SHARED — Makes all named objects in the lexical extent of the parallel region shared
among the threads in a team, as if you explicitly listed each variable in a SHARED clause. If
you do not specify a DEFAULT clause, this is the default.

• NONE — Specifies that there is no implicit default as to whether variables are PRIVATE or
SHARED. In this case, you must specify the PRIVATE, SHARED, FIRSTPRIVATE,
LASTPRIVATE, or REDUCTION property of each variable you use in the lexical extent of
the parallel region.

You can specify only one DEFAULT clause in a PARALLEL directive. You can exclude variables
from a defined default by using the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clauses.
Variables in THREADPRIVATE common blocks are not affected by this clause.

PRIVATE
SHARED

NONE

14-45

14 Intel Fortran Language Reference
FIRSTPRIVATE Clause

The FIRSTPRIVATE clause provides a superset of the functionality provided by the PRIVATE
clause (see “PRIVATE Clause”); objects are declared PRIVATE and they are initialized with
certain values. It takes the following form:

FIRSTPRIVATE (list)
list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).
Variables that appear in a FIRSTPRIVATE list are subject to PRIVATE clause semantics. In
addition, private (local) copies of each variable in the different threads are initialized to the value
the variable had before the parallel region started.

LASTPRIVATE Clause

The LASTPRIVATE clause provides a superset of the functionality provided by the PRIVATE
clause (see “PRIVATE Clause”); objects are declared PRIVATE and they are given certain values
when the parallel region is exited. It takes the following form:

LASTPRIVATE (list)
list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).
Variables that appear in a LASTPRIVATE list are subject to PRIVATE clause semantics. In
addition, once the parallel region is exited, each variable has the value provided by the
sequentially last section or loop iteration.
When the LASTPRIVATE clause appears in a DO directive, the thread that executes the
sequentially last iteration updates the version of the object it had before the construct. When the
LASTPRIVATE clause appears in a SECTIONS directive, the thread that executes the lexically
last SECTION updates the version of the object it had before the construct.
Subobjects that are not assigned a value by the last iteration of the DO or the lexically last
SECTION of the SECTIONS directive are undefined after the construct.

PRIVATE Clause

The PRIVATE clause declares specified variables to be private to each thread in a team. It takes
the following form:

PRIVATE (list)
14-46

Directive Enhanced Compilation 14

list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

Rules and Behavior

The following occurs when variables are declared in a PRIVATE clause:
• A new object of the same type is declared once for each thread in the team. The new object is

no longer storage associated with the original object.
• All references to the original object in the lexical extent of the directive construct are replaced

with references to the private object.
• Variables defined as PRIVATE are undefined for each thread on entering the construct and the

corresponding shared variable is undefined on exit from a parallel construct.
• Contents, allocation state, and association status of variables defined as PRIVATE are

undefined when they are referenced outside the lexical extent (but inside the dynamic extent)
of the construct, unless they are passed as actual arguments to called routines.

REDUCTION Clause

The REDUCTION clause performs a commutative reduction operation on the specified variables.
It takes the following form:

REDUCTION (: list)

operator
Is one of the following: +, *, –, .AND., .OR., .EQV., or .NEQV.
intrinsic
Is one of the following: MAX, MIN, IAND, IOR, or IEOR.
list
Is the name of one or more scalar variables or intrinsic type or common blocks that are accessible
to the scoping unit. Subobjects cannot be specified. Each name must be separated by a comma,
and a named common block must appear between slashes (/ /).
Variables that appear in a REDUCTION clause must be SHARED in the enclosing context. A
private copy of each variable in list is created for each thread as if the PRIVATE clause had been
used. The private copy is initialized according to the operator (see Table 14-3).

operator
intrinsic

14-47

14 Intel Fortran Language Reference
At the end of the REDUCTION, the shared variable is updated to reflect the result of combining
the original value of the shared reduction variable with the final value of each of the private copies
using the operator specified. The reduction operators are all associative (except for subtraction),
and the compiler can freely reassociate the computation of the final value; the partial results of a
subtraction reduction are added to form the final value.
The value of the shared variable becomes undefined when the first thread reaches the clause
containing the reduction, and it remains undefined until the reduction computation is complete.
Normally, the computation is complete at the end of the REDUCTION construct.
However, if the REDUCTION clause is used in a construct to which NOWAIT is also applied, the
shared variable remains undefined until a barrier synchronization has been performed. This
ensures that all the threads complete the REDUCTION clause.
The REDUCTION clause must be used in a region or worksharing construct where the reduction
variable is used only in a reduction statement having one of the following forms:
 x = x operator expr

 x = expr operator x (except for subtraction)

 x = intrinsic (x, expr)

 x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX reduction can be
expressed as follows:
IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. Be careful that the operator
you specify in the REDUCTION clause matches the reduction operation.
Table 14-3 lists the operators and intrinsics and their initialization values. The actual initialization
value will be consistent with the data type of the reduction variable.

Table 14-3 Initialization Values for REDUCTION Operators and Intrinsics

Operator Initialization Value

+ 0

* 1

– 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.
14-48

Directive Enhanced Compilation 14
If a directive allows reduction clauses, the number you can specify is not limited. However, each
variable name can appear in only one of the clauses.

SHARED Clause

The SHARED clause specifies variables that will be shared by all the threads in a team. It takes
the following form:

SHARED (list)
list
Is the name of one or more variables or common blocks that are accessible to the scoping unit.
Subobjects cannot be specified. Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).
All threads within a team access the same storage area for SHARED data.

Conditional Compilation Rules

The OpenMP Fortran API lets you conditionally compile Intel Fortran statements if you use the
appropriate directive prefix.
The prefix depends on which source form you are using, although !$ is valid in all forms.
The prefix must be followed by a valid Intel Fortran statement on the same line.

Free Source Form

The free source form conditional compilation prefix is !$. This prefix can appear in any column as
long as it is preceded only by white space. It must appear as a single word with no intervening
white space. Free-form source rules apply to the directive line.
Initial lines must have a space after the prefix. Continued lines must have an ampersand as the last
nonblank character on the line. Continuation lines can have an ampersand after the prefix with
optional white space before and after the ampersand.

Intrinsic Initialization Value

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

Table 14-3 Initialization Values fo r REDUCTION Operators and Intrinsics
14-49

14 Intel Fortran Language Reference
Fixed Source Form

For fixed source form programs, the conditional compilation prefix is one of the following: !$, C$
(or c$), or *$.
The prefix must start in column one and appear as a single string with no intervening white space.
Fixed-form source rules apply to the directive line.
Initial lines must have a space or zero in column six, and continuation lines must have a character
other than a space or zero in column six. For example, the following forms for specifying
conditional compilation are equivalent:
c23456789

!$ IAM = OMP_GET_THREAD_NUM() +

!$ * INDEX

#IFDEF _OPENMP

 IAM = OMP_GET_THREAD_NUM() +

 * INDEX

#ENDIF

See Also
• Your user’s guide for details on how the conditional prefix is interpreted, and for details on a

macro that can be used to denote conditional compilation

Nesting and Binding Rules

This section describes the dynamic nesting and binding rules for OpenMP Fortran API directives.

Binding Rules

The following rules apply to dynamic binding:
• The DO, SECTIONS, SINGLE, MASTER, and BARRIER directives bind to the dynamically

enclosing PARALLEL directive, if one exists.
• The ORDERED directive binds to the dynamically enclosing DO directive.
• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives in all

threads, not just the current team.
• The CRITICAL directive enforces exclusive access with respect to CRITICAL directives in

all threads, not just the current team.
• A directive can never bind to any directive outside the closest enclosing PARALLEL

directive.
14-50

Directive Enhanced Compilation 14

Nesting Rules

The following rules apply to dynamic nesting:
• A PARALLEL directive dynamically inside another PARALLEL directive logically

establishes a new team, which is composed of only the current thread unless nested
parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL directive are not
allowed to be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of
CRITICAL and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS, SINGLE,
MASTER, and CRITICAL directives.

• MASTER directives are not permitted in the dynamic extent of DO, SECTIONS, and
SINGLE directives.

• ORDERED sections are not allowed in the dynamic extent of CRITICAL sections.
• Any directive set that is legal when executed dynamically inside a PARALLEL region is also

legal when executed outside a parallel region. When executed dynamically outside a
user-specified parallel region, the directive is executed with respect to a team composed of
only the master thread.

Examples

The following example shows nested PARALLEL regions:
c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

 DO I =1, N

c$OMP PARALLEL SHARED(I,N)

c$OMP DO

 DO J =1, N

 CALL WORK(I,J)

 END DO

c$OMP END PARALLEL

 END DO

c$OMP END PARALLEL

Note that the inner and outer DO directives bind to different PARALLEL regions.
The following example shows a variation of the preceding example:
c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

 DO I =1, N
14-51

14 Intel Fortran Language Reference
 CALL SOME_WORK(I,N)

 END DO

c$OMP END PARALLEL

 ...

 SUBROUTINE SOME_WORK(I,N)

c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

 DO J =1, N

 CALL WORK(I,J)

 END DO

c$OMP END PARALLEL

 RETURN

 END

ATOMIC Directive

The ATOMIC directive ensures that a specific memory location is updated dynamically; this
prevents the possibility of multiple, simultaneous writing threads. It takes the following form:

c$OMP ATOMIC
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).

Rules and Behavior

The ATOMIC directive permits optimization beyond that of the critical section around the
assignment. An implementation can replace ATOMIC directives by enclosing each statement in a
critical section. The critical section (or sections) must use the same unique name.
The ATOMIC directive applies only to the immediately following statement, which must have one
of the following forms:
 x = x operator expr

 x = expr operator x

 x = intrinsic (x, expr)

 x = intrinsic (expr, x)

In the preceding statements:
• x is a scalar variable of intrinsic type
• operator is +, *, -, /, .AND., .OR., .EQV., or .NEQV.
• expr is a scalar expression that does not reference x
• intrinsic is MAX, MIN, IAND, IOR, or IEOR
14-52

Directive Enhanced Compilation 14

All references to storage location x must have the same type and type parameters.
Only the loading and storing of x are dynamic; the evaluation of expr is not dynamic. To avoid
race conditions (or concurrency races), all updates of the location in parallel must be protected
using the ATOMIC directive, except those that are known to be free of race conditions. The
function intrinsic, the operator operator, and the assignment must be the intrinsic function,
operator, and assignment.

Example

The following example shows a way to avoid race conditions by using ATOMIC to protect all
simultaneous updates of the location by multiple threads:
c$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)

 DO I=1,N

 CALL WORK(XLOCAL, YLOCAL)

c$OMP ATOMIC

 X(INDEX(I)) = X(INDEX(I)) + XLOCAL

 Y(I) = Y(I) + YLOCAL

 END DO

Since the ATOMIC directive applies only to the statement immediately following it, note that Y is
not updated atomically.

BARRIER Directive

The BARRIER directive synchronizes all the threads in a team. It causes each thread to wait until
all of the other threads in the team have reached the barrier.
The BARRIER directive takes the following form:

c$OMP BARRIER
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
The BARRIER directive must be encountered by all threads in a team or by none at all. It must
also be encountered in the same order by all threads in a team.

Example

The directive binding rules call for a BARRIER directive to bind to the closest enclosing
PARALLEL directive. In the following example, the BARRIER directive ensures that all threads
have executed the first loop and that it is safe to execute the second loop:
c$OMP PARALLEL
14-53

14 Intel Fortran Language Reference
c$OMP DO PRIVATE(i)

 DO i = 1, 100

 b(i) = i

 END DO

c$OMP BARRIER

c$OMP DO PRIVATE(i)

 DO i = 1, 100

 a(i) = b(101-i)

 END DO

c$OMP END PARALLEL

See Also

“Nesting and Binding Rules” for details about directive binding

CRITICAL Directive

The CRITICAL directive restricts access to a block of code to only one thread at a time. It takes
the following form:

c$OMP CRITICAL [(name)]
block

c$OMP END CRITICAL [(name)]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
name
Is the name of the critical section.
block
Is a structured block (section) of statements or constructs. You cannot branch into or out of the
block.

Rules and Behavior

A thread waits at the beginning of a critical section until no other thread in the team is executing a
critical section having the same name. All unnamed CRITICAL directives map to the same name.
If a name is specified in the CRITICAL directive, the same name must appear in the
corresponding END CRITICAL directive. If no name appears in the CRITICAL directive, no
name can appear in the corresponding END CRITICAL directive.
14-54

Directive Enhanced Compilation 14

Critical section names are global entities of the program. If the name specified conflicts with any
other entity, the behavior of the program is undefined.

Example

The following example shows a queuing model in which a task is dequeued and worked on. To
guard against multiple threads dequeuing the same task, the dequeuing operation is placed in a
critical section.
Because there are two independent queues in this example, each queue is protected by CRITICAL
directives having different names, XAXIS and YAXIS, respectively:
c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)

c$OMP CRITICAL(XAXIS)

 CALL DEQUEUE(IX_NEXT, X)

c$OMP END CRITICAL(XAXIS)

 CALL WORK(IX_NEXT, X)

c$OMP CRITICAL(YAXIS)

 CALL DEQUEUE(IY_NEXT,Y)

c$OMP END CRITICAL(YAXIS)

 CALL WORK(IY_NEXT, Y)

c$OMP END PARALLEL

DO Directive

The DO directive specifies that the iterations of the immediately following DO loop must be
executed in parallel. It takes the following form:

c$OMP DO [clause[[,] clause] . . .]
do_loop

[c$OMP END DO [NOWAIT]]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
clause
Is one of the following:
• FIRSTPRIVATE (list)

See “FIRSTPRIVATE Clause”.
• LASTPRIVATE (list)

See “LASTPRIVATE Clause”.
14-55

14 Intel Fortran Language Reference
• ORDERED
Must be used if ordered sections are contained in the dynamic extent of the DO directive. For
more information about ordered sections, see the description in “ORDERED Directive”.

• PRIVATE (list)
See “PRIVATE Clause”.

• REDUCTION (operator | intrinsic : list)
See “REDUCTION Clause”.

• SCHEDULE (type [, chunk])
Specifies how iterations of the DO loop are divided among the threads of the team. chunk
must be a positive scalar integer expression. The following four types are permitted, three of
which allow the optional parameter chunk:

If the SCHEDULE clause is not used, the default schedule type is STATIC.

Type Effect

STATIC Divides iterations into contiguous pieces by dividing the number of iterations
by the number of threads in the team. Each piece is then dispatched to a
thread before loop execution begins.

If chunk is specified, iterations are divided into pieces of a size specified by
chunk. The pieces are statically dispatched to threads in the team in a
round-robin fashion in the order of the thread number.

DYNAMIC Can be used to get a set of iterations dynamically. It defaults to 1 unless
chunk is specified.

If chunk is specified, the iterations are broken into pieces of a size specified
by chunk. As each thread finishes a piece of the iteration space, it
dynamically gets the next set of iterations.

GUIDED Can be used to specify a minimum number of iterations. It defaults to 1
unless chunk is specified.

If chunk is specified, the chunksize is reduced exponentially with each
succeeding dispatch. The chunk specifies the minimum number of iterations
to dispatch each time. If there are less than chunk iterations remaining, the
rest are dispatched.

RUNTIME1

1. No chunk is permitted for this type.

Defers the scheduling decision until run time. You can choose a schedule
type and chunksize at run time by using the environment variable
OMP_SCHEDULE.
14-56

Directive Enhanced Compilation 14

do_loop
Is a DO iteration (an iterative DO loop). It cannot be a DO WHILE or a DO loop without loop
control. The DO loop iteration variable must be of type integer.
The iterations of the DO loop are distributed across the existing team of threads. The values of the
loop control parameters of the DO loop associated with a DO directive must be the same for all the
threads in the team.
You cannot branch out of a DO loop associated with a DO directive.

Rules and Behavior

If used, the END DO directive must appear immediately after the end of the loop. If you do not
specify an END DO directive, an END DO directive is assumed at the end of the DO loop.
If you specify the NOWAIT clause in the END DO directive, threads do not synchronize at the end
of the parallel loop. Threads that finish early proceed straight to the instruction following the loop
without waiting for the other members of the team to finish the DO directive.
Parallel DO loop control variables are block-level entities within the DO loop. If the loop control
variable also appears in the LASTPRIVATE list of the parallel DO, it is copied out to a variable of
the same name in the enclosing PARALLEL region. The variable in the enclosing PARALLEL
region must be SHARED if it is specified in the LASTPRIVATE list of a DO directive.
Only a single SCHEDULE clause and ORDERED clause can appear in a DO directive.
DO directives must be encountered by all threads in a team or by none at all. It must also be
encountered in the same order by all threads in a team.

Examples

In the following example, the loop iteration variable is private by default, and it is not necessary to
explicitly declare it. The END DO directive is optional:
c$OMP PARALLEL

c$OMP DO

 DO I=1,N

 B(I) = (A(I) + A(I-1)) / 2.0

 END DO

c$OMP END DO

c$OMP END PARALLEL

If there are multiple independent loops within a parallel region, you can use the NOWAIT clause
to avoid the implied BARRIER at the end of the DO directive, as follows:
c$OMP PARALLEL

c$OMP DO
14-57

14 Intel Fortran Language Reference
 DO I=2,N

 B(I) = (A(I) + A(I-1)) / 2.0

 END DO

c$OMP END DO NOWAIT

c$OMP DO

 DO I=1,M

 Y(I) = SQRT(Z(I))

 END DO

c$OMP END DO NOWAIT

c$OMP END PARALLEL

Correct execution sometimes depends on the value that the last iteration of a loop assigns to a
variable. Such programs must list all such variables as arguments to a LASTPRIVATE clause so
that the values of the variables are the same as when the loop is executed sequentially, as follows:
c$OMP PARALLEL

c$OMP DO LASTPRIVATE(I)

 DO I=1,N

 A(I) = B(I) + C(I)

 END DO

c$OMP END PARALLEL

 CALL REVERSE(I)

In this case, the value of I at the end of the parallel region equals N+1, as in the sequential case.
Ordered sections are useful for sequentially ordering the output from work that is done in parallel.
Assuming that a reentrant I/O library exists, the following program prints out the indexes in
sequential order:
c$OMP DO ORDERED SCHEDULE(DYNAMIC)

 DO I=LB,UB,ST

 CALL WORK(I)

 END DO

 ...

 SUBROUTINE WORK(K)

c$OMP ORDERED

 WRITE(*,*) K

c$OMP END ORDERED

See Also

“Rules for General Directives that Affect DO Loops”
14-58

Directive Enhanced Compilation 14

FLUSH Directive

The FLUSH directive identifies synchronization points at which the implementation must provide
a consistent view of memory. It takes the following form:

c$OMP FLUSH [(list)]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
list
Is the name of one or more variables to be flushed. Names must be separated by commas.

Rules and Behavior

The FLUSH directive must appear at the precise point in the code at which the synchronization is
required. To avoid flushing all variables, specify a list.
Thread-visible variables are written back to memory at the point at which this directive appears.
Modifications to thread-visible variables are visible to all threads after this point. Subsequent
reads of thread-visible variables fetch the latest copy of the data.
Thread-visible variables include the following data items:
• Globally visible variables (common blocks and modules)
• Local variables that do not have the SAVE attribute but have had their address taken and

saved or have had their address passed to another subprogram
• Local variables that do not have the SAVE attribute but are declared shared in a parallel

region within the subprogram
• Dummy arguments
• All pointer dereferences
The FLUSH directive is implied for the following directives (unless the NOWAIT keyword is
used):
• BARRIER
• CRITICAL and END CRITICAL
• END DO
• END SECTIONS
• END SINGLE
• ORDERED and END ORDERED
• PARALLEL and END PARALLEL
• PARALLEL DO and END PARALLEL DO
• PARALLEL SECTIONS and END PARALLEL SECTIONS
14-59

14 Intel Fortran Language Reference
Example

The following example uses the FLUSH directive for point-to-point synchronization between
pairs of threads:
c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)

 IAM = GET_THREAD_NUM()

 ISYNC(IAM) = 0

c$OMP BARRIER

 CALL WORK()

C I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR

 ISYNC(IAM) = 1

c$OMP FLUSH(ISYNC)

C WAIT TILL NEIGHBOR IS DONE

 DO WHILE (ISYNC(NEIGH) .EQ. 0)

c$OMP FLUSH(ISYNC)

 END DO

c$OMP END PARALLEL

MASTER Directive

The MASTER directive specifies a block of code to be executed by the master thread of the team.
It takes the following form:

c$OMP MASTER
block

c$OMP END MASTER
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
block
Is a structured block (section) of statements or constructs. You cannot branch into or out of the
block.

Rules and Behavior

When the MASTER directive is specified, the other threads in the team skip the enclosed block
(section) of code and continue execution. There is no implied barrier, either on entry to or exit
from the master section.

Example

The following example forces the master thread to execute the routines OUTPUT and INPUT:
14-60

Directive Enhanced Compilation 14

c$OMP PARALLEL DEFAULT(SHARED)

 CALL WORK(X)

c$OMP MASTER

 CALL OUTPUT(X)

 CALL INPUT(Y)

c$OMP END MASTER

 CALL WORK(Y)

c$OMP END PARALLEL

ORDERED Directive

The ORDERED directive specifies a block of code to be executed in the order in which iterations
would be executed in sequential execution. It takes the following form:

c$OMP ORDERED
block

c$OMP END ORDERED
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
block
Is a structured block (section) of statements or constructs. You cannot branch into or out of the
block.

Rules and Behavior

An ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO
directive. The DO directive to which the ordered section binds must have the ORDERED clause
specified.
An iteration of a loop using a DO directive must not execute the same ORDERED directive more
than once, and it must not execute more than one ORDERED directive.
One thread is allowed in an ordered section at a time. Threads are allowed to enter in the order of
the loop iterations. No thread can enter an ordered section until it can be guaranteed that all
previous iterations have completed or will never execute an ordered section. This sequentializes
and orders code within ordered sections while allowing code outside the section to run in parallel.
Ordered sections that bind to different DO directives are independent of each other.
14-61

14 Intel Fortran Language Reference
Example

Ordered sections are useful for sequentially ordering the output from work that is done in parallel.
Assuming that a reentrant I/O library exists, the following program prints out the indexes in
sequential order:
c$OMP DO ORDERED SCHEDULE(DYNAMIC)

 DO I=LB,UB,ST

 CALL WORK(I)

 END DO

 ...

 SUBROUTINE WORK(K)

c$OMP ORDERED

 WRITE(*,*) K

c$OMP END ORDERED

PARALLEL Directive

The PARALLEL directive defines a parallel region. It takes the following form:
c$OMP PARALLEL [clause[[,] clause] . . .]

block
c$OMP END PARALLEL

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
clause
Is one of the following:
• COPYIN (list)

See “COPYIN Clause”.
• DEFAULT (PRIVATE | SHARED | NONE)

See “DEFAULT Clause”.
• FIRSTPRIVATE (list)

See “FIRSTPRIVATE Clause”.
• IF (scalar_logical_expression)

Specifies that the enclosed code section is to be executed in parallel only if the
scalar_logical_expression evaluates to .TRUE.. Otherwise, the parallel region is serialized. If
this clause is not used, the region is executed as if an IF(.TRUE.) clause were specified.
This clause is evaluated by the master thread before any data scope attributes take effect.
Only a single IF clause can appear in the directive.
14-62

Directive Enhanced Compilation 14

• NUM_THREADS (scalar_integer_expression)

Specifies the number of threads to be used in a parallel region. The
scalar_integer_expression must evaluate to a positive scalar integer value. Only a single
NUM_THREADS clause can appear in the directive.

• PRIVATE (list)
See “PRIVATE Clause”.

• REDUCTION (operator | intrinsic : list)
See “REDUCTION Clause”.

• SHARED (list)
See “SHARED Clause”.

block
Is a structured block (section) of statements or constructs. You cannot branch into or out of the
block (the parallel region).

Rules and Behavior

The PARALLEL and END PARALLEL directive pair must appear in the same routine in the
executable section of the code.
The END PARALLEL directive denotes the end of the parallel region. There is an implied barrier
at this point. Only the master thread of the team continues execution at the end of a parallel region.
The number of threads in the team can be controlled by the NUM_THREADS clause, the
environment variable OMP_NUM_THREADS, or by calling the run-time library routine
OMP_SET_NUM_THREADS from a serial portion of the program.
NUM_THREADS supersedes the OMP_SET_NUM_THREADS routine, which supersedes the
OMP_NUM_THREADS environment variable. Subsequent parallel regions, however, are not
affected unless they have their own NUM_THREADS clauses.
Once specified, the number of threads in the team remains constant for the duration of that parallel
region.
If the dynamic threads mechanism is enabled by an environment variable or a library routine, then
the number of threads requested by the NUM_THREADS clause is the maximum number to use
in the parallel region.
The code contained within the dynamic extent of the parallel region is executed on each thread,
and the code path can be different for different threads.
If a thread executing a parallel region encounters another parallel region, it creates a new team and
becomes the master of that new team. By default, nested parallel regions are always serialized and
executed by a team of one thread.
14-63

14 Intel Fortran Language Reference
Examples

You can use the PARALLEL directive in coarse-grain parallel programs. In the following
example, each thread in the parallel region decides what part of the global array X upon which to
work based on the thread number:
c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)

 IAM = OMP_GET_THREAD_NUM()

 NP = OMP_GET_NUM_THREADS()

 IPOINTS = NPOINTS/NP

 CALL SUBDOMAIN(X,IAM,IPOINTS)

c$OMP END PARALLEL

Assuming you previously used the environment variable OMP_NUM_THREADS to set the
number of threads to six, you can change the number of threads between parallel regions as
follows:
 CALL OMP_SET_NUM_THREADS(3)

!$OMP PARALLEL

...

!$OMP END PARALLEL

 CALL OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL DO

...

!$OMP END PARALLEL DO

See Also
• “OpenMP* Fortran Routines”
• Your user’s guide for details on environment variables

PARALLEL DO Directive

The PARALLEL DO directive provides an abbreviated way to specify a parallel region containing
a single DO directive.
The PARALLEL DO directive takes the following form:

c$OMP PARALLEL DO [clause[[,] clause] . . .]
do_loop

[c$OMP END PARALLEL DO]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
14-64

Directive Enhanced Compilation 14

clause
Can be any of the clauses accepted by the DO or PARALLEL directives. See “DO Directive” and
“PARALLEL Directive”.
do_loop
Is a DO iteration (a DO loop). It cannot be a DO WHILE or a DO loop without loop control. The
DO loop iteration variable must be of type integer.
You cannot branch out of a DO loop associated with a DO directive.

Rules and Behavior

If the END PARALLEL DO directive is not specified, the PARALLEL DO is assumed to end with
the DO loop that immediately follows the PARALLEL DO directive. If used, the END
PARALLEL DO directive must appear immediately after the end of the DO loop.
The semantics are identical to explicitly specifying a PARALLEL directive immediately followed
by a DO directive.

Examples

In the following example, the loop iteration variable is private by default and it is not necessary to
explicitly declare it. The END PARALLEL DO directive is optional:
c$OMP PARALLEL DO

 DO I=1,N

 B(I) = (A(I) + A(I-1)) / 2.0

 END DO

c$OMP END PARALLEL DO

The following example shows how to use the REDUCTION clause in a PARALLEL DO
directive:
c$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)

 DO I=1,N

 CALL WORK(ALOCAL,BLOCAL)

 A = A + ALOCAL

 B = B + BLOCAL

 END DO

c$OMP END PARALLEL DO

See Also

“Rules for General Directives that Affect DO Loops”
14-65

14 Intel Fortran Language Reference
PARALLEL SECTIONS Directive

The PARALLEL SECTIONS directive provides an abbreviated way to specify a parallel region
containing a single SECTIONS directive. The semantics are identical to explicitly specifying a
PARALLEL directive immediately followed by a SECTIONS directive.
The PARALLEL SECTIONS directive takes the following form:

c$OMP PARALLEL SECTIONS [clause[[,] clause] . . .]
[c$OMP SECTION]

block
[c$OMP SECTION

block] ...
c$OMP END PARALLEL SECTIONS

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
clause
Can be any of the clauses accepted by the PARALLEL or SECTIONS directives. See
“PARALLEL Directive” and “SECTIONS Directive”.
block
Is a structured block (section) of statements or constructs. You cannot branch into or out of the
block.
The last section ends at the END PARALLEL SECTIONS directive.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:
c$OMP PARALLEL SECTIONS

c$OMP SECTION

 CALL XAXIS

c$OMP SECTION

 CALL YAXIS

c$OMP SECTION

 CALL ZAXIS

c$OMP END PARALLEL SECTIONS
14-66

Directive Enhanced Compilation 14

SECTIONS Directive

The SECTIONS directive specifies one or more blocks of code that must be divided among
threads in the team. Each section is executed once by a thread in the team.
The SECTIONS directive takes the following form:

c$OMP SECTIONS [clause[[,] clause] . . .]
[c$OMP SECTION]

block
[c$OMP SECTION

block] ...
c$OMP END SECTIONS [NOWAIT]

c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
clause
Is one of the following:
• FIRSTPRIVATE (list)

See “FIRSTPRIVATE Clause”.
• LASTPRIVATE (list)

See “LASTPRIVATE Clause”.
• PRIVATE (list)

See “PRIVATE Clause”.
• REDUCTION (operator | intrinsic : list)

See “REDUCTION Clause”.
block
Is a structured block (section) of statements or constructs. Any constituent section must also be a
structured block.
You cannot branch into or out of the block.

Rules and Behavior

Each section of code is preceded by a SECTION directive, although the directive is optional for
the first section. The SECTION directives must appear within the lexical extent of the SECTIONS
and END SECTIONS directive pair.
The last section ends at the END SECTIONS directive. Threads that complete execution of their
SECTIONs encounter an implied barrier at the END SECTIONS directive unless NOWAIT is
specified.
14-67

14 Intel Fortran Language Reference
SECTIONS directives must be encountered by all threads in a team or by none at all. It must also
be encountered in the same order by all threads in a team.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:
c$OMP PARALLEL

c$OMP SECTIONS

c$OMP SECTION

 CALL XAXIS

c$OMP SECTION

 CALL YAXIS

c$OMP SECTION

 CALL ZAXIS

c$OMP END SECTIONS

c$OMP END PARALLEL

SINGLE Directive

The SINGLE directive specifies that a block of code is to be executed by only one thread in the
team. It takes the following form:

c$OMP SINGLE [clause[[,] clause] . . .]
block

c$OMP END SINGLE [modifier]
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
clause
Is one of the following:
• FIRSTPRIVATE (list)

See “FIRSTPRIVATE Clause”.
• PRIVATE (list)

See “PRIVATE Clause”.
block
• Is a structured block (section) of statements or constructs. You cannot branch into or out of

the block.
modifier
Is one of the following:
14-68

Directive Enhanced Compilation 14

• COPYPRIVATE (list)

See “COPYPRIVATE Clause”.
• NOWAIT

Rules and Behavior

Threads in the team that are not executing this directive wait at the END SINGLE directive unless
NOWAIT is specified.
SINGLE directives must be encountered by all threads in a team or by none at all. It must also be
encountered in the same order by all threads in a team.

Example

In the following example, the first thread that encounters the SINGLE directive executes
subroutines OUTPUT and INPUT:
c$OMP PARALLEL DEFAULT(SHARED)

 CALL WORK(X)

c$OMP BARRIER

c$OMP SINGLE

 CALL OUTPUT(X)

 CALL INPUT(Y)

c$OMP END SINGLE

 CALL WORK(Y)

c$OMP END PARALLEL

You should not make assumptions as to which thread executes the SINGLE section. All other
threads skip the SINGLE section and stop at the barrier at the END SINGLE construct. If other
threads can proceed without waiting for the thread executing the SINGLE section, you can specify
NOWAIT in the END SINGLE directive.

THREADPRIVATE Directive

The THREADPRIVATE directive specifies named common blocks to be private (local) to a
thread; they are global within the thread. It takes the following form:

c$OMP THREADPRIVATE(/cb/ [, /cb/]...)
c
Is one of the following: C (or c), !, or * (see “Syntax Rules for Compiler Directives”).
cb
Is the name of the common block you want made private to a thread. Only named common blocks
can be made thread private. Note that the slashes (/) are required.
14-69

14 Intel Fortran Language Reference
Rules and Behavior

Each thread gets its own copy of the common block, so data written to the common block by one
thread is not directly visible to other threads.
During serial portions and MASTER sections of the program, accesses are to the master thread
copy of the common block. On entry to the first parallel region, data in the THREADPRIVATE
common blocks should be assumed to be undefined unless a COPYIN clause is specified in the
PARALLEL directive.
When a common block (which is initialized using DATA statements) appears in a
THREADPRIVATE directive, each thread copy is initialized once prior to its first use. For
subsequent parallel regions, data in THREADPRIVATE common blocks are guaranteed to persist
only if the dynamic threads mechanism has been disabled and if the number of threads are the
same for all the parallel regions.
A THREADPRIVATE common block or its constituent variables can appear only in a COPYIN
clause. They are not permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or
REDUCTION clause. They are not affected by the DEFAULT clause.

Example

In the following example, the common blocks BLK1 and FIELDS are specified as thread private:
 COMMON /BLK/ SCRATCH

 COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

c$OMP THREADPRIVATE(/BLK/,/FIELDS/)

c$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)
14-70

Scope and Association
 15

Program entities are identified by names, labels, input/output unit numbers, operator symbols, or
assignment symbols. For example, a variable, a derived type, or a subroutine is identified by its
name.
Scope refers to the area in which a name is recognized. A scoping unit is the program or part of a
program in which a name is defined or known. It can be any of the following:
• An entire executable program
• A single scoping unit
• A single statement (or part of a statement)
The region of the program in which a name is known and accessible is referred to as the scope of
that name. These different scopes allow the same name to be used for different things in different
regions of the program.
Association is the language concept that allows different names to refer to the same entity in a
particular region of a program.
This chapter contains information on the following topics:
• “Scope”
• “Unambiguous Generic Procedure References”
• “Resolving Procedure References”
• “Association”

Scope
Program entities have the following kinds of scope (as shown in Table 15-1):
• Global

Entities that are accessible throughout an executable program. The name of a global entity
must be unique. It cannot be used to identify any other global entity in the same executable
program.
15-1

14 Intel Fortran Language Reference
• Scoping unit (Local scope)
Entities that are declared within a scoping unit. These entities are local to that scoping unit.
The names of local entities are divided into classes (see Table 15-1).
A scoping unit is one of the following:
— A derived-type definition
— A procedure interface body (excluding any derived-type definitions and interface bodies

contained within it)
— A program unit or subprogram (excluding any derived-type definitions, interface

bodies, and subprograms contained within it)
A scoping unit that immediately surrounds another scoping unit is called the host scoping
unit. Named entities within the host scoping unit are accessible to the nested scoping unit by
host association. (For information about host association, see “Use and Host Association”.)
Once an entity is declared in a scoping unit, its name can be used throughout that scoping
unit. An entity declared in another scoping unit is a different entity even if it has the same
name and properties.
Within a scoping unit, a local entity name that is not generic must be unique within its class.
However, the name of a local entity in one class can be used to identify a local entity of
another class.
Within a scoping unit, a generic name can be the same as any one of the procedure names in
the interface block.
A component name has the same scope as the derived type of which it is a component. It can
appear only within a component designator of a structure of that type.
For information on interactions between local and global names, see Table 15-1.

• Statement
Entities that are accessible only within a statement or part of a statement; such entities cannot
be referenced in subsequent statements.
The name of a statement entity can also be the name of a global or local entity in the same
scoping unit; in this case, the name is interpreted within the statement as that of the statement
entity.

Table 15-1 Scope of Program Entities

Entity Scope

Program units Global

Common blocks1 Global

External procedures Global

Intrinsic procedures Global2

Module procedures Local Class I
15-2

Scope and Association 14
Scoping units can contain other scoping units. For example, the following shows six scoping units:
MODULE MOD_1 ! Scoping unit 1

 ... ! Scoping unit 1

CONTAINS ! Scoping unit 1

 FUNCTION FIRST ! Scoping unit 2

 TYPE NAME ! Scoping unit 3

 ... ! Scoping unit 3

 END TYPE NAME ! Scoping unit 3

Internal procedures Local Class I

Dummy procedures Local Class I

Statement functions Local Class I

Derived types Local Class I

Components of derived types Local Class II

Named constants Local Class I

Named constructs Local Class I

Namelist group names Local Class I

Generic identifiers Local Class I

Argument keywords in procedures Local Class III

Variables that can be referenced throughout a subprogram Local Class I

Variables that are dummy arguments in statement functions Statement

DO variables in an implied-DO list3 of a DATA or FORALL statement, or
an array constructor

Statement

Intrinsic operators Global

Defined operators Local

Statement labels Local

External I/O unit numbers Global

Intrinsic assignment Global4

Defined assignment Local

1. Names of common blocks can also be used to identify local entities.

2. If an intrinsic procedure is not used in a scoping unit, its name can be used as a local entity within that scoping unit. For example, if intrinsic
function COS is not used in a program unit, COS can be used as a local variable there.

3. The DO variable in an implied-DO list of an I/O list has local scope.

4. The scope of the assignment symbol (=) is global, but it can identify additional operations (see “Defining Generic Assignment”).

Table 15-1 Scope of Program Entities

Entity Scope
15-3

14 Intel Fortran Language Reference
 ... ! Scoping unit 2

 CONTAINS ! Scoping unit 2

 SUBROUTINE SUB_B ! Scoping unit 4

 TYPE PROCESS ! Scoping unit 5

 ... ! Scoping unit 5

 END TYPE PROCESS ! Scoping unit 5

 INTERFACE ! Scoping unit 5

 SUBROUTINE SUB_A ! Scoping unit 6

 ... ! Scoping unit 6

 END SUBROUTINE SUB_A ! Scoping unit 6

 END INTERFACE ! Scoping unit 5

 END SUBROUTINE SUB_B ! Scoping unit 4

 END FUNCTION FIRST ! Scoping unit 2

END MODULE ! Scoping unit 1

See Also
• “Derived Data Types”
• “Use and Host Association”
• Chapter 9, “Intrinsic Procedures”
• Chapter 8, “Program Units and Procedures”
• “Defining Generic Names for Procedures” for details on user-defined generic procedures
• “Defining Generic Operators” for details on defined operations
• “Defining Generic Assignment” for details on defined assignment
• “PRIVATE and PUBLIC Attributes and Statements” for details on how the PRIVATE

attribute can affect accessibility of entities

Unambiguous Generic Procedure References
When a generic procedure reference is made, a specific procedure is invoked. If the following
rules are used, the generic reference will be unambiguous:
• Within a scoping unit, two procedures that have the same generic name must both be

subroutines (or both be functions). One of the procedures must have a nonoptional dummy
argument that is one of the following:
— Not present by position or argument keyword in the other argument list
— Is present, but has different type and kind parameters, or rank
15-4

Scope and Association 14

• Within a scoping unit, two procedures that have the same generic operator must both have the

same number of arguments or both define assignment. One of the procedures must have a
dummy argument that corresponds by position in the argument list to a dummy argument of
the other procedure that has a different type and kind parameters, or rank.

When an interface block extends an intrinsic procedure, operator, or assignment, the rules apply as
if the intrinsic consists of a collection of specific procedures, one for each allowed set of
arguments.
When a generic procedure is accessed from a module, the rules apply to all the specific versions,
even if some of them are inaccessible by their specific names.

See Also

“Defining Generic Names for Procedures” for details on generic procedure names

Resolving Procedure References
The procedure name in a procedure reference is either established to be generic or specific, or is
not established. The rules for resolving a procedure reference differ depending on whether the
procedure is established and how it is established.

References to Generic Names

Within a scoping unit, a procedure name is established to be generic if any of the following is true:
• The scoping unit contains an interface block with that procedure name.
• The procedure name matches the name of a generic intrinsic procedure, and it is specified

with the INTRINSIC attribute in that scoping unit.
• The procedure name is established to be generic in a module, and the scoping unit contains a

USE statement making that procedure name accessible.
• The scoping unit contains no declarations for that procedure name, but the procedure name is

established to be generic in a host scoping unit.
To resolve a reference to a procedure name established to be generic, the following rules are used
in the order shown:
1. If an interface block with that procedure name appears in one of the following, the reference

is to the specific procedure providing that interface:
a. The scoping unit that contains the reference
b. A module made accessible by a USE statement in the scoping unit
The reference must be consistent with one of the specific interfaces of the interface block.
15-5

14 Intel Fortran Language Reference
2. If the procedure name is specified with the INTRINSIC attribute in one of the following, the
reference is to that intrinsic procedure:
a. The same scoping unit
b. A module made accessible by a USE statement in the scoping unit
The reference must be consistent with the interface of that intrinsic procedure.

3. If the following is true, the reference is resolved by applying rules 1 and 2 to the host scoping
unit:
a. The procedure name is established to be generic in the host scoping unit
b. There is agreement between the scoping unit and the host scoping unit as to whether the

procedure is a function or subroutine name.
4. If none of the preceding rules apply, the reference must be to the generic intrinsic procedure

with that name. The reference must be consistent with the interface of that intrinsic procedure.

Example

The following example shows how a module can define three separate procedures, and a main
program give them a generic name DUP through an interface block. Although the main program
calls all three by the generic name, there is no ambiguity since the arguments are of different data
types, and DUP is a function rather than a subroutine. The module UN_MOD must give each
procedure a different name.
MODULE UN_MOD

!

 CONTAINS

 subroutine dup1(x,y)

 real x,y

 print *, ' Real arguments', x, y

 end subroutine dup1

 subroutine dup2(m,n)

 integer m,n

 print *, ' Integer arguments', m, n

 end subroutine dup2

 character function dup3 (z)

 character(len=2) z

 dup3 = 'String argument '// z

 end function dup3

END MODULE
15-6

Scope and Association 14

 program unclear

 !

 ! shows how to use generic procedure references

 USE UN_MOD

 INTERFACE DUP

 MODULE PROCEDURE dup1, dup2, dup3

 END INTERFACE

 real a,b

 integer c,d

 character (len=2) state

 a = 1.5

 b = 2.32

 c = 5

 d = 47

 state = 'WA'

 call dup(a,b)

 call dup(c,d)

 print *, dup(state) !actual output is 'S' only

 END

Note that the function DUP3 only prints one character, since module UN_MOD specifies no
length parameter for the function result.
If the dummy arguments x and y for DUP were declared as integers instead of reals, then any calls
to DUP would be ambiguous. If this is the case, a compile-time error results.
The subroutine definitions, DUP1, DUP2, and DUP3, must have different names. The generic
name is specified in the first line of the interface block, and in the example is DUP.

References to Specific Names

In a scoping unit, a procedure name is established to be specific if it is not established to be
generic and any of the following is true:
• The scoping unit contains an interface body with that procedure name.
• The scoping unit contains an internal procedure, module procedure, or statement function

with that procedure name.
• The procedure name is the same as the name of a generic intrinsic procedure, and it is

specified with the INTRINSIC attribute in that scoping unit.
15-7

14 Intel Fortran Language Reference
• The procedure name is specified with the EXTERNAL attribute in that scoping unit.
• The procedure name is established to be specific in a module, and the scoping unit contains a

USE statement making that procedure name accessible.
• The scoping unit contains no declarations for that procedure name, but the procedure name is

established to be specific in a host scoping unit.
To resolve a reference to a procedure name established to be specific, the following rules are used
in the order shown:
1. If either of the following is true, the dummy argument is a dummy procedure and the

reference is to that dummy procedure:
a. The scoping unit is a subprogram, and it contains an interface body with that procedure

name.
b. The procedure name has been declared EXTERNAL, and the procedure name is a dummy

argument of that subprogram.
The procedure invoked by the reference is the one supplied as the corresponding actual
argument.

2. If the scoping unit contains an interface body or the procedure name has been declared
EXTERNAL, and Rule 1 does not apply, the reference is to an external procedure with that
name.

3. If the scoping unit contains an internal procedure or statement function with that procedure
name, the reference is to that entity.

4. If the procedure name has been declared INTRINSIC in the scoping unit, the reference is to
the intrinsic procedure with that name.

5. If the scoping unit contains a USE statement that makes the name of a module procedure
accessible, the reference is to that procedure. (The USE statement allows renaming, so the
name referenced may differ from the name of the module procedure.)

6. If none of the preceding rules apply, the reference is resolved by applying these rules to the
host scoping unit.

References to Nonestablished Names

In a scoping unit, a procedure name is not established if it is not determined to be generic or
specific.
To resolve a reference to a procedure name that is not established, the following rules are used in
the order shown:
15-8

Scope and Association 14

1. If both of the following are true, the dummy argument is a dummy procedure and the

reference is to that dummy procedure:
a. The scoping unit is a subprogram.
b. The procedure name is a dummy argument of that subprogram.
The procedure invoked by the reference is the one supplied as the corresponding actual
argument.

2. If both of the following are true, the procedure is an intrinsic procedure and the reference is to
that intrinsic procedure:
a. The procedure name matches the name of an intrinsic procedure.
b. There is agreement between the intrinsic procedure definition and the reference of the

name as a function or subroutine.
3. If neither of the preceding rules apply, the reference is to an external procedure with that

name.

See Also
• “Function References”
• “USE Statement”
• “CALL Statement” for details on subroutine references
• “Defining Generic Names for Procedures” for details on generic procedure names

Association
Association allows different program units to access the same value through different names.
Entities are associated when each is associated with the same storage location.
There are three kinds of association:
• “Name Association”
• “Pointer Association”
• “Storage Association”
Example 15-1 shows name, pointer, and storage association between an external program unit and
an external procedure.
15-9

14 Intel Fortran Language Reference

Name Association

Name association allows an entity to be accessed from different scoping units by the same name or
by different names. There are three types of name association: argument, use, and host.

Argument Association

Arguments are the values passed to and from functions and subroutines through calling program
argument lists.

Example 15-1 Example of Name, Pointer, and Storage Association

! Scoping Unit 1: An external program unit

REAL A, B(4)

REAL, POINTER :: M(:)

REAL, TARGET :: N(12)

COMMON /COM/...

EQUIVALENCE (A, B(1)) ! Storage association between A and B(1)

M => N ! Pointer association

CALL P (actual-arg,...)

...

! Scoping Unit 2: An external procedure

SUBROUTINE P (dummy-arg,...) ! Name and storage association between

 ! these arguments and the calling

 ! routine’s arguments in scoping unit 1

 COMMON /COM/... ! Storage association with common block COM

 ! in scoping unit 1

 REAL Y

 CALL Q (actual-arg,...)

 CONTAINS

 SUBROUTINE Q (dummy-arg,...) ! Name and storage association between

 ! these arguments and the calling

 ! routine’s arguments in host procedure

 ! P (subprogram Q has host association

 ! with procedure P)

 Y = 2.0*(Y-1.0) ! Name association with Y in host procedure P

 ...
15-10

Scope and Association 14

Execution of a procedure reference establishes argument association between an actual argument
and its corresponding dummy argument. The name of a dummy argument can be different from
the name of its associated actual argument (if any).
When the procedure completes execution, the argument association is terminated.

See Also

“Argument Association”

Use and Host Association

Use association allows the entities in a module to be accessible to other scoping units. The
mechanism for use association is the USE statement. The USE statement provides access to all
public entities in the module, unless ONLY is specified. In this case, only the entities named in the
ONLY list can be accessed.
Host association allows the entities in a host scoping unit to be accessible to an internal procedure,
derived-type definition, or module procedure contained within the host. The accessed entities are
known by the same name and have the same attributes as in the host. Entities that are local to a
procedure are not accessible to its host.
Use or host association remains in effect throughout the execution of the executable program.
If an entity that is accessed by use association has the same nongeneric name as a host entity, the
host entity is inaccessible. A name that appears in the scoping unit as an external name in an
EXTERNAL statement is a global name, and any entity of the host that has this as its nongeneric
name is inaccessible.
An interface body does not access named entities by host association, but it can access entities by
use association.
If a procedure gains access to a pointer by host association, the association of the pointer with a
target that is current at the time the procedure is invoked remains current within the procedure.
This pointer association can be changed within the procedure. After execution of the procedure,
the pointer association remains current, unless the execution caused the target to become
undefined. If this occurs, the host associated pointer becomes undefined.

NOTE. Implicit declarations can cause problems for host association. It is
recommended that you use IMPLICIT NONE in both the host and the
contained procedure, and that you explicitly declare all entities.
When all entities are explicitly declared, local declarations override host
declarations, and host declarations that are not overridden are available in the
contained procedure.
15-11

14 Intel Fortran Language Reference
The following example shows host and use association:
MODULE SHARE_DATA

 REAL Y, Z END MODULE

PROGRAM DEMO

 USE SHARE_DATA ! All entities in SHARE_DATA are available

 REAL B, Q ! through use association.

 ...

 CALL CONS (Y)

CONTAINS

 SUBROUTINE CONS (Y) ! Y is a local entity (dummy argument).

 REAL C, Y

 ...

 Y = B + C + Q + Z ! B and Q are available through host association.

 ... ! C is a local entity, explicitly declared. Z

 END SUBROUTINE CONS ! is available through use association.

END PROGRAM DEMO

See Also
• “USE Statement”
• “Scope” for details on entities with local scope

Pointer Association

A pointer can be associated with a target. At different times during the execution of a program, a
pointer can be undefined, associated with different targets, or be disassociated. The initial
association status of a pointer is undefined. A pointer can become associated by the following:
• By pointer assignment (pointer => target)

The target must be associated, or specified with the TARGET attribute. If the target is
allocatable, it must be currently allocated.

• By allocation (successful execution of an ALLOCATE statement)
The ALLOCATE statement must reference the pointer.

A pointer becomes disassociated if any of the following occur:
• The pointer is nullified by a NULLIFY statement.
• The pointer is deallocated by a DEALLOCATE statement.
• The pointer is assigned a disassociated pointer (or the NULL intrinsic function).
15-12

Scope and Association 14

When a pointer is associated with a target, the definition status of the pointer is defined or
undefined, depending on the definition status of the target. A target is undefined in the following
cases:
• If it was never allocated
• If it is not deallocated through the pointer
• If a RETURN or END statement causes it to become undefined
If a pointer is associated with a definable target, the definition status of the pointer can be defined
or undefined, according to the rules for a variable.
If the association status of a pointer is disassociated or undefined, the pointer must not be
referenced or deallocated.
Whatever its association status, a pointer can always be nullified, allocated, or associated with a
target. When a pointer is nullified, it is disassociated. When a pointer is allocated, it becomes
associated, but is undefined. When a pointer is associated with a target, its association and
definition status are determined by its target.

See Also
• “Pointer Assignments”
• “ALLOCATE Statement”
• “DEALLOCATE Statement”
• “NULLIFY Statement”
• “NULL”

Storage Association

Storage association is the association of two or more data objects. It occurs when two or more
storage sequences share (or are aligned with) one or more storage units. Storage sequences are
used to describe relationships among variables, common blocks, and result variables.

Storage Units and Storage Sequence

A storage unit is a fixed unit of physical memory allocated to certain data. A storage sequence is a
sequence of storage units. The size of a storage sequence is the number of storage units in the
storage sequence. A storage unit can be numeric, character, or unspecified.
A nonpointer scalar of type default real, integer, or logical occupies one numeric storage unit. A
nonpointer scalar of type double precision real or default complex occupies two contiguous
numeric storage units. In Intel® Fortran, one numeric storage unit corresponds to 4 bytes of
memory.
15-13

14 Intel Fortran Language Reference
A nonpointer scalar of type default character with character length 1 occupies one character
storage unit. A nonpointer scalar of type default character with character length len occupies len
contiguous character storage units. In Intel Fortran, one character storage unit corresponds to 1
byte of memory.
A nonpointer scalar of nondefault data type occupies a single unspecified storage unit. The
number of bytes corresponding to the unspecified storage unit differs depending on the data type.
Table 15-2 lists the storage requirements (in bytes) for the intrinsic data types.

Table 15-2 Data Type Storage Requirements

Data Type Storage Requirements (in bytes)

BYTE 1

LOGICAL 2, 4, or 81

LOGICAL(1) 1

LOGICAL(2) 2

LOGICAL(4) 4

LOGICAL(8) 8

INTEGER 2, 4, or 81

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8

REAL 4, 8, or 162

REAL(4) 4

DOUBLE PRECISION 8

REAL(8) 8

REAL(16) 16

COMPLEX 8, 16, or 322

COMPLEX(4) 8

DOUBLE COMPLEX 16

COMPLEX(8) 16

COMPLEX(16) 32

CHARACTER 1

CHARACTER*len len3
15-14

Scope and Association 14
A nonpointer scalar of sequence derived type occupies a sequence of storage sequences
corresponding to the components of the structure, in the order they occur in the derived-type
definition. (A sequence derived type has a SEQUENCE statement.)
A pointer occupies a single unspecified storage unit that is different from that of any nonpointer
object and is different for each combination of type, type parameters, and rank.
The definition status and value of a data object affects the definition status and value of any
storage-associated entity.
When two objects occupy the same storage sequence, they are totally storage-associated. When
two objects occupy parts of the same storage sequence, they are partially associated. An
EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause total or
partial storage association of storage sequences.

See Also
• “COMMON Statement”
• “ENTRY Statement”
• “EQUIVALENCE Statement”
• Your user’s guide for details on the hardware representations of data types

Array Association

A nonpointer array occupies a sequence of contiguous storage sequences, one for each array
element, in array element order.
Two or more arrays are associated when each one is associated with the same storage location.
They are partially associated when part of the storage associated with one array is the same as part
or all of the storage associated with another array.

CHARACTER*(*) assumed-length4

1. Depending on default integer, LOGICAL and INTEGER can have 2, 4, or 8 bytes. The default allocation is four bytes.

2. Depending on default real, REAL can have 4, 8, or 16 bytes and COMPLEX can have 8, 16, or 32 bytes. The default allocations
are four bytes for REAL and eight bytes for COMPLEX.

3. The value of len is the number of characters specified. The largest valid value is2**31–1 on IA-32 processors; 2**63–1 on Intel®
Itanium® processors. Negative values are treated as zero.

4. The assumed-length format *(*) applies to dummy arguments, PARAMETER statements, or character functions, and indicates
that the length of the actual argument or function is used. (See “Assumed-Length Character Arguments” and your user’s guide.)

Table 15-2 Data Type Storage Requirements

Data Type Storage Requirements (in bytes)
15-15

14 Intel Fortran Language Reference
If arrays with different data types are associated (or partially associated) with the same storage
location, and the value of one array is defined (for example, by assignment), the value of the other
array becomes undefined. This happens because an element of an array is considered defined only
if the storage associated with it contains data of the same type as the array name.
An array element, array section, or whole array is defined by a DATA statement before program
execution. (The array properties must be declared in a previous specification statement.) During
program execution, array elements and sections are defined by an assignment or input statement,
and entire arrays are defined by input statements.

See Also
• “Arrays”
• “DATA Statement”
• “Array Elements” for details on array element order

15-16

Deleted and Obsolescent
Language Features
 A
Fortran 90 identified some FORTRAN 77 features to be obsolescent. Fortran 95 deletes some of
these features, and identifies a few more language features to be obsolescent. Features considered
obsolescent may be removed from future revisions of the Fortran Standard.
You can specify a compiler option to have these features flagged.

This chapter contains information on the following topics:
• “Deleted Language Features in Fortran 95”
• “Obsolescent Language Features in Fortran 95”
• “Obsolescent Language Features in Fortran 90”

Deleted Language Features in Fortran 95
Some language features, considered redundant in FORTRAN 77, are not included in Fortran 95.
However, they are still fully supported by Intel Fortran:
• ASSIGN and assigned GO TO statements
• Assigned FORMAT specifier
• Branching to an END IF statement from outside its IF block
• H edit descriptor
• PAUSE statement
• Real and double precision DO control variables and DO loop control expressions
For suggested methods to achieve the functionality of these features, see “Obsolescent Language
Features in Fortran 90”.

NOTE. Intel® Fortran fully supports features deleted from Fortran 95.
A-1

A Intel Fortran Language Reference
Obsolescent Language Features in Fortran 95
Some language features considered redundant in Fortran 90 are identified as obsolescent in
Fortran 95.
Other methods are suggested to achieve the functionality of the following obsolescent features:
• Alternate returns

To replace this functionality, it is recommended that you use an integer variable to return a
value to the calling program, and let the calling program use a CASE construct to test the
value and perform operations (see “CASE Constructs”).

• Arithmetic IF
To replace this functionality, it is recommended that you use an IF statement or construct (see
“IF Construct and Statement”).

• Assumed-length character functions
To replace this functionality, it is recommended that you use one of the following:
— An automatic character-length function, where the length of the function result is

declared in a specification expression
— A subroutine whose arguments correspond to the function result and the function

arguments
Dummy arguments of a function can still have assumed character length; this feature is not
obsolescent.

• CHARACTER*(*) form of CHARACTER declaration
To replace this functionality, it is recommended that you use the Fortran 90 forms of
specifying a length selector in CHARACTER declarations (see “Declaration Statements for
Character Types”).

• Computed GO TO statement
To replace this functionality, it is recommended that you use a CASE construct (see “CASE
Constructs”).

• DATA statements among executable statements
This functionality has been included since FORTRAN 66, but is considered to be a potential
source of errors.

• Fixed source form
Newer methods of entering data have made this source form obsolescent and error-prone.
The recommended method for coding is to use free source form (see “Free Source Form”).

• Shared DO termination and termination on a statement other than END DO or CONTINUE
To replace this functionality, it is recommended that you use an END DO statement (see
“Forms for DO Constructs”) or a CONTINUE statement (see “CONTINUE Statement”).
A-2

Deleted and Obsolescent Language Features A

• Statement functions

To replace this functionality, it is recommended that you use an internal function (see
“Internal Procedures”).

Obsolescent Language Features in Fortran 90
Fortran 90 did not delete any of the features in FORTRAN 77, but some FORTRAN 77 features
were identified as obsolescent.
Other methods are suggested to achieve the functionality of the following obsolescent features:
• Alternate return (labels in an argument list)

To replace this functionality, it is recommended that you use an integer variable to return a
value to the calling program, and let the calling program test the value and perform
operations, using a computed GO TO statement (see “Computed GO TO Statement”) or
CASE construct (see “CASE Constructs”).

• Arithmetic IF
To replace this functionality, it is recommended that you use an IF statement or construct (see
“IF Construct and Statement”).

• ASSIGN and assigned GO TO statements
These statements are usually used to simulate internal procedures (see “Internal Procedures”),
which can now be coded directly.

• Assigned FORMAT specifier (label of a FORMAT statement assigned to an integer variable)
To replace this functionality, it is recommended that you use character expressions to define
format specifications (see “Format Specifications”).

• Branching to an END IF statement from outside its IF block
To replace this functionality, it is recommended that you branch to the statement following the
END IF statement (see “IF Construct”).

• H edit descriptor
To replace this functionality, it is recommended that you use the character constant edit
descriptor (see “Character String Edit Descriptors”).

• PAUSE statement
To replace this functionality, it is recommended that you use a READ statement that awaits
input data (see “READ Statements”).

• Real and double precision DO control variables and DO loop control expressions
To replace this functionality, it is recommended that you use integer DO variables and
expressions (see “DO Constructs”).
A-3

A Intel Fortran Language Reference
• Shared DO termination and termination on a statement other than END DO or CONTINUE
To replace this functionality, it is recommended that you use an END DO statement (see
“Forms for DO Constructs”) or a CONTINUE statement (see “CONTINUE Statement”).
A-4

Additional Language
Features
 B
To facilitate compatibility with older versions of Fortran, Intel® Fortran provides the following
additional language features:
• The “DEFINE FILE Statement”
• The “ENCODE and DECODE Statements”
• The “FIND Statement”
• The “INTERFACE TO Statement”
• “FORTRAN-66 Interpretation of the EXTERNAL Statement”
• “Alternative Syntax for the PARAMETER Statement”
• The “VIRTUAL Statement”
• “Alternative Syntax for Octal and Hexadecimal Constants”
• “Alternative Syntax for a Record Specifier”
• “Alternative Syntax for the DELETE Statement”
• “Alternative Form for Namelist External Records”
• The “Integer POINTER Statement”
• “Record Structures”
These language features are particularly useful in porting older Fortran programs to Fortran 95/90.
However, you should avoid using them in new programs on these systems, and in new programs
for which portability to other Fortran 95/90 implementations is important.

DEFINE FILE Statement
The DEFINE FILE statement establishes the size and structure of files with relative organization
and associates them with a logical unit number. The DEFINE FILE statement is comparable to the
OPEN statement. In situations where you can use the OPEN statement, OPEN is the preferable
mechanism for creating and opening files.
The DEFINE FILE statement takes the following form:
B-1

B Intel Fortran Language Reference
DEFINE FILE u(m, n, U, asv) [, u(m, n, U, asv)] . . .
u
Is a scalar integer constant or variable that specifies the logical unit number.
m
Is a scalar integer constant or variable that specifies the number of records in the file.
n
Is a scalar integer constant or variable that specifies the length of each record in 16-bit words (2
bytes).
U
Specifies that the file is unformatted (binary); this is the only acceptable entry in this position.
asv
Is a scalar integer variable, called the associated variable of the file. At the end of each direct
access I/O operation, the record number of the next higher numbered record in the file is assigned
to asv. The asv must not be a dummy argument.

Rules and Behavior

The DEFINE FILE statement specifies that a file containing m fixed-length records, each
composed of n 16-bit words, exists (or will exist) on the specified logical unit. The records in the
file are numbered sequentially from 1 through m.
A DEFINE FILE statement does not itself open a file. However, the statement must be executed
before the first direct access I/O statement referring to the specified file. The file is opened when
the I/O statement is executed.
If this I/O statement is a WRITE statement, a direct access sequential file is opened, or created if
necessary.
If the I/O statement is a READ or FIND statement, an existing file is opened, unless the specified
file does not exist. If a file does not exist, an error occurs.
The DEFINE FILE statement establishes the variable asv as the associated variable of a file. At
the end of each direct access I/O operation, the Fortran I/O system places in asv the record number
of the record immediately following the one just read or written.
The associated variable always points to the next sequential record in the file (unless the
associated variable is redefined by an assignment, input, or FIND statement). So, direct access I/O
statements can perform sequential processing on the file by using the associated variable of the file
as the record number specifier.
B-2

Additional Language Features B

Example

In the following example, the DEFINE FILE statement specifies that the logical unit 3 is to be
connected to a file of 1000 fixed-length records; each record is forty-eight 16-bit words long. The
records are numbered sequentially from 1 through 1000 and are unformatted. After each direct
access I/O operation on this file, the integer variable NREC will contain the record number of the
record immediately following the record just processed.
DEFINE FILE 3(1000,48,U,NREC)

ENCODE and DECODE Statements
The ENCODE and DECODE statements translate data and transfer it between variables or arrays
in internal storage. The ENCODE statement translates data from internal (binary) form to
character form; the DECODE statement translates data from character to internal form. These
statements are comparable to using internal files in formatted sequential WRITE and READ
statements, respectively.
The ENCODE and DECODE statements take the following forms:

ENCODE (c, f, b [, IOSTAT=i-var] [, ERR=label]) [io-list]
DECODE (c, f, b [, IOSTAT=i-var] [, ERR=label]) [io-list]

c
Is a scalar integer expression. In the ENCODE statement, c is the number of characters (in bytes)
to be translated to character form. In the DECODE statement, c is the number of characters to be
translated to internal form.
f
Is a format identifier. An error occurs if more than one record is specified.
b
Is a scalar or array reference. If b is an array reference, its elements are processed in the order of
subscript progression.
In the ENCODE statement, b receives the characters after translation to external form. If less than
c characters are received, the remaining character positions are filled with blank characters. In the
DECODE statement, b contains the characters to be translated to internal form.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and as zero if no
error occurs (see “I/O Status Specifier”).
label
Is the label of an executable statement that receives control if an error occurs.
B-3

B Intel Fortran Language Reference
io-list
Is an I/O list (see “I/O Lists”).
In the ENCODE statement, the list contains the data to be translated to character form. In the
DECODE statement, the list receives the data after translation to internal form.
The interaction between the format specifier and the I/O list is the same as for a formatted I/O
statement.

Rules and Behavior

The number of characters that the ENCODE or DECODE statement can translate depends on the
data type of b. For example, an INTEGER (2) array can contain two characters per element, so
that the maximum number of characters is twice the number of elements in that array.
The maximum number of characters a character variable or character array element can contain is
the length of the character variable or character array element.
The maximum number of characters a character array can contain is the length of each element
multiplied by the number of elements.

Examples

In the following example, the DECODE statement translates the 12 characters in A to integer form
(as specified by the FORMAT statement):
 DIMENSION K(3)

 CHARACTER*12 A,B

 DATA A/'123456789012'/
 DECODE(12,100,A) K

100 FORMAT(3I4)

 ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:
K(1) = 1234

K(2) = 5678

K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to character form and stores
the characters in the character variable B:
B = '901256781234'

See Also
• “Forms and Rules for Internal READ Statements”
• “Forms and Rules for Internal WRITE Statements”
B-4

Additional Language Features B

FIND Statement

The FIND statement positions a direct access file at a particular record and sets the associated
variable of the file to that record number. It is comparable to a direct access READ statement with
no I/O list, and it can open an existing file. No data transfer takes place.
The FIND statement takes one of the following forms:

FIND ([UNIT=]io-unit, REC=r [, ERR=label] [, IOSTAT=i-var])
FIND (io-unit 'r [, ERR=label] [, IOSTAT=i-var])

io-unit
Is a logical unit number. It must refer to a relative organization file (see “Unit Specifier”).
r
Is the direct access record number. It cannot be less than one or greater than the number of records
defined for the file (see “Record Specifier”).
label
Is the label of the executable statement that receives control if an error occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs, and as zero if no
error occurs (see “I/O Status Specifier”).

Examples

In the following example, the FIND statement positions logical unit 1 at the first record in the file.
The file’s associated variable is set to one:
FIND(1, REC=1)

In the following example, the FIND statement positions the file at the record identified by the
content of INDX. The file’s associated variable is set to the value of INDX:
FIND(4, REC=INDX)

See Also

“Forms for Direct-Access READ Statements”

INTERFACE TO Statement
The INTERFACE TO statement identifies a subprogram and its actual arguments before it is
referenced or called.
The INTERFACE TO statement takes the following form:
B-5

B Intel Fortran Language Reference
INTERFACE TO subprogram-stmt
[formal-declarations]

END
subprogram-stmt
Is a function or subroutine declaration statement.
formal-declarations
(Optional) Are type declaration statements (including optional attributes) for the arguments.
Rules and Behavior
The INTERFACE TO block defines an explicit interface, but it contains specifications for only the
procedure declared in the INTERFACE TO statement. The explicit interface is defined only in the
program unit that contains the INTERFACE TO block.
The recommended method for defining explicit interfaces is to use an INTERFACE block.

Example

Consider that a C function that has the following prototype:
extern void Foo (int i);

The following INTERFACE TO block declares the Fortran call to this function:
INTERFACE TO SUBROUTINE Foo [C.ALIAS: '_Foo'] (I)

 INTEGER*4 I

END

See Also

“Defining Explicit Interfaces” for details on INTERFACE blocks

FORTRAN-66 Interpretation of the EXTERNAL Statement
If you specify the compiler option indicating FORTRAN-66 semantics, the EXTERNAL
statement is interpreted in a way that facilitates compatibility with older versions of Fortran. (The
Fortran 95/90 interpretation is incompatible with previous Fortran standards and previous
Compaq* implementations.)
The FORTRAN-66 interpretation of the EXTERNAL statement combines the functionality of the
INTRINSIC statement with that of the EXTERNAL statement.
This lets you use subprograms as arguments to other subprograms. The subprograms to be used as
arguments can be either user-supplied functions or Fortran 95/90 library functions.
The FORTRAN-66 EXTERNAL statement takes the following form:
B-6

Additional Language Features B

EXTERNAL [*]v [, [*]v]...

*
Specifies that a user-supplied function is to be used instead of a Fortran 95/90 library function
having the same name.
v
Is the name of a subprogram or the name of a dummy argument associated with the name of a
subprogram.

Rules and Behavior

The FORTRAN-66 EXTERNAL statement declares that each name in its list is an external
function name. Such a name can then be used as an actual argument to a subprogram, which then
can use the corresponding dummy argument in a function reference or CALL statement.
However, when used as an argument, a complete function reference represents a value, not a
subprogram name; for example, SQRT(B) in CALL SUBR(A, SQRT(B), C). It is not, therefore,
defined in an EXTERNAL statement (as would be the incomplete reference SQRT).

Example

Example B-1 shows the FORTRAN-66 EXTERNAL statement:

Example B-1 Using the F66 External Statement

Main Program Subprograms

EXTERNAL SIN, COS, *TAN, SINDEG SUBROUTINE TRIG(X,F,Y)

 . Y = F(X)

 . RETURN

 . END

CALL TRIG(ANGLE, SIN, SINE)

 .

 . FUNCTION TAN(X)

 . TAN = SIN(X)/COS(X)

CALL TRIG(ANGLE, COS, COSINE) RETURN

 . END
B-7

B Intel Fortran Language Reference
The CALL statements pass the name of a function to the subroutine TRIG. The function reference
F(X) subsequently invokes the function in the second statement of TRIG. Depending on which
CALL statement invoked TRIG, the second statement is equivalent to one of the following:
Y = SIN(X)

Y = COS(X)

Y = TAN(X)

Y = SINDEG(X)

The functions SIN and COS are examples of trigonometric functions supplied in the Fortran 95/90
library. The function TAN is also supplied in the library, but the asterisk (*) in the EXTERNAL
statement specifies that the user-supplied function be used, instead of the library function. The
function SINDEG is also a user-supplied function. Because no library function has the same name,
no asterisk is required.

See Also

Chapter 9, “Intrinsic Procedures”

Alternative Syntax for the PARAMETER Statement
The PARAMETER statement discussed here is similar to the one discussed in “PARAMETER
Attribute and Statement”; they both assign a name to a constant. However, this PARAMETER
statement differs from the other one in the following ways:
• Its list is not bounded with parentheses.
• The form of the constant, rather than implicit or explicit typing of the name, determines the

data type of the variable.
This PARAMETER statement takes the following form:

PARAMETER c = expr [, c = expr]...
c
Is the name of the constant.

 .

 .

CALL TRIG(ANGLE, TAN, TANGNT) FUNCTION SINDEG(X)

 . SINDEG = SIN(X*3.1459/180)

 . RETURN

 . END

CALL TRIG(ANGLED, SINDEG, SINE)

Example B-1 Using the F66 External Statement
B-8

Additional Language Features B

expr
Is an initialization expression. It can be of any data type.

Rules and Behavior

Each name c becomes a constant and is defined as the value of expression expr. Once a name is
defined as a constant, it can appear in any position in which a constant is allowed. The effect is the
same as if the constant were written there instead of the name.
The name of a constant cannot appear as part of another constant, except as the real or imaginary
part of a complex constant. For example:
PARAMETER I=3

PARAMETER M=I.25 ! Not allowed

PARAMETER N=(1.703, I) ! Allowed

The name used in the PARAMETER statement identifies only the name’s corresponding constant
in that program unit. Such a name can be defined only once in PARAMETER statements within
the same program unit.
The name of a constant assumes the data type of its corresponding constant expression. The data
type of a parameter constant cannot be specified in a type declaration statement. Nor does the
initial letter of the constant’s name implicitly affect its data type.

Examples

The following are valid examples of this form of the PARAMETER statement:
PARAMETER PI=3.1415927, DPI=3.141592653589793238D0

PARAMETER PIOV2=PI/2, DPIOV2=DPI/2

PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

See Also

“PARAMETER Attribute and Statement” for details on compile-time constant expressions

VIRTUAL Statement
The VIRTUAL statement is included for compatibility with PDP-11 Fortran. It has the same form
and effect as the DIMENSION statement (see “DIMENSION Attribute and Statement”).
B-9

B Intel Fortran Language Reference
Alternative Syntax for Octal and Hexadecimal Constants
To facilitate compatibility, you can use an alternative syntax for octal and hexadecimal constants.
The following table shows this alternative syntax and equivalents:

You can use a quotation mark (") in place of an apostrophe in all the above syntax forms.
For information on the # syntax for integers not in base 10, see “Integer Data Types”.

See Also
• “Octal Constants”
• “Hexadecimal Constants”

Alternative Syntax for a Record Specifier
To facilitate compatibility, you can specify the following form for a record specifier in an I/O
control list:

'r
r
Is a numeric expression with a value that represents the position of the record to be accessed using
direct access I/O.
The value must be greater than or equal to 1, and less than or equal to the maximum number of
records allowed in the file. If necessary, a record number is converted to integer data type before
being used.
If this nonkeyword form is used in an I/O control list, it must immediately follow the nonkeyword
form of the io-unit specifier.

Alternative Syntax for the DELETE Statement
To facilitate compatibility, you can specify the following form of the DELETE statement when
deleting records from a relative file:

DELETE (io-unit'r [, ERR=label] [, IOSTAT=i-var])

Constant Alternative Syntax Equivalent

Octal '0...7'O O'0..7'

Hexadecimal '0..F'X Z'0..F'
B-10

Additional Language Features B

io-unit
Is the number of the logical unit containing the record to be deleted.
r
Is the positional number of the record to be deleted.
label
Is the label of an executable statement that receives control if an error condition occurs.
i-var
Is a scalar integer variable that is defined as a positive integer if an error occurs and zero if no error
occurs.
This form deletes the direct access record specified by r.

See Also

“DELETE Statement”

Alternative Form for Nameli st External Records
To facilitate compatibility, you can use the following form for an external record:

$group-name object = value [object = value]...$[END]
group-name
Is the name of the group containing the objects to be given values. The name must have been
previously defined in a NAMELIST statement in the scoping unit.
object
Is the name (or subobject designator) of an entity defined in the NAMELIST declaration of the
group name. The object name must not contain embedded blanks, but it can be preceded or
followed by blanks.
value
Is a null value, a constant (or list of constants), a repetition of constants in the form r*c, or a
repetition of null values in the form r*.
If more than one object=value or more than one value is specified, they must be separated by value
separators.
A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks.
B-11

B Intel Fortran Language Reference
See Also
• “Rules for Namelist Sequential READ Statements” for details on namelist input
• “Rules for Namelist Sequential WRITE Statements” for details on namelist output

Integer POINTER Statement
The POINTER statement discussed here is different from the one discussed in “POINTER
Attribute and Statement”. It establishes pairs of variables and pointers, in which each pointer
contains the address of its paired variable.
This POINTER statement takes the following form:

POINTER (pointer, pointee) [, (pointer, pointee)] . . .
pointer
Is a variable whose value is used as the address of the pointee.
pointee
Is a variable; it can be an array name or array specification.

Rules and Behavior

The following are pointer rules and behavior:
• Two pointers can have the same value, so pointer aliasing is allowed.
• When used directly, a pointer is treated like an integer variable. On Intel® Itanium®

processors, a pointer occupies two numeric storage units, so it is a 64-bit quantity
(INTEGER(8)). On IA-32 processors, a pointer occupies one numeric storage unit, so it is a
32-bit quantity (INTEGER(4)).

• A pointer cannot be a pointee.
• A pointer cannot appear in an ASSIGN statement and cannot have the following attributes:

A pointer can appear in a DATA statement with integer literals only.
• Integers can be converted to pointers, so you can point to absolute memory locations.
• A pointer variable cannot be declared to have any other data type.
• A pointer cannot be a function return value.
• You can give values to pointers by doing the following:

— Retrieve addresses by using the LOC intrinsic function (or the %LOC built-in function)

ALLOCATABLE INTRINSIC POINTER
EXTERNAL PARAMETER TARGET
B-12

Additional Language Features B

— Allocate storage for an object by using the MALLOC intrinsic function (or by using

malloc(3f) on Linux* systems)
For example:
Using %LOC: Using MALLOC:

INTEGER I(10) INTEGER I(10)

INTEGER I1(10) /10*10/ POINTER (P,I)

POINTER (P,I) P = MALLOC(40)

P = %LOC(I1) I = 10

I(2) = I(2) + 1 I(2) = I(2) + 1

• The value in a pointer is used as the pointee’s base address.
The following are pointee rules and behavior:
• A pointee is not allocated any storage. References to a pointee look to the current contents of

its associated pointer to find the pointee’s base address.
• A pointee cannot be data-initialized or have a record structure that contains data-initialized

fields.
• A pointee can appear in only one integer POINTER statement.
• A pointee array can have fixed, adjustable, or assumed dimensions.
• A pointee cannot appear in a COMMON, DATA, EQUIVALENCE, or NAMELIST

statement, and it cannot have the following attributes:

• A pointee cannot be:
— A dummy argument
— A function return value
— A record field or an array element
— Zero-sized
— An automatic object
— The name of a generic interface block

• If a pointee is of derived type, it must be of sequence type.

Record Structures
Intel Fortran record structures are similar to Fortran 95/90 derived types.

ALLOCATABLE OPTIONAL SAVE
AUTOMATIC PARAMETER STATIC
INTENT POINTER
B-13

B Intel Fortran Language Reference
A record structure is an aggregate entity containing one or more elements. (Record elements are
also called fields or components.) You can use records when you need to declare and operate on
multi-field data structures in your programs.
Creating a record is a two-step process:
1. You must define the form of the record with a multistatement structure declaration.
2. You must use a RECORD statement to declare the record as an entity with a name. (More

than one RECORD statement can refer to a given structure.)
The following sections discuss:
• “Structure Declarations”
• “RECORD Statement”
• “References to Record Fields”
• “Aggregate Assignment”

See Also

“Derived Data Types”

Structure Declarations

A structure declaration defines the field names, types of data within fields, and order and
alignment of fields within a record. Fields and structures can be initialized, but records cannot be
initialized.
A structure declaration takes the following form:

STRUCTURE [/structure-name/][field-namelist]
field-declaration
[field-declaration]
. . .
[field-declaration]

END STRUCTURE
structure-name
Is the name used to identify a structure, enclosed by slashes.
Subsequent RECORD statements use the structure name to refer to the structure. A structure name
must be unique among structure names, but structures can share names with variables (scalar or
array), record fields, PARAMETER constants, and common blocks.
B-14

Additional Language Features B

Structure declarations can be nested (contain one or more other structure declarations). A structure
name is required for the structured declaration at the outermost level of nesting, and is optional for
the other declarations nested in it. However, if you wish to reference a nested structure in a
RECORD statement in your program, it must have a name.
Structure, field, and record names are all local to the defining program unit. When records are
passed as arguments, the fields in the defining structures within the calling and called subprograms
must match in type, order, and dimension.
field-namelist
Is a list of fields having the structure of the associated structure declaration. A field namelist is
allowed only in nested structure declarations.
field-declaration
Also called the declaration body. A field-declaration consists of any combination of the
following:
• “Type Declarations”

These are ordinary Fortran data type declarations.
• “Substructure Declarations”

A field within a structure can be a substructure composed of atomic fields, other
substructures, or a combination of both.

• “Union Declarations”
A union declaration is composed of one or more mapped field declarations.

• PARAMETER statements
PARAMETER statements can appear in a structure declaration, but cannot be given a data
type within the declaration block.
Type declarations for PARAMETER names must precede the PARAMETER statement and
be outside of a STRUCTURE declaration, as follows:
 INTEGER*4 P

STRUCTURE /ABC/

 PARAMETER (P=4)

 REAL*4 F

END STRUCTURE

 REAL*4 A(P)

Rules and Behavior

Unlike type declaration statements, structure declarations do not create variables. Structured
variables (records) are created when you use a RECORD statement containing the name of a
previously declared structure. The RECORD statement can be considered as a kind of type
declaration statement. The difference is that aggregate items, not single items, are being defined.
B-15

B Intel Fortran Language Reference
Within a structure declaration, the ordering of both the statements and the field names within the
statements is important, because this ordering determines the order of the fields in records.
In a structure declaration, each field offset is the sum of the lengths of the previous fields, so the
length of the structure is the sum of the lengths of its fields. The structure is packed; you must
explicitly provide any alignment that is needed by including, for example, unnamed fields of the
appropriate length.
By default, fields are aligned on natural boundaries; misaligned fields are padded as necessary. To
avoid padding of records, you should lay out structures so that all fields are naturally aligned.
To pack fields on arbitrary byte boundaries, you must specify a compiler option. You can also
specify alignment for fields by using the cDEC$ OPTIONS or cDEC$ PACK general directive.
A field name must not be the same as any intrinsic or user-defined operator (for example, EQ
cannot be used as a field name).

Example

In the following example, the declaration defines a structure named APPOINTMENT.
APPOINTMENT contains the structure DATE (field APP_DATE) as a substructure. It also
contains a substructure named TIME (field APP_TIME, an array), a CHARACTER*20 array
named APP_ MEMO, and a LOGICAL*1 field named APP_FLAG.
STRUCTURE /DATE/

 INTEGER*1 DAY, MONTH

 INTEGER*2 YEAR

END STRUCTURE

STRUCTURE /APPOINTMENT/

 RECORD /DATE/ APP_DATE

 STRUCTURE /TIME/ APP_TIME (2)

 INTEGER*1 HOUR, MINUTE

 END STRUCTURE

 CHARACTER*20 APP_MEMO (4)

 LOGICAL*1 APP_FLAG

END STRUCTURE

The length of any instance of structure APPOINTMENT is 89 bytes.
Figure B-1 shows the memory mapping of any record or record array element with the structure
APPOINTMENT.
B-16

Additional Language Features B
Figure B-1 Memory Map of Structure APPOINTMENT

0

1

2

3

4

5

6

7

8

28

48

68

88

89

(byte offset)

field YEAR of field APP_DATE

ZK−1848−GE

field APP_FLAG

field APP_MEMO(4)

field APP_MEMO(3)

field APP_MEMO(2)

field APP_MEMO(1)

field MINUTE of field APP_TIME(2)

field HOUR of field APP_TIME(2)

field MINUTE of field APP_TIME(1)

field HOUR of field APP_TIME(1)

field MONTH of field APP_DATE

field DAY of field APP_DATE
B-17

B Intel Fortran Language Reference
See Also
• “OPTIONS Directive”
• “PACK Directive”
• Your user’s guide for details on compiler options

Type Declarations

The syntax of a type declaration within a record structure is identical to that of a normal Fortran
type statement.
The following rules and behavior apply to type declarations in record structures:
• %FILL can be specified in place of a field name to leave space in a record for purposes such

as alignment. This creates an unnamed field.
%FILL can have an array specification; for example:
INTEGER %FILL (2,2)

Unnamed fields cannot be initialized. For example, the following statement is invalid and
generates an error message:
INTEGER %FILL /1980/

• Initial values can be supplied in field declaration statements. Unnamed fields cannot be
initialized; they are always undefined.

• Field names must always be given explicit data types. The IMPLICIT statement does not
affect field declarations.

• Any required array dimensions must be specified in the field declaration statements.
DIMENSION statements cannot be used to define field names.

• Adjustable or assumed sized arrays and assumed-length CHARACTER declarations are not
allowed in field declarations.

Substructure Declarations

A field within a structure can itself be a structured item composed of other fields, other structures,
or both. You can declare a substructure in two ways:
• By nesting structure declarations within other structure or union declarations (with the

limitation that you cannot refer to a structure inside itself at any level of nesting).
One or more field names must be defined in the STRUCTURE statement for the substructure,
because all fields in a structure must be named. In this case, the substructure is being used as
a field within a structure or union.
Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.

• By using a RECORD statement that specifies another previously defined record structure,
thereby including it in the structure being declared.
B-18

Additional Language Features B

See the example in the “Structure Declarations”, for a sample structure declaration containing both
a nested structure declaration (TIME) and an included structure (DATE).

Union Declarations

A union declaration is a multistatement declaration defining a data area that can be shared
intermittently during program execution by one or more fields or groups of fields. A union
declaration must be within a structure declaration.
Each unique field or group of fields is defined by a separate map declaration.
A union declaration takes the following form:

UNION
map-declaration
map-declaration
[map-declaration]
. . .
[map-declaration]

END UNION
map-declaration
Takes the following form:

MAP
field-declaration
[field-declaration]
. . .
[field-declaration]

END MAP
field-declaration
Is a structure declaration or RECORD statement contained within a union declaration, a union
declaration contained within a union declaration, or the declaration of a data field (having a data
type) within a union. For a more detailed description of what can be specified in field
declarations, see “Structure Declarations”.

Rules and Behavior

As with normal Fortran type declarations, data can be initialized in field declaration statements in
union declarations. However, if fields within multiple map declarations in a single union are
initialized, the data declarations are initialized in the order in which the statements appear. As a
result, only the final initialization takes effect and all of the preceding initializations are
overwritten.
B-19

B Intel Fortran Language Reference
The size of the shared area established for a union declaration is the size of the largest map defined
for that union. The size of a map is the sum of the sizes of the fields declared within it.
Manipulating data by using union declarations is similar to using EQUIVALENCE statements.
The difference is that data entities specified within EQUIVALENCE statements are concurrently
associated with a common storage location and the data residing there; with union declarations
you can use one discrete storage location to alternately contain a variety of fields (arrays or
variables).
With union declarations, only one map declaration within a union declaration can be associated at
any point in time with the storage location that they share. Whenever a field within another map
declaration in the same union declaration is referenced in your program, the fields in the prior map
declaration become undefined and are succeeded by the fields in the map declaration containing
the newly referenced field.

Example

In the following example, the structure WORDS_LONG is defined. This structure contains a
union declaration defining two map fields. The first map field consists of three INTEGER*2
variables (WORD_0, WORD_1, and WORD_2), and the second, an INTEGER*4 variable,
LONG:
STRUCTURE /WORDS_LONG/

 UNION

 MAP

 INTEGER*2 WORD_0, WORD_1, WORD_2

 END MAP

 MAP

 INTEGER*4 LONG

 END MAP

 END UNION

END STRUCTURE

The length of any record with the structure WORDS_LONG is 6 bytes. Figure B-2 shows the
memory mapping of any record with the structure WORDS_LONG:
B-20

Additional Language Features B
RECORD Statement

A RECORD statement takes the following form:
RECORD /structure-name/record-namelist

[, /structure-name/record-namelist]
. . .
[, /structure-name/record-namelist]

structure-name
Is the name of a previously declared structure.
record-namelist
Is a list of one or more variable names, array names, or array specifications, separated by commas.
All of the records named in this list have the same structure and are allocated separately in
memory.

Rules and Behavior

You can use record names in COMMON and DIMENSION statements, but not in DATA,
EQUIVALENCE, or NAMELIST statements.
Records initially have undefined values unless you have defined their values in structure
declarations.

Figure B-2 Memory Map of Structure WORDS_LONG

0 1 2 3 4 5 6 (byte offset)

Field WORD_0 Field WORD_1 Field WORD_2

Field LONG Unused Space

ZK−1846−GE
B-21

B Intel Fortran Language Reference
References to Record Fields

References to record fields must correspond to the kind of field being referenced. Aggregate field
references refer to composite structures (and substructures). Scalar field references refer to
singular data items, such as variables.
An operation on a record can involve one or more fields.
Record field references take one of the following forms:
Aggregate Field Reference:

record-name [.aggregate-field-name] . . .
Scalar Field Reference:

record-name [.aggregate-field-name]scalar-field-name
record-name
Is the name used in a RECORD statement to identify a record.
aggregate-field-name
Is the name of a field that is a substructure (a record or a nested structure declaration) within the
record structure identified by the record name.
scalar-field-name
Is the name of a data item (having a data type) defined within a structure declaration.

Rules and Behavior

Records and record fields cannot be used in EQUIVALENCE statements. However, you can make
fields of record structures equivalent to themselves by using the UNION and MAP statements in a
structure declaration.
Records and record fields cannot be used in DATA statements, but individual fields can be
initialized in the STRUCTURE definition.
An automatic array cannot be a record field.
A scalar field reference consists of the name of a record (as specified in a RECORD statement)
and zero or more levels of aggregate field names followed by the name of a scalar field. A scalar
field reference refers to a single data item (having a data type) and can be treated like a normal
reference to a Fortran variable or array element.
You can use scalar field references in statement functions and in executable statements. However,
they cannot be used in COMMON, SAVE, NAMELIST, or EQUIVALENCE statements, or as the
control variable in an indexed DO-loop.
Type conversion rules for scalar field references are the same as those for variables and array
elements.
B-22

Additional Language Features B

An aggregate field reference consists of the name of a record (as specified in a RECORD
statement) and zero or more levels of aggregate field names.
You can only assign an aggregate field to another aggregate field (record = record) if the records
have the same structure. Intel Fortran supports no other operations (such as arithmetic or
comparison) on aggregate fields.
Intel Fortran requires qualification on all levels. While some languages allow omission of
aggregate field names when there is no ambiguity as to which field is intended, Intel Fortran
requires all aggregate field names to be included in references.
You can use aggregate field references in unformatted I/O statements; one I/O record is written no
matter how many aggregate and array name references appear in the I/O list. You cannot use
aggregate field references in formatted, namelist, and list-directed I/O statements.
You can use aggregate field references as actual arguments and record dummy arguments. The
declaration of the dummy record in the subprogram must match the form of the aggregate field
reference passed by the calling program unit; each structure must have the same number and types
of fields in the same order. The order of map fields within a union declaration is irrelevant.
Records are passed by reference. Aggregate field references are treated like normal variables. You
can use adjustable arrays in RECORD statements that are used as dummy arguments.

Examples

The following examples show record and field references. Consider the following structure
declarations:
Structure DATE:
STRUCTURE /DATE/

 INTEGER*1 DAY, MONTH

 INTEGER*2 YEAR

STRUCTURE

Structure APPOINTMENT:
STRUCTURE /APPOINTMENT/

 RECORD /DATE/ APP_DATE

NOTE. Because periods are used in record references to separate fields, you
should not use relational operators (.EQ., .XOR.), logical constants (.TRUE.,
.FALSE.), and logical expressions (.AND., .NOT., .OR.) as field names in
structure declarations.
B-23

B Intel Fortran Language Reference
 STRUCTURE /TIME/ APP_TIME(2)

 INTEGER*1 HOUR, MINUTE

 END STRUCTURE

 CHARACTER*20 APP_MEMO(4)

 LOGICAL*1 APP_FLAG

END STRUCTURE

The following RECORD statement creates a variable named NEXT_APP and a 10-element array
named APP_LIST. Both the variable and each element of the array take the form of the structure
APPOINTMENT.
RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(10)

Each of the following examples of record and field references are derived from the previous
structure declarations and RECORD statement:
Aggregate Field References
• The record NEXT_APP:

NEXT_APP

• The field APP_DATE, a 4-byte array field in the record array APP_LIST(3):
APP_LIST(3).APP_DATE

Scalar Field References
• The field APP_FLAG, a LOGICAL field of the record NEXT_APP:

NEXT_APP.APP_FLAG

• The first character of APP_MEMO(1), a CHARACTER*20 field of the record NEXT_APP:
NEXT_APP.APP_MEMO(1)(1:1)

See Also
• “RECORD Statement”
• “Structure Declarations”, which also contains details on specification of fields within

structure declarations
• “Union Declarations” for details on UNION and MAP statements
• Your user’s guide for details on alignment of data

Aggregate Assignment

For aggregate assignment statements, the variable and expression must have the same structure as
the aggregate they reference.
The aggregate assignment statement assigns the value of each field of the aggregate on the right of
an equal sign to the corresponding field of the aggregate on the left. Both aggregates must be
declared with the same structure.
B-24

Additional Language Features B

Example

The following example shows valid aggregate assignments:
STRUCTURE /DATE/

 INTEGER*1 DAY, MONTH

 INTEGER*2 YEAR

END STRUCTURE

RECORD /DATE/ TODAY, THIS_WEEK(7)

STRUCTURE /APPOINTMENT/

 ...

 RECORD /DATE/ APP_DATE END STRUCTURE

RECORD /APPOINTMENT/ MEETING

DO I = 1,7

 CALL GET_DATE (TODAY)

 THIS_WEEK(I) = TODAY

 THIS_WEEK(I).DAY = TODAY.DAY + 1

END DO

MEETING.APP_DATE = TODAY
B-25

B Intel Fortran Language Reference
B-26

The ASCII Character Set
for Linux Systems
 C
This appendix describes the ASCII character set that is available on Linux* systems. Other
character sets are available on Windows* systems; for details, see the online documentation for
those systems.
For details on the Fortran 95/90 character set, see “Character Sets”.

The ASCII Character Set (L*X)
Figure C-1 represents the ASCII character set (characters with decimal values 0 through 127). The
first half of each of the numbered columns identifies the character as you would enter it on a
terminal or as you would see it on a printer. Except for SP and HT, the characters with names are
nonprintable. In Figure C-1, the characters with names are defined as follows:

NUL Null DC1 Device Control 1 (XON)

SOH Start of Heading DC2 Device Control 2

STX Start of Text DC3 Device Control 1 (XOFF)

ETX End of Text DC4 Device Control 4

EOT End of Transmission NAK Negative Acknowledge

ENQ Enquiry SYN Synchronous Idle

ACK Acknowledge ETB End of Transmission Block

BEL Bell CAN Cancel

BS Backspace EM End of Medium

HT Horizontal Tab SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tab FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator
C-1

C Intel Fortran Language Reference
The remaining half of each column identifies the character by the binary value of the byte; the
value is stated in three radixes—octal, decimal, and hexadecimal. For example, the uppercase
letter A has, under ASCII conventions, a storage value of hexadecimal 41 (a bit configuration of
01000001), equivalent to 101 in octal notation and 65 in decimal notation.

SO Shift Out US Unit Separator

SI Shift In SP Space

DLE Data Link Escape DEL Delete
C-2

The ASCII Character Set for Linux Systems C

Figure C-1 Graphic Representation of the ASCII Character Set (L*X)

Row

b8
b7

b6
b5

b4 b3 b2 b1

Column

Bits
1 2

0
0

0
1

0
0

1
0

0
0

0
0

0

3
0

0
1

1

4
0

1
0

0

5
0

1
0

1

6
0

1
1

0

7
0

1
1

1

0 0 0 0 0 NUL DLE SP

1 0 0 0 1 SOH DC1

2 0 0 1 0 STX DC2

3 0 0 1 1 ETX DC3

4 0 1 0 0 EOT DC4

5 0 1 0 1 ENQ NAK

6 0 1 1 0 ACK SYN

7 0 1 1 1 BEL ETB

8 1 0 0 0 CAN

9 1 0 0 1

10 1 0 1 0 SUB

11 1 0 1 1 ESC

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1 DEL

0
0
0

20
16
10

40
32
20

60
48
30

100
64
40

120
80
50

140
96
60

160
112
70

1
1
1

21
17
11

41
33
21

61
49
31

101
65
41

121
81
51

141
97
61

161
113
71

2
2
2

22
18
12

42
34
22

62
50
32

102
66
42

122
82
52

142
98
62

162
114
72

3
3
3

23
19
13

43
35
23

63
51
33

103
67
43

123
83
53

143
99
63

163
115
73

4
4
4

24
20
14

44
36
24

64
52
34

104
68
44

124
84
54

144
100
64

164
116
74

5
5
5

25
21
15

45
37
25

65
53
35

105
69
45

125
85
55

145
101
65

165
117
75

6
6
6

26
22
16

46
38
26

66
54
36

106
70
46

126
86
56

146
102
66

166
118
76

7
7
7

27
23
17

47
39
27

67
55
37

107
71
47

127
87
57

147
103
67

167
119
77

10
8
8

30
24
18

50
40
28

70
56
38

110
72
48

130
88
58

150
104
68

170
120
78

11
9
9

31
25
19

51
41
29

71
57
39

111
73
49

131
89
59

151
105
69

171
121
79

12
10
A

32
26
1A

52
42
2A

72
58
3A

112
74
4A

132
90
5A

152
106
6A

172
122
7A

13
11
B

33
27
1B

53
43
2B

73
59
3B

113
75
4B

133
91
5B

153
107
6B

173
123
7B

14
12
C

34
28
1C

54
44
2C

74
60
3C

114
76
4C

134
92
5C

154
108
6C

174
124
7C

15
13
D

35
29
1D

56
45
2D

75
61
3D

115
77
4D

135
93
5D

155
109
6D

175
125
7D

16
14
E

36
30
1E

56
46
2E

76
62
3E

116
78
4E

136
94
5E

156
110
6E

176
126
7E

17
15
F

37
31
1F

57
47
2F

77
63
3F

117
79
4F

137
95
5F

157
111
6F

177
127
7F

ZK−1752−GE

ESC
33
27
1B

Octal
Decimal
Hex

Character

Key

(XON)

(XOFF)

SI

SO

CR

FF

VT

LF

HT

BS

US

RS

GS

FS

EM

/

.

−

,

+

*

)

(

&

%

$

"

!

?

>

=

<

;

:

9

8

7

6

5

4

3

2

1

0

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

@

_

^

]

\

[

Z

Y

X

W

V

U

T

S

R

Q

P

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

~

}

|

{

z

y

x

w

v

u

t

s

r

q

p
C-3

C Intel Fortran Language Reference
C-4

Data Representation
Models
 D
Several of the numeric intrinsic functions are defined by a model set for integers (for each intrinsic
kind used) and reals (for each real kind used). The bit functions are defined by a model set for bits
(binary digits).
The following intrinsic functions provide information on the data representation models:

Intrinsic function Model Value returned

BIT_SIZE Bit The number of bits (s) in the bit model

DIGITS Integer or Real The number of significant digits in the model for the
argument

EPSILON Real The number that is almost negligible when compared to
one

EXPONENT Real The value of the exponent part of a real argument

FRACTION Real The fractional part of a real argument

HUGE Integer or Real The largest number in the model for the argument

MAXEXPONENT Real The maximum exponent in the model for the argument

MINEXPONENT Real The minimum exponent in the model for the argument

NEAREST Real The nearest different machine-representable number in
a given direction

PRECISION Real The decimal precision (real or complex) of the argument

RADIX Integer or Real The base of the model for the argument

RANGE Integer or Real The decimal exponent range of the model for the
argument

RRSPACING Real The reciprocal of the relative spacing near the argument

SCALE Real The value of the exponent part (of the model for the
argument) changed by a specified value

SET_EXPONENT Real The value of the exponent part (of the model for the
argument) set to a specified value
D-1

D Intel Fortran Language Reference
For more information on the range of values for each data type (and kind), see your user’s guide.
This appendix discusses the following topics:
The “Model for Integer Data”
The “Model for Real Data”
The “Model for Bit Data”

Model for Integer Data
In general, the model set for integers is defined as follows:

The following values apply to this model set:
• i is the integer value.
• s is the sign (either +1 or –1).
• q is the number of digits (a positive integer).
• r is the radix (an integer greater than 1).
• wk is a nonnegative number less than r.
The model for INTEGER(4) is as follows:

The following example shows the general integer model for i = –20 using a base (r) of 2:

SPACING Real The value of the absolute spacing of model numbers
near the argument

TINY Real The smallest positive number in the model for the
argument

Intrinsic function Model Value returned

i s wk

k 1=

q

∑× r
k 1–×=

i s wk

k 1=

31

∑× 2k 1–×=
D-2

Data Representation Models D

Model for Real Data
The model set for reals, in general, is defined as one of the following:

The following values apply to this model set:
• x is the real value.
• s is the sign (either +1 or –1).
• b is the base (real radix; an integer greater than 1; b = 2 in Intel® Fortran).
• p is the number of mantissa digits (an integer greater than 1). The number of digits differs

depending on the real format, as follows:

• e is an integer in the range emin to emax, inclusive. This range differs depending on the real
format, as follows:

• fk is a nonnegative number less than b (f1 is also nonzero).
For x = 0, its exponent e and digits fk are defined to be zero.
The model set for single-precision real (REAL(4)) is defined as one of the following:

REAL(4) IEEE S_floating 24
REAL(8) IEEE T_floating 53
REAL(16) IEEE X_floating 113

emin emax

REAL(4) IEEE S_floating –125 128

REAL(8) IEEE T_floating –1021 1024

REAL(16) IEEE X_floating –16381 16384

i 1–() 0 20 0 21 1 22 0 23 1 24×+×+×+×+×()×=

i 1–() 4 16+()×=

i 1 20×–=

i 20–=

x 0=

x s b
e× fk

k 1=

p

∑× b
k–×=
D-3

D Intel Fortran Language Reference
The following example shows the general real model for x = 20.0 using a base (b) of 2:

Model for Bit Data
The model set for bits (binary digits) interprets a nonnegative scalar data object of type integer as
a sequence, as follows:

The following values apply to this model set:
• j is the integer value.
• s is the number of bits.
• wk is a bit value of 0 or 1.
The bits are numbered from right to left beginning with 0.
The following example shows the bit model for j = 1001 (integer 9) using a bit number (s) of 4:
 1 0 0 1

 | | | |

 w3 w2 w1 w0

x 0=

x s 2e× 1 2 fk 2 k–×

k 2=

24

∑+⁄× 125 e 128≤ ≤–,=

x 1 25× 1 2 1– 0 2 2– 1 2 3–×+×+×()×=

x 1 32 .5 .125+()××=

x 32 .625()×=

x 20.0=

j wk 2k×

k 0=

s 1–

∑=

j w0 20×() w1 21×() w2 22×() w3 23×()+ + +=

j 1 0 0 8+ + +=

j 9=
D-4

Run-Time Library Routines
 E

Intel® Fortran provides the following run-time library routines, which are summarized in this
appendix:
• “Module Routines”
• “OpenMP* Fortran Routines”
For more information on these routines, see the Libraries Reference.

Module Routines
Intel® Fortran provides library modules containing the following routines:
• Routines that help you write programs for graphics, QuickWin, and other applications (in

modules IFQWIN, IFLOGM, and IFCORE):
— “QuickWin Routines (W*32, W*64)”
— “Graphics Routines (W*32, W*64)”
— “Dialog Routines (W*32)”
— “Miscellaneous Run-Time Routines”

• Routines that help you write programs that use Component Object Model (COM) and
Automation servers (in modules IFCOM and IFAUTO):
— “COM Routines (W*32)”
— “AUTO Routines (W*32)”

• “Portability Routines” that help you port your programs to or from other systems, or help you
perform basic I/O to serial ports on Windows* systems on IA-32 processors (in module
IFPORT).

• “National Language Support Routines (W*32, W*64)” that help you write foreign language
programs for international markets (in module IFNLS).

• “POSIX* Routines” that help you write Fortran programs that comply with the POSIX*
Standard (in module IFPOSIX).
E-1

E Intel Fortran Language Reference
When you include the statement USE module-name in your program, these library routines are
automatically linked to your program if called.
You can restrict what is accessed from a USE module by adding ONLY clauses to the USE
statement.
This appendix summarizes the library routines.

See Also
• “USE Statement”
• The section on using libraries in Volume I of your user’s guide

Portability Routines

To use a portability routine, add the following statement to the program unit containing the
routine:

USE IFPORT
Table E-1 summarizes portability routines.

Table E-1 Summary of Portability Routines

Name Description

Information Retrieval:

FSTAT Returns information about a logical file unit.

GETCWD Returns the pathname of the current working directory.

GETENV Searches the environment for a given string and returns its value if found.

GETGID Returns the group ID of the user.

GETLOG Returns the user's login name.

GETPID Returns the process ID of the process.

GETUID Returns the user ID of the user of the process.

HOSTNAM1 Returns the name of the user's host.

ISATTY Checks whether a logical unit number is a terminal.

RENAME Renames a file.

STAT, LSTAT Returns information about a named file.

UNLINK Deletes the file given by path.

Process Control:

ABORT Stops execution of the current process, clears I/O buffers, and writes a
string to external unit 0.
E-2

Run-Time Library Routines E
ALARM Executes an external subroutine after waiting a specified number of
seconds.

KILL Sends a signal code to the process given by ID.

SIGNAL Changes the action for signal.

SLEEP Suspends program execution for a specified number of seconds.

SYSTEM Executes a command in a separate shell.

Numeric Values and Conversion:

BESJ0, BESJ1, BESJN, BESY0,
BESY1, BESYN

Return single-precision values of Bessel functions of the first and second
kind of orders 1, 2, and n, respectively.

BIC, BIS, BIT Perform bit level clear, set, and test for integers.

CDFLOAT Converts a COMPLEX(4) argument to DOUBLE PRECISION type.

COMPLINT, COMPLREAL,
COMPLLOG

Return a BIT-WISE complement or logical .NOT. of the argument.

CSMG Performs an effective BIT-WISE store under mask.

DBESJ0, DBESJ1, DBESJN,
DBESY0, DBESY1, DBESYN

Return double-precision values of Bessel functions of the first and second
kind of orders 1, 2, and n, respectively.

DFLOATI, DFLOATJ, DFLOATK Convert an integer to double-precision real type.

DRAND, DRANDM Return double-precision random values in the range 0 through 1.0.

DRANSET Sets the seed for the random number generator.

IDFLOAT Converts an INTEGER(4) argument to double-precision real type.

IFLOATI, IFLOATJ Convert an integer to single-precision real type.

INMAX Returns the maximum positive value for an integer.

INTC Converts an INTEGER(4) argument to INTEGER(2) type.

IRAND, IRANDM Return a positive integer in the range 0 through 2**31-1 or 2**15-1 if
called without an argument.

IRANGET Returns the current seed.

IRANSET Sets the seed for the random number generator.

JABS Computes an absolute value.

LONG Converts an INTEGER(2) argument to INTEGER(4) type.

QRANSET Sets the seed for a sequence of pseudo-random numbers.

RAND, RANDOM2 Return random values in the range 0 through 1.0.

RANF Generates a random number between 0.0 and RAND_MAX.

RANGET Returns the current seed.

Table E-1 Summary of Portability Routines

Name Description
E-3

E Intel Fortran Language Reference
RANSET Sets the seed for the random number generator.

SEED Changes the starting point of the random number generator.

SHORT Converts an INTEGER(4) argument to INTEGER(2) type.

SRAND Seeds the random number generator used with IRAND and RAND.

Input and Output:

ACCESS Checks a file for accessibility according to mode.

CHMOD Changes file attributes.

FGETC Reads a character from an external unit.

FLUSH Flushes the buffer for an external unit to its associated file.

FPUTC Writes a character to an external unit.

FSEEK Repositions a file on an external unit.

FTELL, FTELLI8 Return the offset, in bytes, from the beginning of the file.

GETC Reads a character from unit 5.

GETPOS, GETPOSI8 Returns the offset, in bytes, from the beginning of the file.

PUTC Writes a character to unit 6.

Date and Time:

CLOCK Returns current time in "hh:mm:ss" format using a 24-hour clock.

CLOCKX Returns the processor clock to the nearest microsecond.

CTIME Converts a system time to a 24-character ASCII string.

DATE Returns the current system date.

DATE4 Returns the current system date.

DCLOCK Returns the elapsed time in seconds since the start of the current process.

DTIME Returns CPU time since later of (1) start of program, or (2) most recent
call to DTIME.

ETIME Returns elapsed CPU time since the start of program execution.

FDATE Returns the current date and time as an ASCII string.

GETDAT Returns the date.

GETTIM Returns the time.

GMTIME Returns Greenwich Mean Time as a 9-element integer array.

IDATE Returns the date either as one 3-element array or three scalar parameters
(month, day, year).

Table E-1 Summary of Portability Routines

Name Description
E-4

Run-Time Library Routines E
IDATE4 Returns the date either as one 3-element array or three scalar parameters
(month, day, year).

ITIME Returns current time as a 3-element array (hour, minute, second).

JDATE Returns current date as an 8-character string with the Julian date.

JDATE4 Returns current date as a 10-character string with the Julian date.

LTIME Returns local time as a 9-element integer array.

RTC Returns number of seconds since 00:00:00 GMT, Jan 1, 1970.

SECNDS Returns number of seconds since midnight, less the value of its argument.

SETDAT Sets the date.

SETTIM Sets the time.

TIME As a subroutine, returns time formatted as HH:MM:SS; as a function,
returns time in seconds since 00:00:00 GMT, Jan 1, 1970.

TIMEF Returns the number of seconds since the first time this function was called
(or zero).

Error Handling:

GETLASTERROR Returns the last error set.

GETLASTERRORQQ Returns the last error set by a run-time function or subroutine.

IERRNO Returns the last code error.

SETERRORMODEQQ Sets the mode for handling critical errors.

Program Call and Control:

RAISEQQ Sends an interrupt to the executing program, simulating an interrupt from
the operating system.

RUNQQ Calls another program and waits for it to execute.

SIGNALQQ Controls signal handling.

SLEEPQQ Delays execution of the program for a specified time.

System, Drive, and Directory:

CHDIR Changes the current working directory.

CHANGEDIRQQ Makes the specified directory the current (default) directory.

CHANGEDRIVEQQ Makes the specified drive the current drive.

DELDIRQQ Deletes a specified directory.

GETDRIVEDIRQQ Returns the current drive and directory path.

GETDRIVESIZEQQ Returns the size of the specified drive.

Table E-1 Summary of Portability Routines

Name Description
E-5

E Intel Fortran Language Reference
GETDRIVESQQ Returns the drives available to the system.

GETENVQQ Returns a value from the current environment.

MAKEDIRQQ Creates a directory with the specified directory name.

SETENVQQ Adds a new environment variable or sets the value of an existing one.

SYSTEMQQ Executes a command by passing a command string to the operating
system's command interpreter.

Speakers:

BEEPQQ Sounds the speaker for a specified duration in milliseconds at a specified
frequency in Hertz.

File Management:

DELFILESQQ Deletes the specified files in a specified directory.

FINDFILEQQ Searches for a file in the directories specified in the PATH environment
variable.

FULLPATHQQ Returns the full path for a specified file or directory.

GETFILEINFOQQ Returns information about files with names that match a request string.

PACKTIMEQQ Packs time values for use by SETFILETIMEQQ.

RENAMEFILEQQ Renames a file.

SETFILEACCESSQQ Sets file-access mode for the specified file.

SETFILETIMEQQ Sets modification time for the specified file.

SPLITPATHQQ Breaks a full path into four components.

UNPACKTIMEQQ Unpacks a file's packed time and date value into its component parts.

Arrays:

BSEARCHQQ Performs a binary search for a specified element on a sorted
one-dimensional array of intrinsic type.

SORTQQ Sorts a one-dimensional array of intrinsic type.

Floating-Point Inquiry and Control:

CLEARSTATUSFPQQ Clears the exception flags in the floating-point processor status word.

GETCONTROLFPQQ Returns the value of the floating-point processor control word.

GETSTATUSFPQQ Returns the value of the floating-point processor status word.

LCWRQQ Same as SETCONTROLFPQQ.

SCWRQQ Same as GETCONTROLFPQQ.

SETCONTROLFPQQ Sets the value of the floating-point processor control word.

Table E-1 Summary of Portability Routines

Name Description
E-6

Run-Time Library Routines E
SSWRQQ Same as GETSTATUSFPQQ.

IEEE* Functionality:

IEEE_FLAGS Sets, gets, or clears IEEE flags.

IEEE_HANDLER Establishes a handler for IEEE exceptions.

Serial Port I/O: 3

SPORT_CANCEL_IO Cancels any I/O in progress to the specified port.

SPORT_CONNECT Establishes the connection to a serial port.

SPORT_GET_HANDLE Returns the WIN32* handle associated with the communications port.

SPORT_GET_STATE Returns the baud rate, parity, data bits setting, and stop bits setting of the
communications port.

SPORT_GET_TIMEOUTS Returns the user selectable timeouts for the serial port.

SPORT_PEEK_DATA Returns information about the availability of input data.

SPORT_PEEK_LINE Returns information about the availability of input records.

SPORT_PURGE Executes a purge function on the specified port.

SPORT_READ_DATA Reads available data from the port specified.

SPORT_READ_LINE Reads a record from the port specified.

SPORT_RELEASE Releases a serial port that has previously been connected.

SPORT_SET_STATE Sets the baud rate, parity, data bits setting, and stop bits setting of the
communications port.

SPORT_SET_TIMEOUTS Sets the user selectable timeouts for the serial port.

SPORT_SHOW_STATE Displays the state of a port.

SPORT_SPECIAL_FUNC Executes a communications function on a specified port.

SPORT_WRITE_DATA Outputs data to a specified port.

SPORT_WRITE_LINE Outputs data to a specified port and follows it with a record terminator.

Miscellaneous:

LNBLNK Returns the index of the last non-blank character in a string.

QSORT Returns a sorted version of a one-dimensional array of a specified number
of elements of a named size.

RINDEX Returns the index of the last occurrence of a substring in a string.

SCANENV Scans the environment for the value of an environment variable.

Table E-1 Summary of Portability Routines

Name Description
E-7

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

National Language Support Routines (W*32, W*64)

National Language Support (NLS) routines provide language localization and a multibyte
character set (MBCS) to let you write applications in different languages. To use an NLS routine,
add the following statement to the program unit containing the routine:

USE IFNLS
Table E-2 summarizes the NLS routines. Routine names are shown in mixed case to make the
names easier to understand. When writing your applications, you can use any case.

TTYNAM Checks whether a logical unit is a terminal.

1. This routine can also be specified as HOSTNM.

2. There is a RANDOM function and a RANDOM subroutine in the portability library.

3. W*32 only

Table E-2 Summary of NLS Routines (W*32, W*64)

Name Description

Locale Setting and Inquiry:

NLSEnumCodepages Returns all the supported codepages on the system.

NLSEnumLocales Returns all the languages and country combinations supported by
the system.

NLSGetEnvironmentCodepage Returns the codepage number for the system codepage or the
console codepage.

NLSGetLocale Returns the current language, country, and codepage.

NLSGetLocaleInfo Returns requested information about the current local code set.

NLSSetEnvironmentCodepage Changes the codepage for the current console.

NLSSetLocale Sets the language, country, and codepage.

Formatting:

NLSFormatCurrency Formats a number string and returns the correct currency string for
the current locale.

NLSFormatDate Returns a correctly formatted string containing the date for the
current locale.

Table E-1 Summary of Portability Routines

Name Description
E-8

Run-Time Library Routines E
NLSFormatNumber Formats a number string and returns the correct number string for
the current locale.

NLSFormatTime Returns a correctly formatted string containing the time for the
current locale.

MBCS Inquiry:

MBCharLen Returns the length of the first multibyte character in a string.

MBCurMax Returns the longest possible multibyte character for the current
codepage.

MBLead Determines whether a given character is the first byte of a multibyte
character.

MBLen Returns the number of multibyte characters in a string, including
trailing spaces.

MBLen_Trim Returns the number of multibyte characters in a string, not
including trailing spaces.

MBNext Returns the string position of the first byte of the multibyte character
immediately after the given string position.

MBPrev Returns the string position of the first byte of the multibyte character
immediately before the given string position.

MBStrLead Performs a context sensitive test to determine whether a given byte
in a character string is a lead byte.

MBCS Conversion:

MBConvertMBToUnicode Converts a character string from a multibyte codepage to a Unicode
string.

MBConvertUnicodeToMB Converts a Unicode string to a multibyte character string of the
current codepage.

MBJISTToJMS Converts a Japan Industry Standard (JIS) character to a Microsoft*
Kanji (Shift JIS or JMS) character.

MBJMSTToJIS Converts a Microsoft Kanji (Shift JIS or JMS) character to a Japan
Industry Standard (JIS) character.

MBCS Fortran Equivalents:

MBINCHARQQ Same as INCHARQQ except that it can read a single multibyte
character at once and returns the number of bytes read.

MBINDEX Same as INDEX except that multibyte characters can be included in
its arguments.

MBLGE, MBLGT, MBLLE, MBLLT,
MBLEQ, MBLNE

Same as LGE, LGT, LLE, LLT, and the operators .EQ. and .NE.
except that multibyte characters can be included in their arguments.

Table E-2 Summary of NLS Routines (W*32, W*64)

Name Description
E-9

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

POSIX* Routines

Intel Fortran provides routines that implement the IEEE POSIX FORTRAN-77 language
bindings.To use a POSIX routine, add the following statement to the program unit containing the
routine:

USE IFPOSIX
Table E-3 summarizes the Intel Fortran POSIX library routines.

MBSCAN Same as SCAN except that multibyte characters can be included in
its arguments.

MBVERIFY Same as VERIFY except that multibyte characters can be included
in its arguments.

Table E-3 Summary of POSIX Routines

Name Description

IPXFARGC Returns the index of the last command-line argument.

IPXFCONST Returns the value associated with a constant defined in the C POSIX
standard.

IPXFLENTRIM Returns the index of the last non-blank character in an input string.

IPXFWEXITSTATUS1 Returns the exit code of a child process.

IPXFWSTOPSIG1 Returns the number of the signal that caused a child process to stop.

IPXFWTERMSIG1 Returns the number of the signal that caused a child process to terminate.

PXF<TYPE>GET Gets the value stored in a component (or field) of a structure.

PXF<TYPE>SET Sets the value of a component (or field) of a structure.

PXFA<TYPE>GET Gets the array values stored in a component (or field) of a structure.

PXFA<TYPE>SET Sets the value of an array component (or field) of a structure.

PXFACCESS Determines the accessibility of a file.

PXFALARM Schedules an alarm.

PXFCALLSUBHANDLE Calls the associated subroutine.

PXFCFGETISPEED1 Returns the input baud rate from a termios structure.

PXFCFGETOSPEED1 Returns the output baud rate from a termios structure.

Table E-2 Summary of NLS Routines (W*32, W*64)

Name Description
E-10

Run-Time Library Routines E
PXFCFSETISPEED1 Sets the input baud rate in a termios structure.

PXFCFSETOSPEED1 Sets the output baud rate in a termios structure.

PXFCHDIR Changes the current working directory.

PXFCHMOD Changes the ownership mode of the file.

PXFCHOWN1 Changes the owner and group of a file.

PXFCLEARENV Clears the process environment.

PXFCLOSE Closes the file associated with the descriptor.

PXFCLOSEDIR Closes the directory stream.

PXFCONST Returns the value associated with a constant.

PXFCNTL1 Manipulates an open file descriptor.

PXFCREAT Creates a new file or rewrites an existing file.

PXFCTERMID1 Generates a terminal pathname.

PXFDUP, PXFDUP2 Duplicates an existing file descriptor.

PXFE<TYPE>GET Gets the value stored in an array element component (or field) of a structure.

PXFE<TYPE>SET Sets the value of an array element component (or field) of a structure.

PXFEXECV, PXFEXECVE,
PXFEXECVP

Execute a new process by passing command-line arguments.

PXFEXIT, PXFFASTEXIT Exits from a process.

PXFFDOPEN Opens an external unit.

PXFFFLUSH Flushes a file directly to disk.

PXFFGETC Reads a character from a file.

PXFFILENO Returns the file descriptor associated with a specified unit.

PXFFORK1 Creates a child process that differs from the parent process only in its PID.

PXFFPATHCONF Gets the value for a configuration option of an opened file.

PXFFPUTC Writes a character to a file.

PXFFSEEK Modifies a file position.

PXFFSTAT Gets a file's status information.

PXFFTELL Returns the relative position in bytes from the beginning of the file.

PXFGETARG Gets the specified command-line argument.

PXFGETATTY Tests whether a file descriptor is connected to a terminal.

PXFGETC Reads a character from standard input unit 5.

PXFGETCWD Returns the path of the current working directory.

Table E-3 Summary of POSIX Routines

Name Description
E-11

E Intel Fortran Language Reference
PXFGETEGID1 Gets the effective group ID of the current process.

PXFGETENV Gets the setting of an environment variable.

PXFGETEUID1 Gets the effective user ID of the current process.

PXFGETGID1 Gets the real group ID of the current process.

PXFGETGRGID1 Gets group information for the specified GID.

PXFGETGRNAM1 Gets group information for the named group.

PXFGETGROUPS1 Gets supplementary group IDs.

PXFGETLOGIN Gets the name of the user.

PXFGETPGRP1 Gets the process group ID of the calling process.

PXFGETPID Gets the process ID of the calling process.

PXFGETPPID Gets the process ID of the parent of the calling process.

PXFGETPWNAM1 Gets password information for a specified name.

PXFGETPWUID1 Gets password information for a specified UID.

PXFGETSUBHANDLE Returns a handle for a subroutine.

PXFGETUID1 Gets the real user ID of the current process.

PXFISBLK Tests for a block special file.

PXFISCHR Tests for a character file.

PXFISCONST Tests whether a string is a valid constant name.

PXFISDIR Tests whether a file is a directory.

PXFISFIFO Tests whether a file is a special FIFO file.

PXFISREG Tests whether a file is a regular file.

PXFKILL Sends a signal to a specified process.

PXFLINK Creates a link to a file or directory.

PXFLOCALTIME Converts a given elapsed time in seconds to local time.

PXFLSEEK Positions a file a specified distance in bytes.

PXFMKDIR Creates a new directory.

PXFMKFIFO1 Creates a new FIFO.

PXFOPEN Opens or creates a file.

PXFOPENDIR Opens a directory and associates a stream with it.

PXFPATHCONF Gets the value for a configuration option of an opened file.

PXFPAUSE Suspends process execution.

Table E-3 Summary of POSIX Routines

Name Description
E-12

Run-Time Library Routines E
PXFPIPE Creates a communications pipe between two processes.

PXFPOSIXIO Sets the current value of the POSIX I/O flag.

PXFPUTC Outputs a character to logical unit 6 (stdout).

PXFREAD Reads from a file.

PXFREADDIR Reads the current directory entry.

PXFRENAME Changes the name of a file.

PXFREWINDDIR Resets the position of the stream to the beginning of the directory.

PXFRMDIR Removes a directory.

PXFSETENV Adds a new environment variable or sets the value of an environment
variable.

PXFSETGID1 Sets the effective group ID of the current process.

PXFSETPGID1 Sets the process group ID.

PXFSETSID1 Creates a session and sets the process group ID.

PXFSETUID1 Sets the effective user ID of the current process.

PXFSIGACTION Changes the action associated with a specific signal.

PXFSIGADDSET1 Adds a signal to a signal set.

PXFSIGDELSET1 Deletes a signal from a signal set.

PXFSIGEMPTYSET1 Empties a signal set.

PXFSIGFILLSET1 Fills a signal set.

PXFSIGISMEMBER1 Tests whether a signal is a member of a signal set.

PXFSIGPENDING1 Examines pending signals.

PXFSIGPROCMASK1 Changes the list of currently blocked signals.

PXFSIGSUSPEND1 Suspends the process until a signal is received.

PXFSLEEP Forces the process to sleep.

PXFSTAT Gets the status of a file.

PXFSTRUCTCOPY Copies the contents of one structure to another.

PXFSTRUCTCREATE Creates an instance of the specified structure.

PXFSTRUCTFREE Deletes the instance of a structure.

PXFSYSCONF Gets values for system limits or options.

PXFTCDRAIN1 Waits until all output written has been transmitted.

PXFTCFLOW1 Suspends the transmission or reception of data.

PXFTCFLUSH1 Discards terminal input data, output data, or both.

Table E-3 Summary of POSIX Routines

Name Description
E-13

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

QuickWin Routines (W*32, W*64)

QuickWin routines help you turn graphics programs into simple Windows* applications. To use a
Quickwin routine, add the following statement to the program unit containing the routine:

USE IFQWIN
Graphic routines are also used in QuickWin applications (see “Graphics Routines (W*32,
W*64)”).

PXFTCGETATTR1 Reads current terminal settings.

PXFTCGETPGRP1 Gets the foreground process group ID associated with the terminal.

PXFTCSENDBREAK1 Sends a break to the terminal.

PXFTCSETATTR1 Writes new terminal settings.

PXFTCSETPGRP1 Sets the foreground process group associated with the terminal.

PXFTIME Gets the system time.

PXFTIMES Gets process times.

PXFTTYNAM1 Gets the terminal pathname.

PXFUCOMPARE Compares two unsigned integers.

PXFUMASK Sets a new file creation mask and gets the previous one.

PXFUNAME Gets the operation system name.

PXFUNLINK Removes a directory entry.

PXFUTIME Sets file access and modification times.

PXFWAIT1 Waits for a child process.

PXFWAITPID1 Waits for a specific PID.

PXFWIFEXITED1 Determines if a child process has exited.

PXFWIFSIGNALED1 Determines if a child process has exited because of a signal.

PXFWIFSTOPPED1 Determines if a child process has stopped.

PXFWRITE Writes to a file.

1. L*X only

Table E-3 Summary of POSIX Routines

Name Description
E-14

Run-Time Library Routines E

Table E-4 summarizes QuickWin routines.

Table E-4 Summary of QuickWin Routines (W*32, W*64)

Name Description

Window Control and Inquiry:

FOCUSQQ Sets focus to specified window.

GETACTIVEQQ Returns the unit number of the currently active child.

GETHWNDQQ Converts the unit number into a Windows handle for functions that
require it.

GETUNITQQ Returns the unit number corresponding to the specified Windows
handle.

GETWINDOWCONFIG Returns current window properties.

GETWSIZEQQ Returns the size and position of a window.

INQFOCUSQQ Determines which window has focus.

SETACTIVEQQ Makes a child window active, but does not give it focus.

SETWINDOWCONFIG Sets current window properties.

SETWSIZEQQ Sets the size and position of a window.

QuickWin Application Enhancement:

ABOUTBOXQQ Adds an About Box with customized text.

APPENDMENUQQ Appends a menu item.

CLICKMENUQQ Simulates the effect of clicking or selecting a menu item.

DELETEMENUQQ Deletes a menu item.

GETEXITQQ Returns the setting for a QuickWin application's exit behavior.

INCHARQQ Reads a single character input from the keyboard and returns the
ASCII value of that character without any buffering.

INITIALSETTINGS Controls initial menu settings and initial frame window.

INSERTMENUQQ Inserts a menu item.

MESSAGEBOXQQ Displays a message box.

MODIFYMENUFLAGSQQ Modifies a menu item's state.

MODIFYMENUROUTINEQQ Modifies a menu item's callback routine.

MODIFYMENUSTRINGQQ Modifies a menu item's text string.

PASSDIRKEYSQQ Determines the behavior of direction and page keys.

REGISTERMOUSEEVENT Registers the application defined routines to be called on mouse
events.

SETEXITQQ Sets a QuickWin application's exit behavior.
E-15

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

Graphics Routines (W*32, W*64)

The graphics routines can be used in Standard Graphics applications and in Quickwin applications
(see “QuickWin Routines (W*32, W*64)”). To use a graphics routine, do the following:
• Add the following statement to the program unit containing the routine:

USE IFQWIN
• Choose the QuickWin Graphics or Standard Graphics program type.
Table E-5 summarizes graphics routines.

SETMESSAGEQQ Changes any QuickWin message, including status bar messages,
state messages, and dialog box messages.

SETMOUSECURSOR Sets the mouse cursor for the window in focus.

SETWINDOWMENUQQ Sets the menu to which a list of current child window names are
appended.

UNREGISTERMOUSEEVENT Removes the routine registered by REGISTERMOUSEEVENT.

WAITONMOUSEEVENT Blocks a return until a mouse event occurs.

Color Conversion:

INTEGERTORGB Converts an RGB color value to its red, green, and blue components.

RGBTOINTEGER Converts integers specifying red, green, and blue color into an RGB
integer (for use in RGB routines).

Table E-5 Summary of Graphics Routines (W*32, W*64)

Name Description

Color Control or Inquiry: 1

FLOODFILL Fills an area using the current index and fill mask; fill starting point uses
viewport coordinates.

FLOODFILL_W Fills an area using the current index and fill mask; fill starting point uses
window coordinates.

FLOODFILLRGB Fills an area using the current RGB color and fill mask; fill starting point
uses viewport coordinates.

FLOODFILLRGB_W Fills an area using the current RGB color and fill mask; fill starting point
uses viewport coordinates.

Table E-4 Summary of QuickWin Routines (W*32, W*64)

Name Description
E-16

Run-Time Library Routines E
GETBKCOLOR Returns current background color index for both text and graphics.

GETBKCOLORRGB Returns current background RGB color value for both text and graphics.

GETCOLOR Returns the current graphics color index.

GETCOLORRGB Returns the current graphics color RGB value.

GETPIXEL Returns the color index of a pixel; pixel is located using viewport
coordinates.

GETPIXEL_W Returns the color index of a pixel; pixel is located using window
coordinates.

GETPIXELRGB Returns the RGB color value of a pixel; pixel is located using viewport
coordinates.

GETPIXELRGB_W Returns the RGB color value of a pixel; pixel is located using window
coordinates.

GETPIXELS Returns the color indexes of multiple pixels.

GETPIXELSRGB Returns the RGB color values of multiple pixels.

GETTEXTCOLOR Returns the current text color index.

GETTEXTCOLORRGB Returns the RGB color value of the current text.

REMAPALLPALETTERGB Remaps an entire palette to an RGB color.

REMAPPALETTERGB Remaps one color index to an RGB color.

SETBKCOLOR Sets current background color index for both text and graphics.

SETBKCOLORRGB Sets current background RGB color value for both text and graphics.

SETCOLOR Sets the current graphics color index.

SETCOLORRGB Sets the current graphics color to an RGB value.

SETPIXEL Sets a pixel to the current graphics color index; pixel is located using
viewport coordinates.

SETPIXEL_W Sets a pixel to the current graphics color index; pixel is located using
window coordinates.

SETPIXELRGB Sets a pixel to an RGB color value; pixel is located using viewport
coordinates.

SETPIXELRGB_W Sets a pixel to an RGB color value; pixel is located using window
coordinates.

SETPIXELS Sets the color indexes of multiple pixels.

SETPIXELSRGB Sets multiple pixels to an RGB color.

SETTEXTCOLOR Sets the current text color index.

SETTEXTCOLORRGB Sets the current text color to an RGB value.

Table E-5 Summary of Graphics Routines (W*32, W*64)

Name Description
E-17

E Intel Fortran Language Reference
Figure Characteristics:

GETFILLMASK Returns the current fill mask.

GETLINESTYLE Returns the current line style.

GETWRITEMODE Returns the logical write mode used when drawing lines.

SETCLIPRGN Masks part of the screen; it does not change the viewport coordinates.

SETFILLMASK Sets the current fill mask.

SETLINESTYLE Sets the current line style.

SETWRITEMODE Sets the logical write mode used when drawing lines.

Coordinate Conversion and Settings:

GETPHYSCOORD Converts viewpoint coordinates to physical coordinates.

GETVIEWCOORD Converts physical coordinates to viewport coordinates.

GETVIEWCOORD_W Converts window coordinates to viewport coordinates.

GETWINDOWCOORD Converts viewport coordinates to window coordinates.

SETVIEWORG Moves the viewport coordinate origin (0,0) to a specified physical point.

SETVIEWPORT Redefines viewport bounds to the specified limits and sets the viewport
coordinate origin to the upper-left corner of this region.

SETWINDOW Defines a window bound by specified window coordinates.

Graphics Drawing:

ARC Draws an arc using viewport coordinates.

ARC_W Draws an arc using window coordinates.

CLEARSCREEN Clears the screen, viewport, or text window.

ELLIPSE Draws an ellipse or circle using viewport coordinates.

ELLIPSE_W Draws an ellipse or circle using window coordinates.

GETARCINFO Returns the endpoints of the most recently drawn arc or pie.

GETCURRENTPOSITION Returns the viewport coordinates of the current graphics-output
position.

GETCURRENTPOSITION_W Returns the window coordinates of the current graphics-output position.

GRSTATUS Returns the status (success or failure) of the most recently called
graphics routine.

LINETO Draws a line from the current graphics-output position to a specified
point using viewport coordinates.

LINETO_W Draws a line from the current graphics-output position to a specified
point using window coordinates.

Table E-5 Summary of Graphics Routines (W*32, W*64)

Name Description
E-18

Run-Time Library Routines E
LINETOAR Draws a line between points in one array and corresponding points in
another array.

LINETOAREX Similar to LINETOAR, but also lets you specify color and line style.

MOVETO Moves the current graphics-output position to a specified point using
viewport coordinates.

MOVETO_W Moves the current graphics-output position to a specified point using
window coordinates.

PIE Draws a pie-slice-shaped figure using viewport coordinates.

PIE_W Draws a pie-slice-shaped figure using window coordinates.

POLYBEZIER Draws a Bezier curve using viewport coordinates.

POLYBEZIER_W Draws a Bezier curve using window coordinates.

POLYBEZIERTO Draws a Bezier curve using viewport coordinates.

POLYBEZIERTO_W Draws a Bezier curve using window coordinates.

POLYGON Draws a polygon using viewport coordinates.

POLYGON_W Draws a polygon using window coordinates.

POLYLINEQQ Draws a line between successive points in an array.

RECTANGLE Draws a rectangle using viewport coordinates.

RECTANGLE_W Draws a rectangle using window coordinates.

Character-Based Text Display:

DISPLAYCURSOR Sets the cursor on or off.

GETTEXTPOSITION Returns the current text-output position.

GETTEXTWINDOW Returns the boundaries of the current text window.

OUTTEXT Sends text to the screen at the current position.

SCROLLTEXTWINDOW Scrolls the contents of a text window.

SETTEXTCURSOR Sets the height and width of the text cursor for the window in focus.

SETTEXTPOSITION Sets the current text-output position.

SETTEXTWINDOW Sets the boundaries of the current text window.

WRAPON Turns line wrapping on or off.

Font-Based Character Display:

GETFONTINFO Returns the current font characteristics.

GETGTEXTEXTENT Returns the width of specified text in the current font.

GETGTEXTROTATION Returns the current orientation of the font text output by OUTGTEXT.

Table E-5 Summary of Graphics Routines (W*32, W*64)

Name Description
E-19

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

Dialog Routines (W*32)

Dialog routines let you add dialog boxes to Windows, QuickWin, and console applications. To
activate a dialog box, add the following statement to the application’s relevant program unit:

USE IFLOGM

INITIALIZEFONTS Initializes the font library.

OUTGTEXT Sends text in the current font to the screen at the current position.2

SETFONT Finds one font that matches a specified set of characteristics and makes
it the current font used by OUTGTEXT.

SETGTEXTROTATION Sets the orientation angle of font text output in degrees.

Image Transfers in Memory:

GETIMAGE Stores a screen image using viewport coordinates.

GETIMAGE_W Stores a screen image using window coordinates.

IMAGESIZE Returns a viewport-coordinate image size in bytes.

IMAGESIZE_W Returns a window-coordinate image size in bytes.

PUTIMAGE Retrieves a viewport-coordinate image from memory and displays it.

PUTIMAGE_W Retrieves a window-coordinate image from memory and displays it.

Image Loading and Saving:

LOADIMAGE Reads a Windows bitmap file (.BMP) from disk and displays it as
specified viewport coordinates.

LOADIMAGE_W Reads a Windows bitmap file (.BMP) from disk and displays it as
specified window coordinates.

SAVEIMAGE Saves an image from a specified part of the screen and saves it as a
Windows bitmap file; screen location is specified using viewport
coordinates.

SAVEIMAGE_W Saves an image from a specified part of the screen and saves it as a
Windows bitmap file; screen location is specified using window
coordinates.

1. RGB is Red-Green-Blue

2. OUTGTEXT allows use of special fonts; OUTTEXT does not

Table E-5 Summary of Graphics Routines (W*32, W*64)

Name Description
E-20

Run-Time Library Routines E

Table E-6 summarizes the dialog routines.

For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

Table E-6 Summary of Dialog Routines (W*32)

Name Description

DLGEXIT Closes an open dialog box.

DLGFLUSH Updates the display of a dialog box.

DLGGET Returns the value of a control variable.

DLGGETCHAR Returns the value of a character control variable.

DLGGETINT Returns the value of an integer control variable.

DLGGETLOG Returns the value of a logical control variable.

DLGINIT Initializes a dialog box.

DLGINITWITHRESOURCEHANDLE Initializes a dialog box.

DLGISDLGMESSAGE Determines whether a message is intended for a modeless
dialog box.

DLGISDLGMESSAGEWITHDLG Determines whether a message is intended for a specific
modeless dialog box.

DLGMODAL Displays a dialog box.

DLGMODALWITHPARENT Displays a dialog box and indicates the parent window.

DLGMODELESS Displays a modeless dialog box.

DLGSENDCTRLMESSAGE Sends a message to a dialog box control.

DLGSET Assigns a value to a control variable.

DLGSETCHAR Assigns a value to a character control variable.

DLGSETCTRLEVENTHANDLER Assigns user-written event handlers to ActiveX* controls in a
dialog box.

DLGSETINT Assigns a value to an integer control variable.

DLGSETLOG Assigns a value to a logical control variable.

DLGSETRETURN Sets the return value for DLGMODAL.

DLGSETSUB Assigns a defined callback routine to a control.

DLGSETTITLE Sets the title of a dialog box.

DLGUNINIT Deallocates memory for an initialized dialog box.
E-21

E Intel Fortran Language Reference
Miscellaneous Run-Ti me Routines

Intel Fortran provides several miscellaneous routines for applications. To use for_rtl_init_ and
for_rtl_finish_, you must call them from a main program written in C. To use the other routines,
add the following statement to the program unit containing the routine:
USE IFCORE
Table E-7 summarizes these run-time routines:

Table E-7 Summary of Miscellaneous Run-Time Routines

Name Description

Keyboards and Speakers:

GETCHARQQ Returns the next keyboard keystroke.

GETSTRQQ Reads a character string from the keyboard using buffered input.

PEEKCHARQQ Checks the buffer to see if a keystroke is waiting.

File Management:

COMMITQQ Executes any pending write operations for the file associated with the
specified unit to the file's physical device.

Error Handling:

GERROR Returns the IERRNO error code as a string variable.

PERROR Returns an error message, preceded by a string, for the last error
detected.

Floating-Point Inquiry and Control:

FOR_GET_FPE Returns the current settings of floating-point exception flags.

FOR_SET_FPE Sets the floating-point exception flags.

GETEXCEPTIONPTRSQQ1 Returns a pointer to C run-time exception information pointers
appropriate for use in signal handlers established with SIGNALQQ or
direct calls to the C rtl signal() routine.

Run-Time Environment:

for_rtl_finish_ Cleans up the Fortran run-time environment.

for_rtl_init_ Initializes the Fortran run-time environment.

Reentrancy Mode Control:

FOR_SET_REENTRANCY Controls the type of reentrancy protection that the Run-Time Library
exhibits.

Traceback:

TRACEBACKQQ Generates a stack trace.
E-22

Run-Time Library Routines E
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

COM Routines (W*32)

COM routines help you work with COM objects. To use a COM routine, add the following
statement to the program unit containing the routine:

USE IFCOM
Some of the routines may also require the statement USE IFWINTY.
Table E-8 summarizes COM routines. Routine names are shown in mixed case to make the names
easier to understand. When writing your applications, you can use any case.

Memory assignment:

FOR_DESCRIPTOR_ASSIGN1 Creates an array descriptor in memory.

1. W*32, W*64

Table E-8 Summary of COM Routines (W*32)

Name Description

COMAddObjectReference Adds a reference to an object's interface.

COMCLSIDFromProgID Passes a programmatic identifier and returns the corresponding class
identifier.

COMCLSIDFromString Passes a class identifier string and returns the corresponding class
identifier.

COMCreateObjectByGUID Passes a class identifier, creates an instance of an object, and returns a
pointer to the object's interface.

COMCreateObjectByProgID Passes a programmatic identifier, creates an instance of an object, and
returns a pointer to the object's IDispatch interface.

COMGetActiveObjectByGUID Passes a class identifier and returns a pointer to the interface of a
currently active object.

COMGetActiveObjectByProgID Passes a programmatic identifier and returns a pointer to the IDispatch
interface of a currently active object.

COMGetFileObject Passes a file name and returns a pointer to the IDispatch interface of an
automation object that can manipulate the file.

COMInitialize Initializes the COM library.

Table E-7 Summary of Miscellaneous Run-Time Routines

Name Description
E-23

E Intel Fortran Language Reference
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

AUTO Routines (W*32)

AUTO routines help you work with automation objects. To use an AUTO routine, add the
following statement to the program unit containing the routine:

USE IFAUTO
Some of the routines may also require the statement USE IFWINTY.
Table E-9 summarizes AUTO routines. Routine names are shown in mixed case to make the
names easier to understand. When writing your applications, you can use any case.

COMIsEqualGUID Determines whether two globally unique identifiers (GUIDs) are the
same.

COMQueryInterface Passes an interface identifier and returns a pointer to an object's
interface.

COMReleaseObject Indicates that the program is done with a reference to an object's
interface.

COMStringFromGUID Passes a globally unique identifier (GUID) and returns a string of
printable characters.

COMUninitialize Uninitializes the COM library.

Table E-9 Summary of AUTO Routines (W*32)

Name Description

AUTOAddArg Passes an argument name and value and adds the argument to the
argument list data structure.

AUTOAllocateInvokeArgs Allocates an argument list data structure that holds the arguments to be
passed to AUTOInvoke.

AUTODeallocateInvokeArgs Deallocates an argument list data structure.

AUTOGetExceptInfo Retrieves the exception information when a method has returned an
exception status.

AUTOGetProperty Passes the name or identifier of the property and gets the value of the
automation object's property.

AUTOGetPropertyByID Passes the member ID of the property and gets the value of the
automation object's property into the argument list's first argument.

Table E-8 Summary of COM Routines (W*32)

Name Description
E-24

Run-Time Library Routines E
For more information on these routines, see your Libraries Reference or the Intel® Visual Fortran
online Reference.

OpenMP* Fortran Routines
Intel Fortran provides OpenMP* Fortran library routines you can use for directed parallel
decomposition. To use an OpenMP Fortran routine, add the following statement to the program
unit containing the routine:

USE OMP_LIB
For more information on a specific routine, see your user’s guide or the appropriate reference
page; for example, for more information on OMP_SET_LOCK, see omp_set_lock(3f).
Table E-10 summarizes the Intel Fortran OpenMP Fortran API run-time library routines. These
routines are all external procedures.

AUTOGetPropertyInvokeArgs Passes an argument list data structure and gets the value of the
automation object's property specified in the argument list's first
argument.

AUTOInvoke Passes the name or identifier of an object's method and an argument list
data structure and invokes the method with the passed arguments.

AUTOSetProperty Passes the name or identifier of the property and a value, and sets the
value of the automation object's property.

AUTOSetPropertyByID Passes the member ID of the property and sets the value of the
automation object's property, using the argument list's first argument.

AUTOSetPropertyInvokeArgs Passes an argument list data structure and sets the value of the
automation object's property specified in the argument list's first
argument.

Table E-10 Summary of OpenMP Fortran Routines

Name Description

OMP_SET_NUM_THREADS Sets the number of threads to use for the next parallel region.

OMP_GET_NUM_THREADS Gets the number of threads currently in the team executing the parallel
region from which the routine is called.

OMP_GET_MAX_THREADS Gets the maximum value that can be returned by calls to the
OMP_GET_NUM_THREADS function.

OMP_GET_THREAD_NUM Gets the thread number, within the team, in the range from zero to
OMP_GET_NUM_THREADS minus one.

Table E-9 Summary of AUTO Routines (W*32)

Name Description
E-25

E Intel Fortran Language Reference
OMP_GET_NUM_PROCS Gets the number of processors that are available to the program.

OMP_IN_PARALLEL Informs whether or not a region is executing in parallel.

OMP_SET_DYNAMIC Enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions.

OMP_GET_DYNAMIC Informs whether or not dynamic thread adjustment is enabled.

OMP_SET_NESTED Enables or disables nested parallelism.

OMP_GET_NESTED Informs whether or not nested parallelism is enabled.

OMP_INIT_LOCK Initializes a lock for use in subsequent calls.

OMP_DESTROY_LOCK Disassociates a lock variable from any locks.

OMP_SET_LOCK Makes the executing thread wait until the specified lock is available.

OMP_UNSET_LOCK Releases the executing thread from ownership of a lock.

OMP_TEST_LOCK Tries to set the lock associated with a lock variable.

OMP_INIT_NEST_LOCK Initializes a nested lock for use in subsequent calls.

OMP_DESTROY_NEST_LOCK Disassociates a lock variable from a nested lock.

OMP_SET_NEST_LOCK Makes the executing thread wait until the specified nested lock is available.

OMP_UNSET_NEST_LOCK Releases the executing thread from ownership of a nested lock if the
nesting count is zero.

OMP_TEST_NEST_LOCK Tries to set the nested lock associated with a lock variable.

OMP_GET_WTIME Returns a double-precision value equal to the elapsed wallclock time (in
seconds) relative to an arbitrary reference time.

OMP_GET_WTICK Returns a double-precision value equal to the number of seconds between
successive clock ticks.

Intel® Fortran Extensions:

KMP_GET_STACKSIZE_S1 Returns the number of bytes that will be allocated for each parallel thread
to use as its private stack.

KMP_SET_STACKSIZE_S2 Sets the number of bytes that will be allocated for each parallel thread to
use as its private stack.

KMP_GET_BLOCKTIME Returns the number of milliseconds that a thread should wait, after
completing the execution of a parallel region, before sleeping.

KMP_SET_BLOCKTIME Sets the number of milliseconds that a thread should wait, after completing
the execution of a parallel region, before sleeping.

KMP_MALLOC Allocates a memory block of a specified size (in bytes) from the
thread-local heap.

Table E-10 Summary of OpenMP Fortran Routines

Name Description
E-26

Run-Time Library Routines E
See Also
• “OpenMP* Fortran Compiler Directives”
• Volume II of your user’s guide for details on OpenMP Fortran routines

KMP_CALLOC Allocates an array of a specified number of elements and size from the
thread-local heap.

KMP_REALLOC Reallocates a memory block at a specified address and of a specified size
from the thread-local heap.

KMP_FREE Frees a memory block at a specified address from the thread-local heap.

1. For backwards compatibility, this can also be specified as KMP_GET_STACKSIZE.

2. For backwards compatibility, this can also be specified as KMP_SET_STACKSIZE.

Table E-10 Summary of OpenMP Fortran Routines

Name Description
E-27

E Intel Fortran Language Reference
E-28

Summary of Language
Extensions
 F
This appendix summarizes the Intel® Fortran language extensions to the ANSI/ISO Fortran 95
Standard.
Most extensions are available on all supported operating systems. However, some extensions are
limited to one or more platforms. If an extension is limited, it is labeled.

Source Forms
The following are extensions to the methods and rules for source forms:
• Tab-formatting as a method to code lines (see “Tab-Format Lines”)
• The letter D as a debugging statement indicator in column 1 of fixed or tab source form (see

“Fixed and Tab Source Forms”)
• An optional statement field width of 132 columns for fixed or tab source form (see “Fixed and

Tab Source Forms”)
• An optional sequence number field for fixed source form (see “Fixed-Format Lines”)
• Up to 511 continuation lines in a source program (see “Source Forms”)

Names
The following are extensions to the rules for names (see “Names”):
• Names can contain up to 63 characters
• The dollar sign ($) is a valid character in names, and can be the first character

Character Sets
The following are extensions to the standard character set:
• The Tab (<Tab>) character (see “Character Sets”)
F-1

F Intel Fortran Language Reference
• For Windows systems (see online Help):
— Special ASCII and ANSI character sets
— Key code sets

Intrinsic Data Types
The following table lists data-type extensions and an extended way to specify data types (see
“Intrinsic Data Types”):

Constants
C strings are allowed in character constants as an extension (see “C Strings in Character
Constants”).
Hollerith constants are allowed as an extension (see “Hollerith Constants”).

Expressions and Assignment
When operands of different intrinsic data types are combined in expressions, conversions are
performed as necessary (see “Data Type of Numeric Expressions”).
Binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants are
allowed (see “Binary, Octal, Hexadecimal, and Hollerith Constants”).
The following are extensions allowed in logical expressions (see “Logical Expressions”):
• .XOR. as a synonym for .NEQV.
• Integers as valid logical items
• Logical operators applied to integers bit-by-bit

Specification Statements
The following specification attributes and statements are extensions:

BYTE INTEGER*1 REAL*16
DOUBLE COMPLEX INTEGER*2 COMPLEX*8
LOGICAL*1 INTEGER*4 COMPLEX*16
LOGICAL*2 INTEGER*8 COMPLEX*32
LOGICAL*4 REAL*4
LOGICAL*8 REAL*8
F-2

Summary of Language Extensions F

• AUTOMATIC and STATIC (see “AUTOMATIC and STATIC Attributes and Statements”)
• VOLATILE (see “VOLATILE Attribute and Statement”)

Execution Control
The following control statements are extensions to Fortran 95 (see Chapter 7, “Execution
Control”):
• ASSIGN
• Assigned GO TO
• PAUSE
These are older Fortran features that have been deleted in Fortran 95. Intel Fortran fully supports
these features.

Compilation Control Statements
The following statement and option are extensions that can influence compilation:
• /[NO]LIST, which can be specified for an INCLUDE statement (see “INCLUDE Statement”)
• The OPTIONS statement (see “OPTIONS Statement”)

Built-In Functions
The following built-in functions are extensions:
• %VAL, %REF, and %LOC, which facilitate references to non-Fortran procedures (see

“References to Non-Fortran Procedures”)
• %FILL, which can be used in record structure type definitions (see “Type Declarations”)

I/O Statements
The following I/O statements are extensions:
• The ACCEPT statement (see “ACCEPT Statement”)
• The TYPE statement, which is a synonym for the PRINT statement (see “PRINT and TYPE

Statements”)
• The REWRITE statement (see “REWRITE Statement”)

I/O Formatting
The following are extensions allowed in I/O formatting:
F-3

F Intel Fortran Language Reference
• The Q edit descriptor (see “Character Count Editing (Q)”)
• The dollar sign ($) edit descriptor (see “Dollar Sign ($) and Backslash (\) Editing” and

carriage control character (see “Printing of Formatted Records”)
• The backslash (\) edit descriptor (see “Dollar Sign ($) and Backslash (\) Editing”)
• The ASCII NUL carriage control character (see “Printing of Formatted Records”)
• Variable format expressions (see “Variable Format Expressions”)
• The H edit descriptor (see “H Editing”)

This is an older Fortran feature that has been deleted in Fortran 95. Intel Fortran fully
supports this feature.

File Operation Statements
The following statement specifiers and statements are extensions (see Chapter 12, “File Operation
I/O Statements”):
• CLOSE statement specifiers:

— STATUS values: 'SAVE' (as a synonym for 'KEEP'), 'PRINT', 'PRINT/DELETE',
'SUBMIT', 'SUBMIT/DELETE'

— DISPOSE (or DISP)
• DELETE statement
• INQUIRE statement specifiers:

— BINARY (W*32, W*64)
— BLOCKSIZE
— BUFFERED
— CARRIAGECONTROL
— CONVERT
— DEFAULTFILE
— FORM values: 'UNKNOWN', 'BINARY' (W*32, W*64)
— IOFOCUS (W*32, W*64)
— MODE as a synonym for ACTION
— ORGANIZATION
— RECORDTYPE
— SHARE (W*32, W*64)

• OPEN statement specifiers:
— ACCESS values: 'APPEND'
— ASSOCIATEVARIABLE
— BLOCKSIZE
F-4

Summary of Language Extensions F

— BUFFERCOUNT
— BUFFERED
— CARRIAGECONTROL
— CONVERT
— DEFAULTFILE
— DISPOSE (or DISP)
— FORM value: 'BINARY' (W*32, W*64)
— IOFOCUS (W*32, W*64)
— MAXREC
— MODE as a synonym for ACTION
— NAME as a synonym for FILE
— ORGANIZATION
— READONLY
— RECORDSIZE as a synonym for RECL
— RECORDTYPE
— SHARE (W*32, W*64*)
— SHARED
— TITLE (W*32, W*64)
— TYPE as a synonym for STATUS
— USEROPEN

• UNLOCK statement

Compiler Directives
The following general directives are extensions (see “General Compiler Directives”):
• ALIAS
• ATTRIBUTES
• DECLARE and NODECLARE
• DEFINE and UNDEFINE
• DISTRIBUTE POINT
• FIXEDFORMLINESIZE
• FREEFORM and NOFREEFORM
• IDENT
• IF and IF DEFINED
• INTEGER
F-5

F Intel Fortran Language Reference
• IVDEP
• LOOP COUNT
• MESSAGE
• OBJCOMMENT
• OPTIONS
• PACK
• PARALLEL and NOPARALLEL
• PREFETCH and NOPREFETCH
• PSECT
• REAL
• STRICT and NOSTRICT
• SWP and NOSWP (i64 only)
• TITLE and SUBTITLE
• UNROLL and NOUNROLL
• VECTOR ALIGNED and VECTOR UNALIGNED (i32 only)
• VECTOR ALWAYS and NOVECTOR (i32 only)
• VECTOR NONTEMPORAL (i32 only)
The following OpenMP Fortran parallel directives are extensions (see “OpenMP* Fortran
Compiler Directives”):
• ATOMIC
• BARRIER
• CRITICAL
• DO
• FLUSH
• MASTER
• ORDERED
• PARALLEL
• PARALLEL DO
• PARALLEL SECTIONS
• SECTIONS
• SINGLE
• THREADPRIVATE
F-6

Summary of Language Extensions F

Intrinsic Procedures

The following intrinsic procedures are extensions (see Chapter 9, “Intrinsic Procedures”):
A to D

ACOSD BIAND COSD DCMPLX

ACOSH BIEOR COTAN DCONJG

AIMAX0 BIOR COTAND DCOSD

AIMIN0 BITEST CQABS DCOTAN

AJMAX0 BIXOR CQCOS DCOTAND

AJMIN0 BJTEST CQEXP DERF

AKMAX0 BKTEST CQLOG DERFC

AKMIN0 BMOD CQSIN DFLOAT

AND BMVBITS CQSQRT DFLOTI

ASIND BNOT CQTAN DFLOTJ

ASINH BSHFT CTAN DFLOTK

ATAN2D BSHFTC DACOSD DIMAG

ATAND BSIGN DACOSH DNUM

ATANH CACHESIZE DASIND DREAL

BABS CDABS DASINH DSHIFTL

BADDRESS CDCOS DATAN2D DSHIFTR

BBCLR CDEXP DATAND DSIND

BBITS CDLOG DATANH DTAND

BBSET CDSIN DATE

BBTEST CDSQRT DBLE

BDIM CDTAN DBLEQ

E to I

EOF HIXOR IIDINT IMVBITS

ERF HMOD IIDNNT ININT

ERFC HMVBITS IIEOR INOT

ERRSNS HNOT IIFIX INT1

EXIT HSHFT IINT INT2

FLOATI HSHFTC IIOR INT4

FLOATJ HSIGN IIQINT INT8

FLOATK HTEST IIQNNT INT_PTR_KIND
F-7

F Intel Fortran Language Reference
FP_CLASS IADDR IISHFT INUM

FREE IARG IISHFTC IQINT

GETARG IARGC IISIGN IQNINT

HABS IARGPTR IIXOR ISHA

HBCLR IBCHNG IJINT ISHC

HBITS IDATE ILEN ISHL

HBSET IIABS IMAG ISNAN

HDIM IIAND IMAX0 IXOR

HFIX IIBCLR IMAX1 IZEXT

HIAND IIBITS IMIN0

HIEOR IIBSET IMIN1

HIOR IIDIM IMOD

J to P

JFIX JIXOR KIDINT KNOT

JIABS JMAX0 KIDNNT KZEXT

JIAND JMAX1 KIEOR LEADZ

JIBCLR JMIN0 KIFIX LOC

JIBITS JMIN1 KINT LSHIFT

JIBSET JMOD KIOR LSHFT

JIDIM JMVBITS KIQINT MALLOC

JIDINT JNINT KIQNNT MCLOCK

JIDNNT JNOT KISHFT MM_PREFETCH

JIEOR JNUM KISHFTC MULT_HIGH

JIFIX JZEXT KISIGN NARGS

JINT KDIM KMAX0 NUMARG

JIOR KIABS KMAX1 OR

JIQINT KIAND KMIN0 POPCNT

JIQNNT KIBCLR KMIN1 POPPAR

JISHFT KIBITS KMOD

JISHFTC KIBSET KMVBITS

JISIGN KIDIM KNINT

Q to Z

QABS QCOTAN QNUM SHIFTR
F-8

Summary of Language Extensions F
The argument KIND is an extension available in the following intrinsic procedures:

Additional Language Features
The following are language extensions that facilitate compatibility with other versions of Fortran:
• The DEFINE FILE statement (see “DEFINE FILE Statement”)
• The ENCODE and DECODE statements (see “ENCODE and DECODE Statements”)
• The FIND statement (see “FIND Statement”)
• The INTERFACE TO statement (see “INTERFACE TO Statement”)
• FORTRAN-66 Interpretation of the EXTERNAL Statement (see “FORTRAN-66

Interpretation of the EXTERNAL Statement”)
• An alternative syntax for the PARAMETER statement (see “Alternative Syntax for the

PARAMETER Statement”)

QACOS QCOTAND QREAL SIND

QACOSD QDIM QSIGN SIZEOF

QACOSH QERF QSIN SNGLQ

QASIN QERFC QSIND TAND

QASIND QEXP QSINH TIME

QASINH QEXT QSQRT TRAILZ

QATAN QEXTD QTAN XOR

QATAN2 QFLOAT QTAND ZABS

QATAN2D QIMAG QTANH ZCOS

QATAND QINT RAN ZEXP

QATANH QLOG RANDU ZEXT

QCMPLX QLOG10 RNUM ZLOG

QCONJG QMAX1 RSHIFT ZSIN

QCOS QMIN1 RSHFT ZSQRT

QCOSD QMOD SECNDS ZTAN

QCOSH QNINT SHIFTL

COUNT LEN SCAN VERIFY

ICHAR LEN_TRIM SHAPE

INDEX MAXLOC SIZE

LBOUND MINLOC UBOUND
F-9

F Intel Fortran Language Reference
• The VIRTUAL statement (see “VIRTUAL Statement”)
• The AND, OR, XOR, IMAG, LSHIFT, RSHIFT intrinsics (see Table 9-3)
• An alternative syntax for octal and hexadecimal constants (see “Alternative Syntax for Octal

and Hexadecimal Constants”)
• An alternative syntax for an I/O record specifier (see “Alternative Syntax for a Record

Specifier”)
• An alternate syntax for the DELETE statement (see “Alternative Syntax for the DELETE

Statement”)
• An alternative form for namelist external records (see “Alternative Form for Namelist

External Records”)
• An integer POINTER statement (see “Integer POINTER Statement”)
• Record structures (see “Record Structures”)

Run-Time Library Routines
The following run-time library routines are available as extensions (see Appendix F, “Summary
of Language Extensions”):
• Modules routines
• OpenMP Fortran routines
F-10

Glossary

This glossary contains terms that are commonly used in this manual and your user’s guide. The
terms and short descriptions are informative and are not part of the standard definition of the
Fortran 95/90 programming language.

A
absolute pathname
A directory path specified in fixed relationship to the root directory. On Linux* systems, the first
character is a slash (/). On Windows* systems, the first character is a backslash (\).
actual argument
A value (a variable, expression, or procedure) passed from a calling program unit to a subprogram
(function or subroutine). See also dummy argument.
adjustable array
An explicit-shape array that is a dummy argument to a subprogram. The term is from FORTRAN
77. See also explicit-shape array.
aggregate reference
A reference to a record structure field.
allocatable array
A named array that has the ALLOCATABLE attribute. The array’s rank is specified at compile
time, but its bounds are determined at run time. Once space has been allocated for this type of
array, the array has a shape and can be defined (and redefined) or referenced. (It is an error to
allocate an allocatable array that is currently allocated.)
alphanumeric
Pertaining to letters and digits.
Glossary-1

Intel Fortran Language Reference
alternate return
A subroutine argument that permits control to branch immediately to some position other than the
statement following the call. The actual argument in an alternate return is the statement label to
which control should be transferred. (An alternate return is an obsolescent feature in Fortran 90.)
ANSI
The American National Standards Institute. An organization through which accredited
organizations create and maintain voluntary industry standards.
argument
Can be either of the following:
• An actual argument—A variable, expression, or procedure passed from a calling program unit

to a subprogram. See also actual argument.
• A dummy argument—A variable whose name appears in the parenthesized list following the

procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY
statement, or a statement function statement. See also dummy argument.

argument association
The relationship (or "matching up") between an actual argument and dummy argument during the
execution of a procedure reference.
argument keyword
The name of a dummy (formal) argument. The name is used in a subprogram definition. Argument
keywords can be used when the subprogram is invoked to associate dummy arguments with actual
arguments, so that the subprogram arguments can appear in any order.
Argument keywords are supplied for many of the intrinsic procedures.
array
A set of scalar data that all have the same type and kind parameters. An array can be referenced by
element (using a subscript), by section (using a section subscript list), or as a whole. An array has
a rank (up to 7), bounds, size, and a shape. Contrast with scalar. See also bounds, conformable,
shape, size, whole array, and zero-sized array.
array constructor
A mechanism used to specify a sequence of scalar values that produce a rank-one array.
To construct an array of rank greater than one, you must apply the RESHAPE intrinsic function to
the array constructor.
array element
A scalar (individual) item in an array. An array element is identified by the array name followed
by one or more subscripts in parentheses, indicating the element’s position in the array. For
example, B(3) or A(2,5).
Glossary-2

Glossary
array pointer
A pointer to an array. See also array and pointer.
array section
A subobject (or portion) of an array. It consists of the set of array elements or substrings of this set.
The set (or section subscript list) is specified by subscripts, subscript triplets, or vector subscripts.
If the set does not contain at least one subscript triplet or vector subscript, the reference indicates
an array element, not an array.
array specification
A program statement specifying an array name and the number of dimensions the array contains
(its rank). An array specification can appear in a DIMENSION or COMMON statement, or in a
type declaration statement.
ASCII
The American Standard Code for Information Interchange. A 7-bit character encoding scheme
associating an integer from 0 through 127 with 128 characters.
assignment statement
Usually, a statement that assigns (stores) the value of an expression on the right of an equal sign to
the storage location of the variable to the left of the equal sign. In the case of Fortran 95/90
pointers, the storage location is assigned, not the pointer itself.
association
The relationship that allows an entity to be referenced by different names in one scoping unit or by
the same or different names in more than one scoping unit. The principal kinds of association are
argument, host, pointer, storage, and use association. See also argument association, host
association, pointer association, storage association, and use association.
assumed-length character argument
A dummy argument that assumes the length attribute of the corresponding actual argument. An
asterisk (*) specifies the length of the dummy character argument.
assumed-shape array
A dummy argument array that assumes the shape of its associated actual argument array. The rank
of the array is the number of colons (:) specified in parentheses.
assumed-size array
A dummy array whose size (only) is assumed from its associated actual argument. The upper
bound of its last dimension is specified by an asterisk (*). All other extents (if any) must be
specified.
Glossary-3

Intel Fortran Language Reference
attribute
A property of a data object that can be specified in a type declaration statement. These properties
determine how the data object can be used in a program.
Most attributes can be alternatively specified in statements. For example, the DIMENSION
statement has the same meaning as the DIMENSION attribute appearing in a type declaration
statement.
automatic array
An explicit-shape array that is a local variable in a subprogram. It is not a dummy argument, and
has bounds that are nonconstant specification expressions. The bounds (and shape) are determined
at entry to the procedure by evaluating the bounds expressions. See also automatic object.
automatic object
A local data object that is created upon entry to a subprogram and disappears when the execution
of the subprogram is completed. There are two kinds of automatic objects: arrays (of any data
type) and objects of type CHARACTER. Automatic objects cannot be saved or initialized.
An automatic object is not a dummy argument, but is declared with a specification expression that
is not a constant expression. The specification expression can be the bounds of the array or the
length of the character object.

B
background process
On Linux systems, a process for which the command interpreter is not waiting. Its process group
differs from that of its controlling terminal, so it is blocked from most terminal access. Contrast
with foreground process.
big endian
A method of data storage in which the least significant bit of a numeric value spanning multiple
bytes is in the highest addressed byte. Contrast with little endian.
binary constant
A constant that is a string of binary (base 2) digits (0 or 1) enclosed by apostrophes or quotation
marks and preceded by the letter B.
binary operator
An operator that acts on a pair of operands. The exponentiation, multiplication, division, and
concatenation operators are binary operators.
bit constant
A constant that is a binary, octal, or hexadecimal number.
Glossary-4

Glossary
bit field
A contiguous group of bits within a binary pattern; they are specified by a starting bit position and
length. The functions IBSET, IBCLR, BTEST, and IBITS, and the subroutine MVBITS operate on
bit fields.
blank common
A common block (one or more contiguous areas of storage) without a name. Common blocks are
defined by a COMMON statement.
block
In general, a group of related items treated as a physical unit. For example, a block can be a group
of constructs or statements that perform a task; the task can be executed once, repeatedly, or not at
all.
block data program unit
A program unit, containing a BLOCK DATA statement and its associated specification statements,
that establishes common blocks and assigns initial values to the variables in named common
blocks. In FORTRAN 77, this was called a block data subprogram.
bottleneck
The slowest process in an executing program. This process determines the maximum speed of
execution.
bounds
The range of subscript values for elements of an array. The lower bound is the smallest subscript
value in a dimension, and the upper bound is the largest subscript value in that dimension. Array
bounds can be positive, zero, or negative.
These bounds are specified in an array specification. See also array specification.
breakpoint
A critical point in a program, at which execution is stopped so that you can see if the program
variables contain the correct values. Breakpoints are often used to debug programs.
built-in procedure
See intrinsic procedure.
byte
A group of 8 contiguous bits (binary digits) starting on an addressable boundary.
Glossary-5

Intel Fortran Language Reference
C
carriage-control character
A character in the first position of a printed record that determines the vertical spacing of the
output line.
character constant
A constant that is a string of printable ASCII characters enclosed by apostrophes (') or quotation
marks (").
character expression
A character constant, variable, function value, or another constant expression, separated by a
concatenation operator (//); for example, DAY//' FIRST'.
character storage unit
The unit of storage for holding a scalar value of default character type (and character length one)
that is not a pointer. One character storage unit corresponds to one byte of memory.
character string
A sequence of contiguous characters; a character data value. See also character constant.
character substring
One or more contiguous characters in a character string.
child process
A process initiated by another process (the parent). The child process can operate independently
from the parent process. Also, the parent process can suspend or terminate without affecting the
child process. See also parent process.
comment
Text that documents or explains a program. In free source form, a comment begins with an
exclamation point (!), unless it appears in a Hollerith or character constant.
In fixed and tab source form, a comment begins with a letter C or an asterisk (*) in column 1. A
comment can also begin with an exclamation point anywhere in a source line (except in a Hollerith
or character constant) or in column 6 of a fixed-format line. The comment extends from the
exclamation point to the end of the line.
The compiler does not process comments, but shows them in program listings. See also compiler
directive.
common block
A physical storage area shared by one or more program units. This storage area is defined by a
COMMON statement. If the common block is given a name, it is a named common block; if it is
not given a name, it is a blank common. See also blank common and named common block.
Glossary-6

Glossary
compilation unit
The source file or files that are compiled together to form a single object file, possibly using
interprocedural optimization across source files.
compiler directive
A structured comment that tells the compiler to perform certain tasks when it compiles a source
program unit. Compiler directives are usually compiler-specific. (Some Fortran compilers call
these directives "metacommands".)
compiler option
An option (or flag) that can be used on the compiler command line to override the default behavior
of the Intel® Fortran compiler.
complex constant
A constant that is a pair of real or integer constants representing a complex number; the pair is
separated by a comma and enclosed in parentheses. The first constant represents the real part of
the number; the second constant represents the imaginary part. The following types of complex
constants are available on all systems: COMPLEX(KIND=4), COMPLEX(KIND=8), and
COMPLEX(KIND=16).
complex type
A data type that represents the values of complex numbers. The value is expressed as a complex
constant. See also data type.
component
Part of a derived-type definition. There must be at least one component (intrinsic or derived type)
in every derived-type definition.
concatenate
The combination of two items into one by placing one of the items after the other. In Fortran
95/90, the concatenation operator (//) is used to combine character items. See also character
expression.
conformable
Pertains to dimensionality. Two arrays are conformable if they have the same shape. A scalar is
conformable with any array.
conformance
See shape conformance.
conservative automatic inlining
The inline expansion of small procedures, with conservative heuristics to limit extra code.
Glossary-7

Intel Fortran Language Reference
constant
A data object whose value does not change during the execution of a program; the value is defined
at the time of compilation. A constant can be named (using the PARAMETER attribute or
statement) or unnamed. An unnamed constant is called a literal constant. The value of a constant
can be numeric or logical, or it can be a character string. Contrast with variable.
constant expression
An expression whose value does not change during program execution.
construct
A series of statements starting with a DO, SELECT CASE, IF, WHERE, or FORALL statement
and ending with a corresponding terminal statement.
contiguous
Pertaining to entities that are adjacent (next to one another) without intervening blanks (spaces);
for example, contiguous characters or contiguous areas of storage.
control edit descriptor
A format descriptor that directly displays text or affects the conversions performed by subsequent
data edit descriptors. Except for the slash descriptor, control edit descriptors are nonrepeatable.
control statement
A statement that alters the normal order of execution by transferring control to another part of a
program unit or a subprogram. A control statement can be conditional (such as the IF construct or
computed GO TO statement) or unconditional (such as the STOP or GO TO statement).

D
data abstraction
A style of programming in which you define types to represent objects in your program, define a
set of operations for objects of each type, and restrict the operations to only this set, making the
types abstract. The Fortran 95/90 modules, derived types, and defined operators, support this
programming paradigm.
data edit descriptor
A repeatable format descriptor that causes the transfer or conversion of data to or from its internal
representation. In FORTRAN 77, this term was called a field descriptor.
data entity
A data object that has a data type. It is the result of the evaluation of an expression, or the result of
the execution of a function reference (the function result).
Glossary-8

Glossary
data item
A unit of data (or value) to be processed. Includes constants, variables, arrays, character
substrings, or records.
data object
A constant, variable, or subobject (part) of a constant or variable. Its type may be specified
implicitly or explicitly.
data type
The properties and internal representation that characterize data and functions. Each intrinsic and
user-defined data type has a name, a set of operators, a set of values, and a way to show these
values in a program. The basic intrinsic data types are integer, real, complex, logical, and
character. The data value of an intrinsic data type depends on the value of the type parameter. See
also type parameter.
data type declaration
See type declaration statement.
data type length specifier
The form *n appended to Intel Fortran-specific data type names. For example, in REAL*4, the *4
is the data type length specifier.
declaration
See specification statement.
default character
The kind for character constants if no kind type parameter is specified. Currently, the only kind
parameter for character constants is CHARACTER(1), the default character kind.
default complex
The kind for complex constants if no kind type parameter is specified. The default complex kind is
affected by compiler options that specify real size. If no compiler option is specified, default
complex is COMPLEX(4) (COMPLEX*8). See also default real.
default integer
The kind for integer constants if no kind type parameter is specified. The default integer kind is
affected by compiler options that specify integer size. If no compiler option is specified, default
integer is INTEGER(4) (INTEGER*4).
If a compiler option affecting integer size has been specified, the integer has the kind specified,
unless it is outside the range of the kind specified by the option. In this case, the kind of the integer
is the smallest integer kind which can hold the integer.
Glossary-9

Intel Fortran Language Reference
default logical
The kind for logical constants if no kind type parameter is specified. The default logical kind is
affected by compiler options that specify integer size. If no compiler option is specified, default
logical is LOGICAL(4) (LOGICAL*4). See also default integer.
default real
The kind for real constants if no kind type parameter is specified. The default real kind is
determined by the compiler option specifying real size. If no compiler option is specified, default
real is REAL(4) (REAL*4).
If a real constant is encountered that is outside the range for the default, an error occurs.
deferred-shape array
An array pointer (an array with the POINTER attribute) or an allocatable array (an array with the
ALLOCATABLE attribute). The size in each dimension is determined by pointer assignment or
when the array is allocated.
The array specification contains a colon (:) for each dimension of the array. No bounds are
specified.
definable
A property of variables. A variable is definable if its value can be changed by the appearance of its
name or designator on the left of an assignment statement. An example of a variable that is not
definable is an allocatable array that has not been allocated.
defined
For a data object, the property of having or being given a valid value.
defined assignment
An assignment statement that is not intrinsic, but is defined by a subroutine and an
ASSIGNMENT(=) interface block. See also derived type and interface block.
defined operation
An operation that is not intrinsic, but is defined by a function subprogram containing a generic
interface block with the specifier OPERATOR. See also derived type and interface block.
denormalized number
A computational floating-point result smaller than the lowest value in the normal range of a data
type (the smallest representable normalized number). You cannot write a constant for a
denormalized number.
Glossary-10

Glossary
derived type
A data type that is user-defined and not intrinsic. It requires a type definition to name the type and
specify its components (which can be intrinsic or user-defined types). A structure constructor can
be used to specify a value of derived type. A component of a structure is referenced using a
percent sign (%).
Operations on objects of derived types (structures) must be defined by a function with an
OPERATOR interface. Assignment for derived types can be defined intrinsically, or be redefined
by a subroutine with an ASSIGNMENT(=) interface. Structures can be used as procedure
arguments and function results, and can appear in input and output lists. Also called a user-defined
type. See also record, the first definition.
designator
A name that references a subobject (part of a data object) that can be defined and referenced
separately from other parts of the data object. A designator is the name of the object followed by a
selector that selects the subobject. For example, B(3) is a designator for an array element. Also
called a subobject designator. See also selector and subobject.
dimension
A range of values for one subscript or index of an array. An array can have from 1 to 7 dimensions.
The number of dimensions is the rank of the array. See also extent.
dimension bounds
See bounds.
direct access
A method for retrieving or storing data in which the data (record) is identified by the record
number, or the position of the record in the file. The record is accessed directly (nonsequentially);
therefore, all information is equally accessible. Also called random access. Contrast with
sequential access.
directive
See compiler directive.
DLL
See Dynamic Link Library.
double-precision constant
A processor approximation to the value of a real number that occupies 8 bytes of memory and can
assume a positive, negative, or zero value. The precision is greater than a constant of real
(single-precision) type. For the precise ranges of the double-precision constants, see your user’s
guide. See also denormalized number.
Glossary-11

Intel Fortran Language Reference
driver program
A program that is the user interface to the language compiler. It accepts command options and file
names and causes one or more language utilities or system programs to process each file.
dummy aliasing
The sharing of memory locations between dummy (formal) arguments and other dummy
arguments or COMMON variables that are assigned.
dummy argument
A variable whose name appears in the parenthesized list following the procedure name in a
FUNCTION statement, a SUBROUTINE statement, an ENTRY statement, or a statement function
statement. A dummy argument takes the value of the corresponding actual argument in the calling
program unit (through argument association). Also called a formal argument. See also actual
argument.
dummy array
A dummy argument that is an array.
dummy procedure
A dummy argument that is specified as a procedure or appears in a procedure reference. The
corresponding actual argument must be a procedure.
Dynamic Link Library (DLL)
A separate source module compiled and linked independently of the applications that use it.
Applications access the DLL through procedure calls. The code for a DLL is not included in the
user's executable image, but the compiler automatically modifies the executable image to point to
DLL procedures at run time.

E
edit descriptor
A descriptor in a format specification. It can be a data edit descriptor, control edit descriptor, or
string edit descriptor. See also control edit descriptor, data edit descriptor, and string edit
descriptor.
element
See array element.
elemental
Pertains to an intrinsic operation, intrinsic procedure, or assignment statement that is
independently applied to either of the following:
• The elements of an array
• Corresponding elements of a set of conformable arrays and scalars
Glossary-12

Glossary
end-of-file
The condition that exists when all records in a file open for sequential access have been read.
entity
A general term referring to any Fortran 95/90 concept; for example, a constant, a variable, a
program unit, a statement label, a common block, a construct, an I/O unit and so forth.
environment variable
A symbolic variable that represents some element of the operating system, such as a path, a
filename, or other literal data.
error number
An integer value denoting an I/O error condition, obtained by using the IOSTAT specifier in an I/O
statement.
exceptional values
For floating-point numbers, values outside the range of normalized numbers, including denormal
(subnormal) numbers, infinity, Not-a-Number (NaN) values, zero, and other architecture-defined
numbers.
executable construct
A CASE, DO, IF, WHERE, or FORALL construct.
executable program
A set of program units that include only one main program.
executable statement
A statement that specifies an action to be performed or controls one or more computational
instructions.
explicit interface
A procedure interface whose properties are known within the scope of the calling program, and do
not have to be assumed. These properties are the names of the procedure and its dummy
arguments, the attributes of a procedure (if it is a function), and the attributes and order of the
dummy arguments.
The following have explicit interfaces:
• Internal and module procedures (explicit by definition)
• Intrinsic procedures
• External procedures that have an interface block
• External procedures that are defined by the scoping unit and are recursive
• Dummy procedures that have an interface block
Glossary-13

Intel Fortran Language Reference
explicit-shape array
An array whose rank and bounds are specified when the array is declared.
expression
A data reference or a computation formed from operators, operands, and parentheses. The result of
an expression is either a scalar value or an array of scalar values.
extension
See language extension.
extent
The size of (number of elements in) one dimension of an array.
external file
A sequence of records that exists in a medium external to the executing program.
external procedure
A procedure that is contained in an external subprogram. External procedures can be used to share
information (such as source files, common blocks, and public data in modules) and can be used
independently of other procedures and program units. Also called an external routine.
external subprogram
A subroutine or function that is not contained in a main program, module, or other subprogram. A
module is not a subprogram.

F
field
Can be either of the following:
• A set of contiguous characters, considered as a single item, in a record or line.
• A substructure of a STRUCTURE declaration.
field descriptor
See data edit descriptor.
field separator
The comma (,) or slash (/) that separates edit descriptors in a format specification.
field width
The total number of characters in the field. See also field, the first definition.
file
A collection of logically related records. If the file is in internal storage, it is an internal file; if the
file is on an input /output device, it is an external file.
Glossary-14

Glossary
file access
The way records are accessed (and stored) in a file. The Fortran 95/90 file access modes are
sequential and direct.
file handle
A unique identifier that the system assigns to a file when the file is opened or created. A file
handle is valid until the file is closed.
file organization
The way records in a file are physically arranged on a storage device. Fortran 95/90 files can have
sequential or relative organization.
fixed-length record type
A file format in which all the records are the same length.
foreground process
On Linux systems, a process for which the command interpreter is waiting. Its process group is the
same as that of its controlling terminal, so the process is allowed to read from or write to the
terminal. Contrast with background process.
foreign file
An unformatted file that contains data from a foreign platform, such as data from a CRAY*,
IBM*, or big endian IEEE* machine.
format
A specific arrangement of data. A FORMAT statement specifies how data is to be read or written.
format specification
The part of a FORMAT statement that specifies explicit data arrangement. It is a list within
parentheses that can include edit descriptors and field separators. A character expression can also
specify format; the expression must evaluate to a valid format specification.
formatted data
Data written to a file by using formatted I/O statements. Such data contains ASCII representations
of binary values.
formatted I/O statement
An I/O statement specifying a format for data transfer. The format specified can be explicit
(specified in a format specification) or implicit (specified using list-directed or namelist
formatting). Contrast with unformatted I/O statement. See also list-directed I/O statement and
namelist I/O statement.
full pathname
See absolute pathname.
Glossary-15

Intel Fortran Language Reference
function
A series of statements that perform some operation and return a single value (through the function
or result name) to the calling program unit. A function is invoked by a function reference in a main
program unit or a subprogram unit.
In Fortran 95/90, a function can be used to define a new operator or extend the meaning of an
intrinsic operator symbol. The function is invoked by the appearance of the new or extended
operator in the expression (along with the appropriate operands). For example, the symbol * can
be defined for logical operands, extending its intrinsic definition for numeric operands. See also
function subprogram, statement function, and subroutine.
function reference
Used in an expression to invoke a function, it consists of the function name and its actual
arguments. A function reference returns a value (through the function or result name) that is used
to evaluate the calling expression.
function result
The result value associated with a particular execution or call to a function. This result can be of
any data type (including derived type) and can be array-valued. In a FUNCTION statement, the
RESULT option can be used to give the result a name different from the function name. This
option is required for a recursive function that directly calls itself.
function subprogram
A sequence of statements beginning with a FUNCTION (or optional OPTIONS) statement that is
not in an interface block and ending with the corresponding END statement. See also function.

G
generic identifier
A generic name, operator, or assignment specified in an INTERFACE statement that is associated
with all of the procedures within the interface block. Also called a generic specification.
global entity
An entity (a program unit, common block, or external procedure) that can be used with the same
meaning throughout the executable program. A global entity has global scope; it is accessible
throughout an executable program. See also local entity.
global section
A data structure (for example, global COMMON) or shareable image section potentially available
to all processes in the system.
Glossary-16

Glossary
H
handle
A value (often, but not always, a 32-bit integer) that identifies some operating system resource, for
example, a window or a process. The handle value is returned from an operating system call when
the resource is created; your program then passes that value as an argument to subsequent
operating system routines to identify which resource is being accessed.
Your program should consider the handle value a "private" type and not try to interpret it as having
any specific meaning (for example, an address).
hexadecimal constant
A constant that is a string of hexadecimal (base 16) digits (range 0 to 9, or an uppercase or
lowercase letter in the range A to F) enclosed by apostrophes or quotation marks and preceded by
the letter Z.
Hollerith constant
A constant that is a string of printable ASCII characters preceded by nH, where n is the number of
characters in the string (including blanks and tabs).
host
Either the main program or subprogram that contains an internal procedure, or the module that
contains a module procedure. The data environment of the host is available to the (internal or
module) procedure.
host association
The process by which a module procedure, internal procedure, or derived-type definition accesses
the entities of its host.

I
implicit interface
A procedure interface whose properties (the collection of names, attributes, and arguments of the
procedure) are not known within the scope of the calling program, and have to be assumed. The
information is assumed by the calling program from the properties of the procedure name and
actual arguments in the procedure call.
implicit typing
The mechanism by which the data type for a variable is determined by the beginning letter of the
variable name.
Glossary-17

Intel Fortran Language Reference
import library
A .LIB file that contains information about one or more dynamic-link libraries (DLLs), but does
not contain the DLL's executable code. To provide the information needed to resolve the external
references to DLL functions, the linker uses an import library when building an executable module
of a process.
index
Can be either of the following:
• The variable used as a loop counter in a DO statement.
• An intrinsic function specifying the starting position of a substring inside a string.
initialize
The assignment of an initial value to a variable.
initialization expression
A form of constant expression that is used to specify an initial value for an entity.
inlining
An optimization that replaces a subprogram reference (CALL statement or function invocation)
with the replicated code of the subprogram.
input/output (I/O)
The data that a program reads or writes. Also, devices to read and write data.
inquiry function
An intrinsic function whose result depends on properties of the principal argument, not the value
of the argument.
integer constant
A constant that is a whole number with no decimal point. It can have a leading sign and is
interpreted as a decimal number.
intent
An attribute of a dummy argument that is not a pointer or procedure. It indicates whether the
argument is used to transfer data into the procedure, out of the procedure, or both.
interactive process
A process that must periodically get user input to do its work. Contrast with background process.
interface
See procedure interface.
Glossary-18

Glossary
interface block
The sequence of statements starting with an INTERFACE statement and ending with the
corresponding END INTERFACE statement.
interface body
The sequence of statements in an interface block starting with a FUNCTION or SUBROUTINE
statement and ending with the corresponding END statement. Also called a procedure interface
body.
internal file
The designated internal storage space (or variable buffer) that is manipulated during input and
output. An internal file can be a character variable, character array, character array element, or
character substring. In general, an internal file contains one record. However, an internal file that
is a character array has one record for each array element.
internal procedure
A procedure (other than a statement function) contained in a main program or another
subprogram. The program unit containing an internal procedure is called the host of the internal
procedure. The internal procedure (which appears between a CONTAINS and END statement) is
local to its host and inherits the host’s environment through host association.
intrinsic
Describes entities defined by the Fortran 95/90 language (such as data types and procedures).
Intrinsic entities can be used freely in any scoping unit.
intrinsic procedure
A subprogram supplied as part of the Fortran 95/90 library that performs array, mathematical,
numeric, character, bit manipulation, and other miscellaneous functions. Intrinsic procedures are
automatically available to any Fortran 95/90 program unit (unless specifically overridden by an
EXTERNAL statement or a procedure interface block). Also called a built-in or library procedure.
invoke
To call upon; used especially with reference to subprograms. For example, to invoke a function is
to execute the function.
I/O
See input/output.
iteration count
The number of executions of the DO range, which is determined as follows:
[(terminal value - initial value + increment value) / increment value]
Glossary-19

Intel Fortran Language Reference
K
keyword
See argument keyword and statement keyword.
kind type parameter
Indicates the range of an intrinsic data type; for example: INTEGER(KIND=2). For real and
complex types, it also indicates precision. If a specific kind parameter is not specified, the kind is
the default for that type (for example, default integer). See also default character, default
complex, default integer, default logical, and default real.

L
label
An integer, from 1 to 5 digits long, that precedes a statement and identifies it. For example, labels
can be used to refer to a FORMAT statement or branch target statement.
language extension
An Intel Fortran language element or interpretation that is not part of the Fortran 95 standard.
lexical token
A sequence of one or more characters that have an indivisible interpretation. A lexical token is the
smallest meaningful unit (a basic language element) of a Fortran 95/90 statement; for example,
constants and statement keywords.
library routines
Files that contain functions, subroutines, and data that can be used by Fortran programs.
For example: one library contains routines that handle the various differences between Fortran and
C in argument passing and data types; another contains run-time functions and subroutines for
Windows graphics and QuickWin applications.
Some library routines are intrinsic (automatically available) to Fortran; others may require a
specific USE statement to access the module defining the routines. See also intrinsic procedure.
linker
A system program that creates an executable program from one or more object files (or modules)
produced by a language compiler or assembler. The linker resolves external references, acquires
referenced library routines, and performs other processing required to create Linux and Windows
executable files.
list-directed I/O statement
An implicit, formatted I/O statement that uses an asterisk (*) specifier rather than an explicit
format specification. See also formatted I/O statement and namelist I/O statement.
Glossary-20

Glossary
listing
A printed copy of a program.
literal constant
A constant without a name; its value is directly specified in a program. See also named constant.
little endian
A method of data storage in which the least significant bit of a numeric value spanning multiple
bytes is in the lowest addressed byte. This is the method used on Intel systems. Contrast with big
endian.
local entity
An entity that can be used only within the context of a subprogram (its scoping unit); for example,
a statement label. A local entity has local scope. See also global entity.
local optimization
A level of optimization enabling optimizations within the source program unit and recognition of
common expressions. See also optimization.
local symbol
A name defined in a program unit that is not accessible outside of that program unit.
logical constant
A constant that specifies the value .TRUE. or .FALSE..
logical expression
An integer or logical constant, variable, function value, or another constant expression, joined by a
relational or logical operator. The logical expression is evaluated to a value of either true or false.
For example, .NOT. 6.5 + (B .GT. D).
logical operator
A symbol that represents an operation on logical expressions. The logical operators are .AND.,
.OR., .NEQV., .XOR., .EQV., and .NOT..
logical unit
A channel in memory through which data transfer occurs between the program and the device or
file. See also unit identifier.
longword
Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits are numbered 0 to
31. The address of the longword is the address of the byte containing bit 0. When the longword is
interpreted as a signed integer, bit 31 is the sign bit. The value of signed integers is in the range
–2**31 to 2**31–1. The value of unsigned integers is in the range 0 to 2**32–1.
Glossary-21

Intel Fortran Language Reference
loop
A group of statements that are executed repeatedly until an ending condition is reached.
lower bound
See bounds.

M
main program
The first program unit to receive control when a program is run; it exercises control over
subprograms. The main program usually contains a PROGRAM statement (or does not contain a
SUBROUTINE, FUNCTION, or BLOCK DATA statement). Contrast with subprogram.
makefile
On Linux systems, an argument to the make command containing a sequence of entries that
specify dependencies. On Windows systems, a file passed to the NMAKE utility containing a
sequence of entries that specify dependencies. The contents of a makefile override the system
built-in rules for maintaining, updating, and regenerating groups of programs.
For more information on makefiles on Linux systems, see make(1). For more information on
makefiles on Windows systems, see the online help on the NMAKE utility.
many-one array section
An array section with a vector subscript having two or more elements with the same value.
master thread
In an OpenMP Fortran program, the thread that creates a team of threads when a parallel region
(PARALLEL directive construct) is encountered. The statements in the parallel region are then
executed in parallel by each thread in the team. At the end of the parallel region, the team threads
synchronize and only the master thread continues execution. See also thread.
message file
A Linux catalog that contains the diagnostic message text of errors that can occur during program
execution (run time).
misaligned data
Data not aligned on a natural boundary. See also natural boundary.
module
A program unit that contains specifications and definitions that other program units can access
(unless the module entities are declared PRIVATE). Modules are referenced in USE statements.
Glossary-22

Glossary
module procedure
A subroutine or function that is not an internal procedure and is contained in a module. The
module procedure appears between a CONTAINS and END statement in its host module, and
inherits the host module’s environment through host association. A module procedure can be
declared PRIVATE to the module; it is public by default.
multitasking
The ability of an operating system to execute several programs (tasks) at once.
multithreading
The ability of an operating system to execute different parts of a program, called threads,
simultaneously.
If the system supports parallel processing, multiple processors may be used to execute the threads.

N
name
Identifies an entity within a Fortran program unit (such as a variable, function result, common
block, named constant, procedure, program unit, namelist group, or dummy argument).
A name can contain letters, digits, underscores (_), and the dollar sign ($) special character. The
first character must be a letter or a dollar sign. In FORTRAN 77, this term was called a symbolic
name.
name association
Pertains to argument, host, or use association. See also argument association, host association,
and use association.
named common block
A common block (one or more contiguous areas of storage) with a name. Common blocks are
defined by a COMMON statement.
named constant
A constant that has a name. In FORTRAN 77, this term was called a symbolic constant. See also
literal constant.
namelist I/O statement
An implicit, formatted I/O statement that uses a namelist group specifier rather than an explicit
format specifier. See also formatted I/O statement and list-directed I/O statement.
NaN
Not-a-Number. The condition that results from a floating-point operation that has no mathematical
meaning; for example, zero divided by zero.
Glossary-23

Intel Fortran Language Reference
natural boundary
The virtual address of a data item that is the multiple of the size of its data type. For example, a
REAL(8) (REAL*8) data item aligned on natural boundaries has an address that is a multiple of
eight.
naturally aligned record
A record that is aligned on a hardware-specific natural boundary; each field is naturally aligned.
(For more information, see your user’s guide.) Contrast with packed record.
nesting
The placing of one entity (such as a construct, subprogram, format specification, or loop) inside
another entity of the same kind. For example, nesting a loop within another loop (a nested loop),
or nesting a subroutine within another subroutine (a nested subroutine).
nonexecutable statement
A Fortran 95/90 statement that describes program attributes, but does not cause any action to be
taken when the program is executed.
numeric expression
A numeric constant, variable, or function value, or combination of these, joined by numeric
operators and parentheses, so that the entire expression can be evaluated to produce a single
numeric value. For example, –L or X + (Y – 4.5)*Z.
numeric operator
A symbol designating an arithmetic operation. In Fortran 95/90, the symbols +, –, *, /, and ** are
used to designate addition, subtraction, multiplication, division, and exponentiation, respectively.
numeric storage unit
The unit of storage for holding a non-pointer scalar value of type default real, default integer, or
default logical. One numeric storage unit corresponds to 4 bytes of memory.

O
object
See data object.
object file
The binary output of a language processor (such as the assembler or compiler), which can either be
executed or used as input to the linker.
octal constant
A constant that is a string of octal (base 8) digits (range of 0 to 7) enclosed by apostrophes or
quotation marks and preceded by the letter O.
Glossary-24

Glossary
operand
The passive element in an expression on which an operation is performed. Every expression must
have at least one operand. For example, in I .NE. J, I and J are operands. Contrast with
operator.
operation
A computation involving one or two operands.
operator
The active element in an expression that performs an operation. An expression can have zero or
more operators. For example, in I .NE. J, .NE. is the operator. Contrast with operand.
optimization
The process of producing efficient object or executing code that takes advantage of the hardware
architecture to produce more efficient execution.
optional argument
A dummy argument that has the OPTIONAL attribute (or is included in an OPTIONAL statement
in the procedure definition). This kind of argument does not have to be associated with an actual
argument when its procedure is invoked.
order of subscript progression
A characteristic of a multidimensional array in which the leftmost subscripts vary most rapidly.
overflow
An error condition occurring when an arithmetic operation yields a result that is larger than the
maximum value in the range of a data type.

P
packed record
A record that starts on an arbitrary byte boundary; each field starts in the next unused byte.
Contrast with naturally aligned record.
pad
The filling of unused positions in a field or character string with dummy data (such as zeros or
blanks).
parallel processing
The simultaneous use of more than one processor (CPU) to execute a program.
parameter
Can be either of the following:
Glossary-25

Intel Fortran Language Reference
• In general, any quantity of interest in a given situation; often used in place of the term
"argument".

• A Fortran 95/90 named constant.
parent process
A process that initiates and controls another process (child). The parent process defines the
environment for the child process. Also, the parent process can suspend or terminate without
affecting the child process. See also child process.
pathname
The path from the root directory to a subdirectory or file. See also root.
pipe
A connection that allows one program to get its input directly from the output of another program.
platform
A combination of operating system and hardware that provides a distinct environment in which to
use a software product (for example, Windows 2000 on IA-32 processors).
pointer
Is one of the following:
• A Fortran 95/90 pointer

A data object that has the POINTER attribute. A Fortran 95/90 pointer does not contain data,
but points to a scalar or array variable where data is stored. To be referenced or defined, it
must be "pointer-associated" with a target (have storage space associated with it). If the
pointer is an array, it must be pointer-associated to have a shape. See also pointer
association.

• An integer pointer
A data object that contains the address of its paired variable.

pointer association
The association of storage space to a Fortran 95/90 pointer by means of a target. A pointer is
associated with a target after pointer assignment or the valid execution of an ALLOCATE
statement.
precision
The number of significant digits in a real number. See also double-precision constant, kind type
parameter, and single-precision constant.
primary
The simplest form of an expression. A primary can be any of the following data objects:
• A constant
Glossary-26

Glossary
• A constant subobject (parent is a constant)
• A variable (scalar, structure, array, or pointer; an array cannot be assumed size)
• An array constructor
• A structure constructor
• A function reference
• An expression in parentheses
procedure
A computation that can be invoked during program execution. It can be a subroutine or function,
an internal, external, dummy or module procedure, or a statement function. See also subprogram.
procedure interface
The statements that specify the name and characteristics of a procedure, the name and
characteristics of each dummy argument, and the generic identifier (if any) by which the
procedure can be referenced. The characteristics of a procedure are fixed, but the remainder of the
interface can change in different scoping units.
If these properties are all known within the scope of the calling program, the procedure interface is
explicit; otherwise it is implicit (deduced from its reference and declaration).
program
A set of instructions that can be compiled and executed by itself. Program blocks contain a
declaration and an executable section.
program section
A particular common block or local data area for a particular routine containing equivalence
groups.
program unit
The fundamental component of an executable program. A sequence of statements and optional
comments that can be a main program, a procedure, an external program, or a block data program
unit.

Q
quadword
Four contiguous words (64 bits) starting on any addressable byte boundary. Bits are numbered 0 to
63. (Bit 63 is used as the sign bit.) A quadword is identified by the address of the word containing
the low-order bit (bit 0). The value of a signed quadword integer is in the range –2**63 to
2**63–1.
Glossary-27

Intel Fortran Language Reference
R
random access
See direct access.
rank
The number of dimensions in an array. A scalar has a rank of zero.
rank-one object
A data structure comprising scalar elements with the same data type and organized as a simple
linear sequence. See also scalar.
real constant
A constant that is a number written with a decimal point, exponent, or both. It can have single
precision (REAL(KIND=4)), double precision (REAL(KIND=8)), or quad precision
(REAL(KIND=16)).
record
Can be either of the following:
• A set of logically related data items (in a file) that is treated as a unit; such a record contains

one or more fields. This definition applies to I/O records and items that are declared in a
record structure.

• One or more data items that are grouped in a structure declaration and specified in a
RECORD statement.

record access
The method used to store and retrieve records in a file.
record structure declaration
A block of statements that define the fields in a record. The block begins with a STRUCTURE
statement and ends with END STRUCTURE. The name of the structure must be specified in a
RECORD statement.
record type
The property that determines whether records in a file are all the same length, of varying length, or
use other conventions to define where one record ends and another begins.
recursion
Pertains to a subroutine or function that directly or indirectly references itself.
reference
Can be any of the following:
Glossary-28

Glossary
• For a data object, the appearance of its name, designator, or associated pointer where the
value of the object is required. When an object is referenced, it must be defined.

• For a procedure, the appearance of its name, operator symbol, or assignment symbol that
causes the procedure to be executed. Procedure reference is also called "calling" or
"invoking" a procedure.

• For a module, the appearance of its name in a USE statement.
relational expression
An expression containing one relational operator and two operands of numeric or character type.
The result is a value that is true or false. For example, A – C .GE. B + 2 or
DAY .EQ. 'MONDAY'.
relational operator
The symbols used to express a relational condition or expression. The relational operators are = =,
/=, <, <=, >, and >= (.EQ., .NE., .LT., .LE., .GT., and .GE.).
relative file organization
A file organization that consists of a series of component positions, called cells, numbered
consecutively from 1 to n. Intel Fortran uses these numbered, fixed-length cells to calculate the
component’s physical position in the file.
relative pathname
A directory path expressed in relation to any directory other than the root directory. Contrast with
absolute pathname.
root
On Linux systems, the top-level directory in the file system; it is represented by a slash (/).
On Windows systems, the top-level directory on a disk drive; it is represented by a backslash (\).
For example, C:\ is the root directory for drive C.
routine
A subprogram; a function or procedure. See also function, subroutine, and procedure.
run time
The time during which a computer executes the statements of a program.

S
saved object
A variable that retains its association status, allocation status, definition status, and value after
execution of a RETURN or END statement in the scoping unit containing the declaration.
Glossary-29

Intel Fortran Language Reference
scalar
Pertaining to data items with a rank of zero. A single data object of any intrinsic or derived data
type. Contrast with array. See also rank-one object.
scalar memory reference
A reference to a scalar variable, scalar record field, or array element that resolves into a single data
item (having a data type) and can be assigned a value with an assignment statement. It is similar to
a scalar reference, but it excludes constants, character substrings, and expressions.
scalar reference
A reference to a scalar variable, scalar record field, derived-type component, array element,
constant, character substring, or expression that resolves into a single data item having a data type.
Contrast with scalar memory reference.
scalar variable
A variable name specifying one storage location.
scale factor
A number indicating the location of the decimal point in a real number and, if there is no exponent,
the size of the number on input.
scope
The portion of a program in which a declaration or a particular name has meaning. Scope can be
global (throughout an executable program), scoping unit (local to the scoping unit), or statement
(within a statement, or part of a statement).
scoping unit
The part of the program in which a name has meaning. It is one of the following:
• A program unit or subprogram
• A derived-type definition
• A procedure interface body
Scoping units cannot overlap, though one scoping unit can contain another scoping unit. (The
outer scoping unit is called the host scoping unit.)
section subscript
A subscript list (enclosed in parentheses and appended to the array name) indicating a portion
(section) of an array. At least one of the subscripts in the list must be a subscript triplet or vector
subscript. The number of section subscripts is the rank of the array. See also array section,
subscript, subscript triplet, and vector subscript.
Glossary-30

Glossary
seed
A value (which can be assigned to a variable) that is required in order to properly determine the
result of a calculation; for example, the argument i in the random number generator (RAN)
function syntax: y = RAN (i).
selector
A mechanism for designating the following:
• Part of a data object (an array element or section, a substring, a derived type, or a structure

component)
• The set of values for which a CASE block is executed
sequence
A set ordered by a one-to-one correspondence with the numbers 1 through n, where n is the total
number of elements in the sequence. A sequence can be empty (contain no elements).
sequential access
A method for retrieving or storing data in which the data (record) is read from, written to, or
removed from a file based on the logical order (sequence) of the record in the file. (The record
cannot be accessed directly.) Contrast with direct access.
sequential file organization
A file organization in which records are stored one after the other, in the order in which they were
written to the file.
shape
The rank and extents of an array. Shape can be represented by a rank-one array (vector) whose
elements are the extents in each dimension.
shape conformance
Pertains to the rule concerning operands of binary intrinsic operations in expressions: to be in
shape conformance, the two operands must both be arrays of the same shape, or one or both of the
operands must be scalars.
short field termination
The use of a comma (,) to terminate the field of a numeric data edit descriptor. This technique
overrides the field width (w) specification in the data edit descriptor and therefore avoids padding
of the input field. The comma can only terminate fields less than w characters long. See also data
edit descriptor.
signal
The software mechanism used to indicate that an exception condition (abnormal event) has been
detected. For example, a signal can be generated by a program or hardware error, or by request of
another program.
Glossary-31

Intel Fortran Language Reference
single-precision constant
A processor approximation of the value of a real number that occupies 4 bytes of memory and can
assume a positive, negative, or zero value. The precision is less than a constant of double-precision
type. For the precise ranges of the single-precision constants, see your user’s guide. See also
denormalized number.
size
The total number of elements in an array; the product of the extents.
source file
A program or portion of a program library, such as an object file, or image file.
specification expression
A restricted expression that is of type integer and has a scalar value. This type of expression
appears only in the declaration of array bounds and character lengths.
specification statement
A nonexecutable statement that provides information about the data used in the source program.
Such a statement can be used to allocate and initialize variables, arrays, records, and structures,
and define other characteristics of names used in a program.
statement
An instruction in a programming language that represents a step in a sequence of actions or a set of
declarations. In Fortran 95/90, an ampersand (&) can be used to continue a statement from one
line to another, and a semicolon (;) can be used to separate several statements on one line.
There are two main classes of statements: executable and nonexecutable. See also executable
statement and nonexecutable statement.
statement function
A computing procedure defined by a single statement in the same program unit in which the
procedure is referenced.
statement function definition
A statement that defines a statement function. Its form is the statement function name (followed
by its optional dummy arguments in parentheses), followed by an equal sign (=), followed by a
numeric, logical, or character expression.
A statement function definition must precede all executable statements and follow all specification
statements. See also statement function.
Glossary-32

Glossary
statement keyword
A word that begins the syntax of a statement. All program statements (except assignment
statements and statement function definitions) begin with a statement keyword. Examples are
INTEGER, DO, IF, and WRITE.
statement label
See label.
static variable
A variable whose storage is allocated for the entire execution of a program.
storage association
The relationship between two storage sequences when the storage unit of one is the same as the
storage unit of the other. Storage association is provided by the COMMON and EQUIVALENCE
statements. For modules, pointers, allocatable arrays, and automatic data objects, the SEQUENCE
statement defines a storage order for structures.
storage location
An addressable unit of main memory.
storage sequence
A sequence of any number of consecutive storage units. The size of a storage sequence is the
number of storage units in the storage sequence. A sequence of storage sequences forms a
composite storage sequence. See also storage association and storage unit.
storage unit
In a storage sequence, the number of storage units needed to represent one real, integer, logical, or
character value. See also character storage unit, numeric storage unit, and storage sequence.
stride
The increment between subscript values that can optionally be specified in a subscript triplet. If it
is omitted, it is assumed to be one.
string edit descriptor
A format descriptor that transfers characters to an output record.
structure
Can be either of the following:
• A scalar data object of derived (user-defined) type.
• An aggregate entity containing one or more fields or components.
structure component
Can be either of the following:
Glossary-33

Intel Fortran Language Reference
• One of the components of a structure.
• An array whose elements are components of the elements of an array of derived type.
structure constructor
A mechanism that is used to specify a scalar value of a derived type. A structure constructor is the
name of the type followed by a parenthesized list of values for the components of the type.
subobject
Part of a data object (parent object) that can be referenced and defined separately from other parts
of the data object. A subobject can be an array element, an array section, a substring, a derived
type, or a structure component. Subobjects are referenced by designators and can be considered to
be data objects themselves. See also designator.
subobject designator
See designator.
subprogram
A function or subroutine that can be invoked from another program unit to perform a specific task.
A subprogram can define more than one procedure if it contains an ENTRY statement. Contrast
with main program. See also procedure.
subroutine
A procedure that can return many values, a single value, or no value to the calling program unit
(through arguments). A subroutine is invoked by a CALL statement in another program unit.
In Fortran 95/90, a subroutine can also be used to define a new form of assignment (defined
assignment), which is different from those intrinsic to Fortran 95/90. Such assignments are
invoked with an ASSIGNMENT(=) interface block rather than the CALL statement. See also
function, statement function, and subroutine subprogram.
subroutine subprogram
A sequence of statements starting with a SUBROUTINE (or optional OPTIONS) statement and
ending with the corresponding END statement. See also subroutine.
subscript
A scalar integer expression (enclosed in parentheses and appended to the array name) indicating
the position of an array element. The number of subscripts is the rank of the array. See also array
element.
subscript triplet
An item in a section subscript list specifying a range of values for the array section. A subscript
triplet contains at least one colon and has three optional parts: a lower bound, an upper bound, and
a stride. Contrast with vector subscript. See also array section and section subscript.
Glossary-34

Glossary
substring
A contiguous portion of a scalar character string. Do not confuse this with the substring selector in
an array section, where the result is another array section, not a substring.
symbolic name
See name.
syntax
The formal structure of a statement or command string.

T
target
The named data object associated with a pointer (in the form pointer-object => target). A target is
specified in a TARGET statement or in a type declaration statement that contains the TARGET
attribute. See also pointer and pointer association.
thread
Part of a program that can run at the same time as other parts, usually with some form of
communication and/or synchronization among the threads. See also multithreading.
transformational function
An intrinsic function that is not an elemental or inquiry function. A transformational function
usually changes an array actual argument into a scalar result or another array, rather than applying
the argument element by element.
truncation
Can be either of the following:
• A technique that approximates a numeric value by dropping its fractional value and using

only the integer portion.
• The process of removing one or more characters from the left or right of a number or string.
type
See data type.
type declaration statement
A nonexecutable statement specifying the data type of one or more variables: an INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, CHARACTER, LOGICAL,
or TYPE statement. In Fortran 95/90, a type declaration statement may also specify attributes for
the variables. Also called a type declaration or type specification.
Glossary-35

Intel Fortran Language Reference
type parameter
Defines an intrinsic data type. The type parameters are kind and length. The kind type parameter
(KIND=) specifies the range for the integer data type, the precision and range for real and complex
data types, and the machine representation method for the character and logical data types. The
length type parameter (LEN=) specifies the length of a character string. See also kind type
parameter.

U
unary operator
An operator that operates on one operand. For example, the minus sign in –A and the .NOT.
operator in .NOT. (J .GT. K).
underflow
An error condition occurring when the result of an arithmetic operation yields a result that is
smaller than the minimum value in the range of a data type. For example, in unsigned arithmetic,
underflow occurs when a result is negative. See also denormalized number.
unformatted data
Data written to a file by using unformatted I/O statements; for example, binary numbers.
unformatted I/O statement
An I/O statement that does not contain format specifiers and therefore does not translate the data
being transferred. Contrast with formatted I/O statement.
unformatted record
A record that is transmitted in internal format between internal and external storage.
unit identifier
The identifier that specifies an external unit or internal file. The identifier can be any one of the
following:
• An integer expression whose value must be zero or positive
• An asterisk (*) that corresponds to the default (or implicit) I/O unit
• The name of a character scalar memory reference or character array name reference for an

internal file
Also called a device code, or logical unit number.
unspecified storage unit
A unit of storage for holding a pointer or other scalar object of non-default intrinsic type.
upper bound
See bounds.
Glossary-36

Glossary
use association
The process by which the entities in a module are made accessible to other scoping units. This
association is specified by a USE statement in the scoping unit. See also module.
user-defined assignment
See defined assignment.
user-defined operator
See defined operation.
user-defined type
See derived type.

V
variable
A data object (stored in a memory location) whose value can change during program execution. A
variable can be a named data object, an array element, an array section, a structure component, or
a substring. Contrast with constant.
variable format expression
A numeric expression enclosed in angle brackets (< >) that can be used in a FORMAT statement.
If necessary, it is converted to integer type before use.
variable-length record type
A file format in which records may be of different lengths.
vector subscript
A rank-one array of integer values used as a section subscript to select elements from a parent
array. Unlike a subscript triplet, a vector subscript specifies values (within the declared bounds for
the dimension) in an arbitrary order. Contrast with subscript triplet. See also array section and
section subscript.

W
whole array
An array reference (for example, in a type declaration statement) that consists of the array name
alone, without subscript notation. Whole array operations affect every element in the array. See
also array.
Glossary-37

Intel Fortran Language Reference
Z
zero-sized array
An array with at least one dimension that has at least one extent of zero. A zero-sized array has a
size of zero and contains no elements. See also array.
Glossary-38

Index

Symbols

!
See Exclamation point character

"
See Quotation mark character

%
See Built-in functions

%FILL built-in function
using in record structure, B-18

%LOC built-in function, 8-44
%REF built-in function, 8-43

See also your user’s guide
%VAL built-in function, 8-43

See also your user’s guide
&

See Ampersand character
(/.../)

See Array constructors
*

See Asterisk character
**

See Exponential operator
+

See Addition operator
–

See Subtraction operator
.AND., 4-8
.EQ., 4-7

See also your user’s guide

.EQV., 4-8

.GE., 4-7
See also your user’s guide

.GT., 4-7
See also your user’s guide

.LE., 4-7
See also your user’s guide

.LT., 4-7
See also your user’s guide

.NE., 4-7
See also your user’s guide

.NEQV., 4-8

.NOT., 4-8
See also your user’s guide

.OR., 4-8

.XOR., 4-8
/

See Slash character
//

See also Concatenation operator
See Blank common blocks

/=
as relational operator, 4-7

::
See also Type declaration statement, 5-2
See Double colon separator, 5-2

<
as relational operator, 4-7

<=
as relational operator, 4-7
Index-1

Intel Fortran Language Reference
==
as relational operator, 4-7

=>
See Pointer assignment statements

>
as relational operator, 4-7

>=
as relational operator, 4-7

?
See Question mark character

[...]
See Array constructors

\
See Backslash character

'
See Apostrophe character

A
A edit descriptor, 11-26

input processing, 11-26
output processing, 11-27

ABS function, 9-18
Absolute spacing

function returning, 9-136
Absolute value

function computing, 9-18
function returning, 9-132

ACCEPT statements, 10-28
Access

modes of record, 10-2
Access methods, 10-2
ACCESS specifier

in INQUIRE statements, 12-8
in OPEN statements, 12-24

Accessibility of modules, 5-51
ACHAR function, 9-19
ACOS function, 9-20
ACOSD function, 9-20
ACOSH function, 9-21
ACTION specifier

in INQUIRE statements, 12-9

in OPEN statements, 12-25
Actual arguments, 8-30

definition of, 8-30
function returning pointer to list of, 9-66
functions not allowed as, 9-2
passing to procedures, 9-2
using aggregate field references as, B-23

Addition operator, 4-2
precedence of, 4-11
See also Unary operators

Address
function allocating, 9-91
function returning, 9-32
subroutine freeing allocated, 9-62
subroutine prefetching data from, 9-103

Adjustable arrays, 5-12, 5-13
in RECORD statements, B-23

ADJUSTL function, 9-21
ADJUSTR function, 9-22
ADVANCE specifier, 10-8
Advancing I/O, 10-8, 10-9

See also your user’s guide
Aggregate assignment, B-24

example of, B-25
Aggregate field references, B-22

examples of, B-23
AIMAG function, 9-22
AIMAX0 function, 9-93
AIMIN0 function, 9-99
AINT function, 9-23
AJMAX0 function, 9-93
AJMIN0 function, 9-99
AKMAX0 function, 9-93
AKMIN0 function, 9-99
ALIAS

directive, 14-5
option for ATTRIBUTES directive, 14-8

ALIGN
option for ATTRIBUTES directive, 14-9
OPTIONS directive option, 14-27
PSECT directive option, 14-33
Index-2

Index
Alignment
See your user’s guide

ALL function, 9-23
Allocatable arrays, 5-16, 5-17

allocation of, 6-3
deallocation of, 6-6
dynamically allocating and deallocating, 6-1
function to determine status of, 9-24
See also Arrays

ALLOCATABLE attribute and statement, 5-17
attributes compatible with, 5-5
examples of, 5-18

ALLOCATABLE option for ATTRIBUTES directive,
14-9

ALLOCATE statement, 6-2
examples of, 6-2, 6-4

ALLOCATED function, 6-3, 9-24
Allocating virtual memory

allocatable array, 6-4
Allocation

of allocatable arrays, 6-2, 6-3
of pointer targets, 6-2, 6-4

ALLOW_NULL
option for ATTRIBUTES directive, 14-9

ALOG function, 9-89
ALOG10 function, 9-90
Alphabetic characters

case sensitivity for, 2-6
Alternate entry points, 8-53
Alternate return

alternative for, A-2
arguments, 8-37
examples of, 7-34
specifier, 7-7, 8-25, 8-37

AMAX0 function, 9-93
AMAX1 function, 9-93
AMIN0 function, 9-99
AMIN1 function, 9-99
AMOD function, 9-105
Ampersand character (&)

as continuation indicator in free source form, 2-10
AND function, 9-65

ANINT function, 9-25
ANSI standard

conformance to, 1-2
language extensions to, F-1

ANY function, 9-25
Apostrophe character (')

as delimiter for character strings, 3-15
See also Character constants
See also Character strings

APOSTROPHE value
for INQUIRE (DELIM), 12-12
for OPEN (DELIM), 12-31

Append access
specifying for sequential files, 12-24

APPEND value
for INQUIRE (POSITION), 12-16
for OPEN (ACCESS), 12-25
for OPEN (POSITION), 12-35

Arccosine
function returning hyperbolic, 9-21
function returning in degrees, 9-20
function returning in radians, 9-20

Arcsine
function returning hyperbolic, 9-27
function returning in degrees, 9-27
function returning in radians, 9-26

Arctangent
function returning hyperbolic, 9-32
function returning in degrees, 9-31
function returning in degrees (complex), 9-31
function returning in radians, 9-29
function returning in radians (complex), 9-30

Argument association, 8-30, 15-10
Argument intent, 5-41
Argument keywords

argument association using, 8-31
BACK, 9-3
DIM, 9-3
in function references, 8-23
in intrinsic procedures, 9-3
in subroutine references, 7-7
KIND, 9-3
MASK, 9-3
Index-3

Intel Fortran Language Reference
Argument keywords in procedures
scope of, 15-2

Argument passing
defaults for, 8-43
using %VAL and %REF, 8-43

Argument presence function, 9-115
Argument-list functions, 8-43

See also Built-in functions
Arguments

actual, 8-30
aggregate field references as, B-23
alternate return, 8-37
array, 8-33
associating array elements with, 15-16
association of procedure, 8-30
assumed-length character, 8-35
assumed-shape, 8-33
character constants as, 8-36
defaults for %VAL and %REF functions, 8-43
dummy, 8-30, 8-37
Hollerith constants as, 8-36
intent of, 5-41
list of

effect in CALL statement, 7-8
of generic intrinsic functions, 9-2
optional, 8-32
pointer, 8-34
See also your user’s guide
subroutine returning command-line, 9-62
using external and dummy procedures as, 5-38
using intrinsic procedures as, 5-43

Arithmetic expressions, 4-2
Arithmetic IF statement, 7-6

alternative for, A-2
Arithmetic shift

function performing left, 9-52, 9-131
function performing left or right, 9-77
function performing right, 9-52, 9-131

Array assignment statements, 4-20
Array assignments

masking in, 4-23
Array components, 3-23

examples of, 3-25

Array constructors, 3-44
implied-do loops in, 3-45

Array declaration statements, 5-10
Array declarators, 5-10
Array descriptor

data items passing, 5-14, 5-16, 5-50
Array elements, 3-35, 3-38

association of, 15-15
function returning location of maximum, 9-95
function returning location of minimum, 9-100
function returning maximum value of, 9-97
function returning minimum value of, 9-102
function returning product of, 9-116
function returning sum of, 9-138
order of, 3-39
references to, 3-39
storage of, 3-39

Array expressions, 4-20
Array functions

categories of, 9-4
for construction, 9-98, 9-113, 9-136, 9-147
for inquiry, 9-24, 9-83, 9-130, 9-135, 9-146
for location, 9-95, 9-100
for manipulation, 9-42, 9-54, 9-125, 9-145
for reduction, 9-23, 9-25, 9-40, 9-97, 9-102, 9-116,

9-138
Array name, 3-38

operations on, 3-35
unsubscripted in a DATA statement, 5-25

Array pointers, 5-16
Array properties, 3-35
Array sections, 3-35, 3-41

assigning values to, 4-20
many-one, 3-44, 4-20
restrictions to vector subscripts in, 3-44

Array specifications, 5-10
Array structure component, 3-25
Array transposition, 9-145
Array variables, 4-20
ARRAY_VISUALIZER (W*32)

option for ATTRIBUTES directive, 14-10
Arrays, 3-35

adjustable, 5-13
Index-4

Index
allocatable, 5-16, 5-17
example of, 6-4

allocating allocatable, 6-2, 6-3
as automatic objects, 5-12
as components in derived types, 3-21
as operands in expressions, 4-2
as structure components, 3-25
as variables, 3-33
assignment of, 4-20
associating group name with, 5-45
association of, 15-15
assumed-shape, 5-14
assumed-size, 5-15
automatic, 5-12
bounds of, 3-36
components of, 3-38
conformable, 3-36
constructing multidimensional, 3-46
constructing one-dimensional, 3-44
data type of, 3-36
deallocating allocatable, 6-5, 6-6
declaration of

using ALLOCATABLE, 5-17
using COMMON, 5-22
using DIMENSION, 5-27
using POINTER, 5-50
using TARGET, 5-55
using type declaration, 5-3

deferred-shape, 5-16
defining constants for, 3-44
dummy argument, 5-13
element order in, 3-39
elements in, 3-38
establishing with subprogram references, 15-16
explicit-shape, 5-11
extending, 9-125, 9-136
extent of, 3-36
function combining, 9-98
function counting true elements in MASK, 9-40
function determining all true in, 9-23
function determining any true in, 9-25
function packing, 9-113
function performing circular shift of, 9-42
function performing dot-product multiplication of,

9-50
function performing end-off shift on, 9-54

function performing matrix multiplication of, 9-92
function returning location of maximum value in,

9-95
function returning location of minimum value in,

9-100
function returning lower bounds of, 9-83
function returning maximum value of elements in,

9-97
function returning minimum value of elements in,

9-102
function returning shape of, 9-130
function returning size (extent) of, 9-135
function returning upper bounds of, 9-146
function to add a dimension to, 9-136
function to determine allocation of, 9-24
function to replicate, 9-136
function to reshape, 9-125
function transposing rank-two, 9-145
function unpacking, 9-147
functions for geometric location, 9-4
functions to construct, 9-4
functions to determine properties of, 9-4
functions to manipulate, 9-4
functions to reduce, 9-4
in I/O lists, 10-9
initializing elements with DATA statements, 5-24
intrinsic assignment of, 4-20
intrinsic functions for, 9-4
making equivalent, 5-31
many-one, 3-44, 4-20
number of storage elements for, 5-28
properties of, 3-35
rank of, 3-36
referencing, 4-2
section subscript in, 3-41
section subscript list in, 3-35
sections in, 3-41
shape of, 3-36
size of, 3-36
size of dummy, 5-15
specifications for, 5-10
specifying the values in, 3-44
storage of, 3-39
subscript list in, 3-35
subscript triplets in, 3-42
vector subscripts in, 3-43
Index-5

Intel Fortran Language Reference
volatile, 5-57
whole, 3-38
zero-size, 3-36, 5-12

ASCII character set (L*X), C-1
ASCII constants

assigned in DATA statements, 5-26
ASIN function, 9-26
ASIND function, 9-27
ASINH function, 9-27
ASIS value

for INQUIRE (POSITION), 12-16
for OPEN (POSITION), 12-35

ASSIGN statement, 7-4
alternative for, A-3
establishing assigned GO TO, 7-5
examples of, 7-4
See also your user’s guide

Assigned FORMAT specifier
alternative for, A-3

Assigned GO TO statement, 7-5
alternative for, A-3
establishing labels for, 7-4
examples of, 7-6

Assignment
array, 4-20
character, 4-18
defined, 4-21
derived-type, 4-19
element array (FORALL), 4-26
generic, 8-51
intrinsic, 4-16
logical, 4-18
masked-array (WHERE), 4-23

generalization of, 4-26
numeric, 4-17
pointer, 4-22

ASSIGNMENT interface specifier
for subroutines, 4-21, 8-47, 8-51

Assignment statements, 4-15
kinds of, 4-15

Assignment symbol
scope of, 15-2

ASSOCIATED function, 6-5, 9-28

ASSOCIATEVARIABLE specifier
in OPEN statements, 12-25

Association, 15-9
argument, 8-30, 15-10
common, 5-21
equivalence, 5-29
of arrays, 15-15
pointer, 15-12
storage, 15-13

full, 15-15
partial, 15-15

use and host, 15-11
ASSUME

OPTIONS statement option, 13-3
Assumed-length character

arguments, 3-34, 8-35
example of, 8-35
See also your user’s guide

functions, 8-19
alternative for, A-2

Assumed-shape
arguments, 8-33

requiring explicit interface, 8-46
arrays, 5-14

Assumed-size
arguments, 8-33
arrays, 5-15

and subscript triplets, 3-42
as whole array references, 5-15
example of, 5-16
in SIZE function, 9-135
in UBOUND function, 9-146
restrictions to using, 5-16

Asterisk character (*)
as comment line indicator, 2-11
as dummy argument, 8-35, 8-37
as multiplication operator, 4-2

precedence of, 4-11
using to specify assumed-length character function,

8-19
ATAN function, 9-29
ATAN2 function, 9-30
ATAN2D function, 9-31
ATAND function, 9-31
Index-6

Index
ATANH function, 9-32
ATOMIC directive, 14-52

example of, 14-53
Attributes

ALLOCATABLE, 5-17
AUTOMATIC, 5-18
DIMENSION, 5-27
EXTERNAL, 5-38
in type declaration statements, 5-3
INTENT, 5-41
INTRINSIC, 5-43
OPTIONAL, 5-46
PARAMETER, 5-48
POINTER, 5-50
PRIVATE, 5-51
PUBLIC, 5-51
SAVE, 5-54
STATIC, 5-18
summary of compatible, 5-5
TARGET, 5-55
VOLATILE, 5-57

ATTRIBUTES directive, 14-5
ALIAS option, 14-8
ALIGN option, 14-9
ALLOCATABLE option, 14-9
ALLOW_NULL option, 14-9
ARRAY_VISUALIZER option (W*32), 14-10
C option, 14-10
DECORATE option, 14-12
DEFAULT option, 14-12
DLLEXPORT option (W*32, W*64), 14-13
DLLIMPORT option (W*32, W*64), 14-13
EXTERN option, 14-13
FORCEINLINE option, 14-14
IGNORE_LOC option, 14-13
INLINE option, 14-14
NO_ARG_CHECK option, 14-14
NOINLINE option, 14-14
NOMIXED_STR_LEN_ARG option, 14-15
REFERENCE option, 14-15
STDCALL option, 14-10
VALUE option, 14-15
VARYING option, 14-16

Automatic arrays, 5-12

AUTOMATIC attribute and statement, 5-18
attributes compatible with, 5-5
examples of, 5-20

Automatic objects
array as, 5-12
in character declarations, 5-8

Automatic variables, 5-18
Automation object routines (W*32), E-24

B
B edit descriptor, 11-11

input processing, 11-11
output processing, 11-11

BABS function, 9-18
BACK keyword

in intrinsics, 9-3
Background process

temporarily suspending, 7-32
Backslash character (\)

as edit descriptor, 11-37
Backslash editing, 11-37
BACKSPACE statement, 12-2

See also REWIND statement
BADDRESS function, 9-32
BARRIER directive, 14-53

example of, 14-53
Base of model

function returning, 9-120
BBCLR function, 9-67
BBITS function, 9-68
BBSET function, 9-69
BBTEST function, 9-33
BIAND function, 9-65
BIEOR function, 9-71
BIG_ENDIAN value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

Binary constants, 3-28
assigning with DATA statement, 5-25
data type assignments of, 3-31
examples of, 3-28
Index-7

Intel Fortran Language Reference
Binary digits
See Bits

Binary operations, 4-3
defined, 8-50

Binary operators
definition of, 4-3

Binary patterns
functions that shift, 9-16

BINARY specifier (W*32, W*64)
in INQUIRE statements, 12-9

Binary transfer of data
function performing, 9-144

BINARY value (W*32, W*64)
for INQUIRE (FORM), 12-13
for OPEN (FORM), 12-32

Binary values
transferring, 11-11

BIOR function, 9-76
Bit constants, 3-28
Bit fields, 9-16

function to extract, 9-68
functions operating on, 9-16
operating on general, 9-17
references to, 9-16
subroutine to copy, 9-107

Bit functions, 9-16
categories of, 9-4

Bit model, D-4
Bit patterns

function performing circular shift on, 9-80
function performing logical shift on, 9-79

Bit position ranges
for intrinsics operating on 1-bit fields, 9-17

Bit representation of integers
functions returning, 9-5

Bit size
determining, 9-4

Bit subfields
referencing, 9-16

BIT_SIZE function, 9-33
BITEST function, 9-33

Bits
function arithmetically shifting left, 9-52, 9-131
function arithmetically shifting left or right, 9-77
function arithmetically shifting right, 9-52, 9-131
function clearing to zero, 9-67
function logically shifting left or right, 9-81
function performing exclusive OR on, 9-71
function performing inclusive OR on, 9-76
function performing logical AND on, 9-65
function returning number of, 9-33
function reversing value of, 9-67
function rotating left or right, 9-78
function setting to 1, 9-69
function to extract sequences of, 9-68
function to test, 9-33
model for data, D-4

BIXOR function, 9-71
BJTEST function, 9-33
BKTEST function, 9-33
Blank characters

effect in character expressions, 4-7
effect in statement label fields, 2-8
in fixed and tab source form, 2-11
in free source form, 2-9

Blank common blocks, 5-21
See also Common blocks

Blank editing (BN,BZ), 11-33
BN, 11-34
BZ, 11-34

Blank padding, 11-29, 12-34
BLANK specifier

in INQUIRE statements, 12-9
in OPEN statements, 11-3, 12-26

Block data program unit, 2-1, 8-1, 8-10
effect of using DATA statement in, 8-11
forcing linker to search libraries, 5-38
in EXTERNAL statement, 8-11
statement declaring as external, 5-38

BLOCK DATA statement, 8-10
example of, 8-12

Block DO construct, 7-15
examples of, 7-16

Block IF statement, 7-26
See also IF construct
Index-8

Index
Blocks
contained in constructs, 7-1
DO loops in, 7-1
interface, 8-47

BLOCKSIZE specifier
in INQUIRE statements, 12-10
in OPEN statements, 12-26
interaction with BUFFERCOUNT, 12-27

BMOD function, 9-105
BMVBITS subroutine, 9-107
BN edit descriptor, 11-34
BNOT function, 9-111
Bounds

function returning lower, 9-83
function returning upper, 9-146
in an array, 3-36

Branch specifiers
in data transfer, 10-7

Branch statements, 7-2
Branch target statements

definition of, 7-2
in data transfer, 10-7

Branching
statements, 7-2
to END IF statement, 7-27
to SELECT CASE statement, 7-13

BSHFT function, 9-79
BSHFTC function, 9-80
BSIGN function, 9-132
BTEST function, 9-33
BUFFERCOUNT specifier

in OPEN statements, 12-26
BUFFERED specifier

in INQUIRE statements, 12-10
in OPEN statements, 12-27

Built-in functions, 8-43
%FILL, B-18
%LOC, 8-44
%REF, 8-43
%VAL, 8-43
See also Intrinsic procedures
See also Non-Fortran procedures
See also your user’s guide

BYTE
data type, 3-3
in type declaration statements, 5-2, 5-6

BZ edit descriptor, 11-34

C
C character as comment line indicator, 2-11
C option for ATTRIBUTES directive, 14-10
C strings, 3-16
c$OMP ATOMIC directive, 14-52
c$OMP BARRIER directive, 14-53
c$OMP CRITICAL directive, 14-54
c$OMP DO directive, 14-55
c$OMP FLUSH directive, 14-59
c$OMP MASTER directive, 14-60
c$OMP ORDERED directive, 14-61
c$OMP PARALLEL directive, 14-62
c$OMP PARALLEL DO directive, 14-64
c$OMP PARALLEL SECTIONS directive, 14-66
c$OMP SECTION directive, 14-67
c$OMP SECTIONS directive, 14-67
c$OMP SINGLE directive, 14-68
c$OMP THREADPRIVATE directive, 14-69
CABS function, 9-18
Cache

function returning size of a level in memory, 9-34
subroutine prefetching data on, 9-103

CACHESIZE function (i64), 9-34
CALL statement, 7-7

examples of, 7-8
See also your user’s guide
using to invoke a function, 7-8

Carriage control
characters, 11-42
editing, 11-42

CARRIAGECONTROL specifier
in INQUIRE statements, 12-10
in OPEN statements, 12-28

CASE construct
examples of, 7-13
Index-9

Intel Fortran Language Reference
CASE constructs, 7-9
flow of control in, 7-11

CASE DEFAULT statement, 7-11
Case index, 7-10

determining a match, 7-10
Case sensitivity, 2-6

See also your user’s guide
Case values

examples of, 7-11
range of, 7-10

CCOS function, 9-38
CDABS function, 9-18
CDCOS function, 9-38
cDEC$ ALIAS directive, 14-5
cDEC$ ATTRIBUTES directive, 14-5

ALIAS option, 14-8
ALIGN option, 14-9
ALLOCATABLE option, 14-9
ALLOW_NULL option, 14-9
ARRAY_VISUALIZER option (W*32), 14-10
C option, 14-10
DECORATE option, 14-12
DEFAULT option, 14-12
DLLEXPORT option (W*32, W*64), 14-13
DLLIMPORT option (W*32, W*64), 14-13
EXTERN option, 14-13
FORCEINLINE option, 14-14
IGNORE_LOC option, 14-13
INLINE option, 14-14
NO_ARG_CHECK option, 14-14
NOINLINE option, 14-14
NOMIXED_STR_LEN_ARG option, 14-15
REFERENCE option, 14-15
STDCALL option, 14-10
VALUE option, 14-15
VARYING option, 14-16

cDEC$ DECLARE directive, 14-16
cDEC$ DEFINE directive, 14-17
cDEC$ DISTRIBUTE POINT directive, 14-18
cDEC$ ELSE directive, 14-20
cDEC$ ELSEIF directive, 14-20
cDEC$ ENDIF directive, 14-20
cDEC$ FIXEDFORMLINESIZE directive, 14-19

cDEC$ FREEFORM directive, 14-20
cDEC$ IDENT directive, 14-20
cDEC$ IF DEFINED directive, 14-20
cDEC$ IF directive, 14-20
cDEC$ INTEGER directive, 14-22
cDEC$ IVDEP directive, 14-23
cDEC$ LOOP COUNT directive, 14-25
cDEC$ MESSAGE directive, 14-26
cDEC$ NODECLARE directive, 14-16
cDEC$ NOFREEFORM directive, 14-20
cDEC$ NOPARALLEL directive, 14-31
cDEC$ NOPREFETCH directive, 14-32
cDEC$ NOSTRICT directive, 14-36
cDEC$ NOSWP directive (i64), 14-37
cDEC$ NOUNROLL directive, 14-39
cDEC$ NOVECTOR directive (i32), 14-40
cDEC$ OBJCOMMENT directive, 14-26
cDEC$ OPTIONS directive, 14-27
cDEC$ PACK directive, 14-30
cDEC$ PARALLEL directive, 14-31
cDEC$ PREFETCH directive, 14-32
cDEC$ PSECT directive, 14-33
cDEC$ REAL directive, 14-35
cDEC$ STRICT directive, 14-36
cDEC$ SUBTITLE directive, 14-38
cDEC$ SWP directive (i64), 14-37
cDEC$ TITLE directive, 14-38
cDEC$ UNDEFINE directive, 14-17
cDEC$ UNROLL directive, 14-39
cDEC$ VECTOR ALIGNED directive (i32), 14-39
cDEC$ VECTOR ALWAYS directive (i32), 14-40
cDEC$ VECTOR NONTEMPORAL directive (i32),

14-41
cDEC$ VECTOR UNALIGNED directive (i32), 14-39
CDEXP function, 9-59
CDLOG function, 9-89
CDSIN function, 9-133
CDSQRT function, 9-137
CDTAN function, 9-140
Index-10

Index
CEILING function, 9-35
CEXP function, 9-59
CHAR function, 9-35
Character

arguments
assumed-length, 8-35
passed length of, 3-34

expressions
in relational expressions, 4-7, 4-8

function returning, 9-19, 9-35
function returning position of, 9-64, 9-69, 9-70
function to check for all in set, 9-148
operations, 4-6
printable, 2-6
See also Lowercase letters
See also Uppercase letters
substrings, 3-17

making equivalent, 5-33
Character arguments

assumed-length, 8-35
Character assignment statements, 4-18
Character constants, 3-15

as arguments, 8-36
as edit descriptors, 11-39
assigned with DATA statements, 5-26
C strings in, 3-16
continuation in fixed and tab source, 2-12
continuation in free source, 2-10
default kind for, 3-15
delimiters in, 3-15
length of, 3-16
See also your user’s guide
uppercase and lowercase letters in, 2-6

Character count
editing, 11-38
specifier, 10-9

CHARACTER data type, 3-14
C strings, 3-16
constants, 3-15
conversion rules with DATA, 5-25
default kind, 3-15
definition of, 3-3
in type declaration statements, 5-2, 5-8
storage, 15-14
storage requirements, 15-14

substrings, 3-17
Character editing, 11-26
Character expressions, 4-6

as format specifications, 11-4
function returning length of, 9-85
operator in, 4-6

Character functions
categories of, 9-4
definition of conversion, 9-4
definition of string-handling, 9-4

Character operands
comparing, 4-8

Character set
ASCII (L*X), C-1
extensions to Fortran 95, F-1
Fortran 95/90, 2-5

CHARACTER statement, 5-8
Character storage unit, 15-14
Character string edit descriptors, 11-38 thru 11-40
Character strings

as edit descriptors, 11-38, 11-39
directive specifying for output, 14-26
function adjusting to left, 9-21
function adjusting to right, 9-22
function returning length minus trailing blanks, 9-85
function to check for all characters in, 9-148
function to concatenate copies of, 9-124
function to scan for characters in, 9-127
function to trim blanks from, 9-145
in list-directed records, 10-16
in namelist records, 10-19
of different lengths, 3-34
without delimiters, 10-19, 10-27

Character substrings, 3-17
effect of assigning values to, 4-19
examples of, 3-18
positions within parent string, 3-18

Character type declaration statements, 5-8
automatic objects in, 5-8

Character type functions, 8-19
Character values

transferring, 11-26
Character-oriented I/O, 10-9
Index-11

Intel Fortran Language Reference
CHECK
OPTIONS statement option, 13-3

Circular shift
function performing, 9-80
of arrays

function performing, 9-42
Clauses

COPYIN, 14-44
COPYPRIVATE, 14-44
DEFAULT, 14-45
FIRSTPRIVATE, 14-46
IF, 14-62
LASTPRIVATE, 14-46
ORDERED, 14-56
REDUCTION, 14-47
SCHEDULE, 14-56
SHARED, 14-49

CLOG function, 9-89
CLOSE statement, 12-3
CMPLX function, 9-36
Code access

OpenMP directive restricting to one thread, 14-54
Code execution

OpenMP directive dividing among threads, 14-67
OpenMP directive restricting to master thread, 14-60
OpenMP directive restricting to one thread in a team,

14-68
OpenMP directive specifying sequential, 14-61

Colon character
as edit descriptor, 11-37
in array specification, 3-43, 3-46, 5-14, 5-16

Colon editing, 11-37
Column positions

in fixed source form, 2-13
Columns

for fields in fixed source form, 2-13
position of comment indicator, 2-11
position of debugging indicator, 2-12

COM object routines (W*32), E-23
Combining arrays, 9-98
Comma character

as a field separator, 11-29

Command-line arguments
function returning index of, 9-66
function returning number of, 9-66, 9-108
subroutine returning, 9-62

Comment indicators, 2-7
in fixed and tab source form, 2-11
in free source form, 2-10

Comments, 2-7
allowable characters in, 2-6
in continued statements, 2-7
in namelist input, 10-20

Common block association, 5-21
Common blocks, 5-21

agreement of data types in, 5-22
arrays in, 5-22
blank, 5-21
data types of variables in, 5-22
defaults and PSECT modifications, 14-34
directive modifying alignment of data in, 14-27
directive modifying characteristics of, 14-33
effect of including in SAVE statement, 5-55
effect of sharing names in, 5-22
EQUIVALENCE interaction in, 5-35
establishing and initializing values in, 8-10
example of module containing, 8-9
extending, 5-35
initialized size in DATA, 5-23
named, 5-21, 5-22, 8-10
pointers in, 5-22
scope of, 15-2
variables in, 5-21
volatile, 5-57

COMMON statement, 5-21
examples of, 5-23
interaction with EQUIVALENCE, 5-35
using record structure names in, B-21
using to define storage areas, 5-21

Comparison character functions, 9-4
Compatibility

features for language version, B-1
See also your user’s guide
summary of language, 1-2

Compilation control statements, 13-1
Index-12

Index
Compiler directives, 14-1
affecting DO loops, 14-4
ALIAS, 14-5
ATOMIC, 14-52
ATTRIBUTES, 14-5
BARRIER, 14-53
CRITICAL, 14-54
DECLARE, 14-16
DEFINE, 14-17
DISTRIBUTE POINT, 14-18
DO, 14-55
FIXEDFORMLINESIZE, 14-19
FLUSH, 14-59
FREEFORM, 14-20
general, 14-2

syntax of prefix, 14-1
IDENT, 14-20
IF, 14-20
IF DEFINED, 14-20
INTEGER, 14-22
IVDEP, 14-23
LOOP COUNT, 14-25
MASTER, 14-60
MESSAGE, 14-26
NODECLARE, 14-16
NOFREEFORM, 14-20
NOPARALLEL loop, 14-31
NOPREFETCH, 14-32
NOSTRICT, 14-36
NOSWP (i64), 14-37
NOUNROLL, 14-39
NOVECTOR (i32), 14-40
OBJCOMMENT, 14-26
OpenMP Fortran, 14-42

syntax of prefix, 14-1
OPTIONS, 14-27
ORDERED, 14-61
PACK, 14-30
parallel

See OpenMP* Fortran compiler directives
PARALLEL DO, 14-64
PARALLEL loop, 14-31
PARALLEL OpenMP Fortran, 14-62
PARALLEL SECTIONS, 14-66
PREFETCH, 14-32
PSECT, 14-33

REAL, 14-35
SECTIONS, 14-67
See also General compiler directives
See also OpenMP* Fortran compiler directives
SINGLE, 14-68
STRICT, 14-36
SUBTITLE, 14-38
SWP (i64), 14-37
THREADPRIVATE, 14-69
TITLE, 14-38
UNDEFINE, 14-17
UNROLL, 14-39
VECTOR ALIGNED (i32), 14-39
VECTOR ALWAYS (i32), 14-40
VECTOR NONTEMPORAL (i32), 14-41
VECTOR UNALIGNED (i32), 14-39

Compiler limits
See your user’s guide

Compiler options
overriding with OPTIONS statements, 13-3
See also Command line in your user’s guide

Complementary error function
function returning, 9-57

Complex constants, 3-11
See also COMPLEX(16)
See also COMPLEX(4)
See also COMPLEX(8)

COMPLEX data type, 3-2, 3-10
constants, 3-11, 3-12, 3-13
default kind, 3-11
function converting to double-precision real, 9-46
function converting to quad-precision real, 9-117
in type declaration statements, 5-2, 5-6
See also COMPLEX(4)
storage, 15-14

Complex data types, 3-10 thru 3-14
Complex editing, 11-14, 11-24

input processing, 11-24
output processing, 11-24

Complex expressions
using relational operators in, 4-8

Complex numbers
function determining imaginary part of, 9-22
function resulting in conjugate of, 9-37
Index-13

Intel Fortran Language Reference
Complex operands
comparing, 4-8

Complex values
transferring, 11-14, 11-24

COMPLEX(16)
constants, 3-13
data type, 3-10

function converting to, 9-117
See also your user’s guide

function converting to quad-precision real, 9-119
storage requirements, 15-14

COMPLEX(4)
constants, 3-11
data type, 3-10

See also your user’s guide
See also COMPLEX data type
storage requirements, 15-14

COMPLEX(8)
constants, 3-12
data type, 3-10

See also your user’s guide
See also DOUBLE COMPLEX data type
storage requirements, 15-14

COMPLEX*16 constants
See COMPLEX(8)

COMPLEX*32 constants
See COMPLEX(16)

COMPLEX*8 constants
See COMPLEX(4)

Component selector, 3-23
Components

arrays as derived-type, 3-21
derived-type, 3-19, 3-20

referencing, 3-23
of array structures, 3-38

Components of derived types
scope of, 15-2

Computation functions
definition of, 9-4

Computed GO TO statement, 7-3
alternative for, A-2

Concatenation of strings
function performing, 9-124

Concatenation operator (//)
precedence of, 4-11
See also your user’s guide
using for long character constants

in fixed and tab source, 2-12
using in expressions, 4-6

Conditional compilation
general directive creating symbolic variable for, 14-17
general directive specifying, 14-20
specifying for OpenMP directives, 14-49

Conditional DO statement, 7-23
Conformable arrays, 3-36
CONJG function, 9-37
Conjugate

function calculating, 9-37
Conjunction

logical, 4-8
Connecting files, 12-20
Constant expressions, 4-11
Constants

array, 3-44
binary, 3-28
character, 3-15
complex, 3-11
definition of, 3-1
hexadecimal, 3-29
Hollerith, 3-30
in list-directed records, 10-16
in namelist records, 10-19
integer, 3-4
literal, 3-1
logical, 3-14
named, 3-1, 5-48
nondecimal numeric, 3-28
octal, 3-29
ranges for

See your user’s guide
real, 3-7

Constructors
array, 3-44
structure, 3-26

examples of, 3-27
Constructs

CASE, 7-9
Index-14

Index
DO, 7-14
FORALL, 4-26
IF, 7-26
named, 7-1
nested, 7-29

See also Nested constructs
WHERE, 4-23

CONTAINS statement, 8-4, 8-29, 8-53
in main programs, 8-3

Continuation indicator, 2-7
in fixed source form, 2-11
in free source form, 2-10
in tab source form, 2-11

Continuation line
in debugging statements, 2-12
number allowed, 2-7
restriction in included files, 13-2

CONTINUE statement, 7-14, 7-16
Control characters

in printing, 11-42
Control constructs

blocks in, 7-1
named, 7-1

CASE, 7-9
DO, 7-15
FORALL, 4-26
IF, 7-26
WHERE, 4-23

Control edit descriptors, 11-30
for blanks, 11-33
forms for, 11-30
positional, 11-31
repeating, 11-40
sign, 11-33

Control lists
I/O, 10-3

See also I/O control list
Control statements, 7-1

extensions to, F-3
Control transfer

statements allowing, 7-1
with arithmetic IF statement, 7-6
with branch statements, 7-2
with CALL statement, 7-7

with CASE construct, 7-9
with DO construct, 7-14
with DO WHILE statement, 7-23
with END statement, 7-25
with GO TO statement

assigned, 7-5
computed, 7-3
unconditional, 7-2

with IF construct, 7-26
with logical IF statement, 7-31
with RETURN statement, 7-33

Control-list specifiers
defining variable for character count, 10-9
for advancing or nonadvancing I/O, 10-8
for transfer of control, 10-7
identifying the I/O status, 10-6
identifying the record number, 10-6
identifying the unit, 10-4
indicating the format, 10-5
indicating the namelist group, 10-6
keywords for, 10-3
mixed form, 10-4
nonkeyword form, 10-4

Conversion
function performing logical, 9-91
function performing real, 9-123
function resulting in complex type, 9-36
function resulting in COMPLEX(16) type, 9-117
function resulting in double-complex type, 9-47
function resulting in double-precision type, 9-46,

9-48, 9-49, 9-51
function resulting in integer type, 9-73, 9-82
function resulting in INTEGER(2) type, 9-76
function resulting in quad-precision type, 9-117,

9-118
function resulting in real type, 9-126
function resulting in REAL(16) type, 9-119
rules for numeric assignments, 4-17
to higher precision, 4-6
to nearest integer, 9-35, 9-60

Conversion character functions, 9-4
Conversion of data

rules for numeric assignment statements, 4-17
to or from internal representation, 11-6
using FORMAT statements, 11-1
Index-15

Intel Fortran Language Reference
CONVERT
OPTIONS statement option, 13-3

CONVERT specifier
alternatives for, 12-29
in INQUIRE statements, 12-11
in OPEN statements, 12-28

See also your user’s guide
Converting unformatted numeric files, 12-11, 12-28
COPYIN clause, 14-44

for THREADPRIVATE common blocks, 14-70
in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66

COPYPRIVATE clause, 14-44
in SINGLE directive, 14-68

COS function, 9-38
COSD function, 9-38
COSH function, 9-39
Cosine

function returning hyperbolic, 9-39
function with argument in degrees, 9-38
function with argument in radians, 9-38

COTAN function, 9-39
COTAND function, 9-40
Cotangent

function with argument in degrees, 9-40
function with argument in radians, 9-39

COUNT function, 9-40
CPU_TIME subroutine, 9-42
CQABS function, 9-18
CQCOS function, 9-38
CQEXP function, 9-59
CQLOG function, 9-89
CQSIN function, 9-133
CQSQRT function, 9-137
CQTAN function, 9-140
CRAY value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

CRAY*-style pointers
See Integer pointers

CRITICAL directive, 14-54
example of, 14-55

CSHIFT function, 9-42
CSIN function, 9-133
CSQRT function, 9-137
CTAN function, 9-140
Current date

subroutines returning, 9-44, 9-71
Cycle

beginning new one in DO constructs, 7-24
CYCLE statement, 7-14, 7-24

D
D character

as debugging statement indicator, 2-12
D edit descriptor, 11-16

input processing, 11-17
output processing, 11-17

DABS function, 9-18
DACOS function, 9-20
DACOSD function, 9-20
DACOSH function, 9-21
DASIN function, 9-26
DASIND function, 9-27
DASINH function, 9-27
Data abstraction

example of, 8-10
Data conversion

rules for numeric assignment statements, 4-17
to or from internal representation, 11-6
using FORMAT statements, 11-1

Data edit descriptors, 11-6
default field widths for, 11-28
forms for, 11-6
integer, 11-9
real, 11-14
repeating, 11-7
rules for numeric, 11-8

Data editing
specifying format for, 10-5
Index-16

Index
Data objects
assigning initial values to, 5-24
associating with group name, 5-45
directive specifying properties of, 14-5
in common block

defining storage of, 5-21
providing initial values for, 8-10
retaining properties of, 5-54
See also Data in your user’s guide
specifying as pointers, 5-50
storage association of, 5-29
unpredictable values of, 5-57

Data representation
bit model, D-4
integer model, D-2
real model, D-3

Data representation models, D-1
intrinsic functions providing data for, D-1

Data scope attribute clauses, 14-44
COPYIN, 14-44
COPYPRIVATE, 14-44
DEFAULT, 14-45
DEFAULT NONE, 14-45
DEFAULT PRIVATE, 14-45
DEFAULT SHARED, 14-45
FIRSTPRIVATE, 14-46
LASTPRIVATE, 14-46
PRIVATE, 14-46
REDUCTION, 14-47
SHARED, 14-49

DATA statement, 5-24
effect in block data program unit, 8-11
examples of, 5-26
implied-DO list in, 5-24
list of constants in, 5-24
See also your user’s guide
unsubscripted array name in, 5-25
using to define arrays, 15-16

Data transfer
from direct-access files

input, 10-24
output, 10-35

from internal files
input, 10-26
output, 10-36

from sequential files
input, 10-13
output, 10-29

function for binary, 9-144
Data transfer statements, 10-2

ADVANCE specifier in, 10-8
branch specifiers in, 10-7
components of, 10-2
control list in, 10-3
control specifiers in, 10-2
FMT specifier in, 10-5
I/O list in, 10-9
implied-DO lists in, 10-12
input, 10-13

ACCEPT, 10-28
READ, 10-13

IOSTAT specifier in, 10-6
list items in, 10-10
NML specifier in, 10-6
output

PRINT and TYPE, 10-38
REWRITE, 10-39
WRITE, 10-29

REC specifier in, 10-6
SIZE specifier in, 10-9
UNIT specifier in, 10-4

Data translation
direct-access statements

READ, 10-25
REWRITE, 10-39
WRITE, 10-36

internal statements
READ, 10-26
WRITE, 10-36

sequential statements
ACCEPT, 10-28
PRINT and TYPE, 10-38
READ, 10-15
WRITE, 10-30

Data type declaration statements, 3-34, 5-2
See also Type declaration statements

Data types, 3-1 thru 3-33
character

conversion rules with DATA statement, 5-25
kind parameter for, 3-15
Index-17

Intel Fortran Language Reference
complex
kind parameters for, 3-10

conventions for determining
in numeric expressions, 4-6

conversion in numeric assignment statements, 4-17
derived, 3-19

defining, 3-20
determining for expressions, 4-6
determining in numeric expressions, 4-5
examples of assigning, 3-5
implicit, 3-35
integer

kind parameters for, 3-4
logical

kind parameters for, 3-14
numeric

conversion rules with DATA statement, 5-25
of named constants, 5-48
overriding default for names, 5-39
ranking in numeric expressions, 4-5
real

kind parameters for, 3-6
resulting from logical operations, 4-9
specifying explicit, 3-34
specifying for variables, 3-34
storage requirements for, 15-14

DATAN function, 9-29
DATAN2 function, 9-30
DATAN2D function, 9-31
DATAND function, 9-31
DATANH function, 9-32
Date

subroutines returning current, 9-44
subroutines to return current, 9-44, 9-71

Date and time
subroutine returning, 9-44

DATE subroutine, 9-44
DATE_AND_TIME subroutine, 9-44
DBLE function, 9-46
DBLEQ function, 9-46
DCMPLX function, 9-47
DCONJG function, 9-37
DCOS function, 9-38

DCOSD function, 9-38
DCOSH function, 9-39
DCOTAN function, 9-39
DCOTAND function, 9-40
DDIM function, 9-49
DEALLOCATE statement, 6-5

examples of, 6-6
Deallocation

of allocatable arrays, 6-5, 6-6
of pointer targets, 6-5, 6-7

Debug statements, 2-12
Debugging

directive specifying string for, 14-26
Decimal exponent

function returning range of, 9-123
Decimal point

moving in real and complex values, 11-34
Decimal precision

function returning, 9-114
Declaration statements, 5-1

See also Type declaration statements
Declarations, 5-1

array, 5-10
character type, 5-8
derived-type, 5-10
numeric and logical type, 5-6
record structure, B-14

nesting, B-15
record substructure, B-18
union, B-19

DECLARE directive, 14-16
DECODE statement, B-3
DECORATE

option for ATTRIBUTES directive, 14-12
DEFAULT

clause, 14-45
in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66

option for ATTRIBUTES directive, 14-12
Default initialization

of derived-type components, 3-22
DEFAULT NONE clause, 14-45
Index-18

Index
DEFAULT PRIVATE clause, 14-45
DEFAULT SHARED clause, 14-45
DEFAULTFILE specifier

in INQUIRE statements, 12-7
in OPEN statements, 12-30

Defaults
caused by implicit typing, 3-35
for accessibility of modules, 5-52
for argument passing, 8-43
for character constants

See "default character" in the Glossary
for complex constants

See "default complex" in the Glossary
for integer constants

See "default integer" in the Glossary
for interpretation of blanks, 11-8
for list-directed output, 10-31
for logical constants

See "default logical" in the Glossary
for names, 3-35

statement overriding, 5-39
for OPEN statement specifiers, 12-20
for real constants

See "default real" in the Glossary
widths for data edit descriptors, 11-28

Deferred-shape arrays, 5-16
DEFINE directive, 14-17

example of, 14-17
DEFINE FILE statement, B-1

compared to OPEN statement, B-1
Defined assignment, 4-21

intent of arguments in subroutines specifying, 5-42
scope of, 15-2

Defined operations, 4-10, 8-50
binary, 4-10
unary, 4-10

Defined operators, 4-10
intent of dummy arguments in functions specifying,

5-42
scope of, 15-2

Defined variables, 3-33
DELETE statement, 12-4

alternative form for relative files, B-10
examples of, 12-5

DELETE value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

DELIM specifier
in INQUIRE statements, 12-12
in OPEN statements, 12-30

DENYNONE value (W*32, W*64)
for INQUIRE (SHARE), 12-19
for OPEN (SHARE), 12-38

DENYRD value (W*32, W*64)
for INQUIRE (SHARE), 12-19
for OPEN (SHARE), 12-38

DENYRW value (W*32, W*64)
for INQUIRE (SHARE), 12-19
for OPEN (SHARE), 12-38

DENYWR value (W*32, W*64)
for INQUIRE (SHARE), 12-19
for OPEN (SHARE), 12-38

Dependence analysis
directive assisting, 14-23

DERF function, 9-57
DERFC function, 9-57
Derived data types, 3-19

arrays as components of, 3-27
assignment statements, 4-19
default initialization of, 3-21, 3-22
defining, 3-20
directive specifying starting address of items in, 14-30
in I/O lists, 10-10
pointers as components of, 3-27
referencing, 4-2
referencing components in, 3-23
scope of, 15-2
scope of component, 3-21
scope of type, 3-21
sequence, 3-22
specifying scalar values of, 3-26
volatile objects of, 5-57

Derived types, 3-19
See also Derived data types

Derived-type assignment statements, 4-19
Derived-type components, 3-19, 3-20

arrays as, 3-21
attributes in, 3-21
Index-19

Intel Fortran Language Reference
initialization in, 3-21
referencing, 3-23
statements in, 3-20

Derived-type declaration statements, 5-10
Derived-type definitions, 3-19, 3-20

default initialization in, 3-21, 3-22
examples of, 3-24

DEXP function, 9-59
DFAUTO routines (W*32), E-24
DFCOM routines (W*32), E-23
DFLOAT function, 9-48
DFLOTI function, 9-48
DFLOTJ function, 9-48
DFLOTK function, 9-48
Dialog routines (W*32), E-20
DIGITS function, 9-48
DIM function, 9-49
DIM keyword

in intrinsics, 9-3
DIMAG function, 9-22
Dimension

bounds in, 3-36
definition of, 3-36

DIMENSION attribute and statement, 5-27
attributes compatible with, 5-5
examples of, 5-28

DIMENSION statement
using record structure names in, B-21

DINT function, 9-23
Direct access

definition of, 10-2
READ statements, 10-24

forms of, 10-24
records

deleting, 12-4
See also your user’s guide
specifying, 12-24
WRITE statements, 10-35

forms of, 10-35
DIRECT specifier

in INQUIRE statements, 12-12

DIRECT value
for INQUIRE (ACCESS), 12-9
for OPEN (ACCESS), 12-25

Directive enhanced compilation, 14-1
See also Directives

Directives, 14-1
affecting DO loops, 14-4
ALIAS, 14-5
ATOMIC, 14-52
ATTRIBUTE, 14-5
BARRIER, 14-53
CRITICAL, 14-54
DECLARE, 14-16
DEFINE, 14-17
DISTRIBUTE POINT, 14-18
DO, 14-55
FIXEDFORMLINESIZE, 14-19
FLUSH, 14-59
FREEFORM, 14-20
general, 14-2
IDENT, 14-20
IF, 14-20
IF DEFINED, 14-20
INTEGER, 14-22
IVDEP, 14-23
LOOP COUNT, 14-25
MASTER, 14-60
MESSAGE, 14-26
NODECLARE, 14-16
NOFREEFORM, 14-20
NOPARALLEL loop, 14-31
NOPREFETCH, 14-32
NOSTRICT, 14-36
NOSWP (i64), 14-37
NOUNROLL, 14-39
NOVECTOR (i32), 14-40
OBJCOMMENT, 14-26
OpenMP Fortran
OPTIONS, 14-27
ORDERED, 14-61
PACK, 14-30
PARALLEL DO, 14-64
PARALLEL loop, 14-31
PARALLEL OpenMP Fortran, 14-62
PARALLEL SECTIONS, 14-66
PREFETCH, 14-32
Index-20

Index
PSECT, 14-33
REAL, 14-35
SECTIONS, 14-67
SINGLE, 14-68
STRICT, 14-36
SUBTITLE, 14-38
SWP (i64), 14-37
syntax rules for, 14-1
THREADPRIVATE, 14-69
TITLE, 14-38
UNDEFINE, 14-17
UNROLL, 14-39
VECTOR ALIGNED (i32), 14-39
VECTOR ALWAYS (i32), 14-40
VECTOR UNALIGNED (i32), 14-39

Disassociation
of pointers, 6-8

Disconnecting files, 12-3
Disjunction

logical, 4-8
DISPOSE specifier

in OPEN statements, 12-31
DISTRIBUTE POINT directive, 14-18

example of, 14-18
Division operator (/), 4-2

precedence of, 4-11
See also Slash character

DLLEXPORT (W*32, W*64)
option for ATTRIBUTES directive, 14-13

DLLIMPORT (W*32, W*64)
option for ATTRIBUTES directive, 14-13

DLOG function, 9-89
DLOG10 function, 9-90
DMAX1 function, 9-93
DMIN1 function, 9-99
DMOD function, 9-105
DNINT function, 9-25
DNUM function, 9-49
DO constructs, 7-14

block form of, 7-15
examples of, 7-16
execution of, 7-17
extended range for, 7-21

forms of, 7-15
immediate termination of, 7-24
interrupting, 7-24
iteration control in, 7-17
nested, 7-19

control transfers in, 7-21
nonblock form of, 7-15
range of, 7-17
terminal statement for labeled, 7-14
WHILE, 7-23

DO directive, 14-55
example of, 14-53, 14-57, 14-62

DO loop iterations
OpenMP directive to execute in parallel, 14-55

DO loops, 7-14
directive assisting dependence analysis of, 14-23
directive enabling prefetching of arrays in, 14-32
directive enabling software pipelining for, 14-37
directive enabling streaming storage, 14-41
directive specifying alignment of data in, 14-39
directive specifying auto-parallelization for, 14-31
directive specifying distribution for, 14-18
directive specifying the count for, 14-25
directive specifying unroll count for, 14-39
directive specifying vectorization for, 14-40
skipping, 7-24
transferring control, 7-21

DO WHILE statement, 7-14, 7-17, 7-23
examples of, 7-23
terminating, 7-23

Dollar sign character ($)
as edit descriptor, 11-37
in names, 2-4

Dollar sign editing, 11-37
DOT_PRODUCT function, 9-50
Dot-product multiplication

function performing, 9-50
Double colon separator, 5-4
DOUBLE COMPLEX data type, 3-3

constants, 3-12
function converting to, 9-47
function converting to double-precision real, 9-51
in type declaration statements, 5-2, 5-6
See also COMPLEX(8)
Index-21

Intel Fortran Language Reference
storage, 15-14
DOUBLE PRECISION data type, 3-2, 3-6

constants, 3-7, 3-9
function converting to, 9-48, 9-49, 9-51
in type declaration statements, 5-2, 5-6
See also REAL(8)
See also your user’s guide
storage, 15-14

Double-precision product
function producing, 9-51

DPROD function, 9-51
DREAL function, 9-51
DSHIFTL, 9-52
DSHIFTR, 9-52
DSIGN function, 9-132
DSIN function, 9-133
DSIND function, 9-134
DSINH function, 9-134
DSQRT function, 9-137
DTAN function, 9-140
DTAND function, 9-141
DTANH function, 9-141
Dummy argument arrays, 5-13
Dummy arguments, 8-30, 8-37

definition of, 8-30
intent of, 5-41
optional, 5-46, 8-32
present, 5-47
See also your user’s guide
specifying intended use of, 5-41
using aggregate field references as, B-23

Dummy procedures, 8-37
definition of, 8-1
interfaces for, 8-38
scope of, 15-2
using as actual arguments, 5-38

Dynamic allocation
of allocatable arrays, 6-2, 6-3
of pointer targets, 6-2, 6-4

Dynamic deallocation
of allocatable arrays, 6-5, 6-6
of pointer targets, 6-5, 6-7

Dynamic disassociation of pointers, 6-8
Dynamic memory management, 6-1
Dynamic objects

automatic array as, 5-12
in character declarations, 5-8
pointers and allocatable arrays as, 6-1

DYNAMIC schedule type, 14-56

E
E edit descriptor, 11-16

input processing, 11-17
output processing, 11-17

Edit descriptors
character string, 11-38
control, 11-30

forms for, 11-30
data, 11-6

forms for, 11-6
rules for numeric, 11-8

summary of, 11-3
Editing

character, 11-26
general rules for numeric, 11-8
integer, 11-9
logical, 11-25
real and complex, 11-14

Elapsed time
function calculating in seconds, 9-128

Element array assignment statements (FORALL), 4-26
Elemental intrinsic procedures

definition of, 9-1
references to, 8-42

ELEMENTAL prefix, 8-17
in FUNCTION statements, 8-18
in SUBROUTINE statements, 8-25

Elemental user-defined procedures, 8-17
examples of, 8-17
functions as, 8-18
subroutines as, 8-25

Elements, 3-35, 3-38
See also Array elements

ELSE directive, 14-20
Index-22

Index
ELSE IF directive, 14-20
ELSE IF statement, 7-26

branching to, 7-27
ELSE statement, 7-26

branching to, 7-27
ELSEWHERE statement, 4-23
EN edit descriptor, 11-19

input processing, 11-19
output processing, 11-19

ENCODE statement, B-3
END branch specifier, 10-7
END DO statement, 7-16, 7-23
END IF directive, 14-20
END IF statement, 7-26

branching to, 7-27
END statement, 7-25

retaining data after execution of, 5-54
Endfile record

definition of, 10-2
writing to a file, 12-5

ENDFILE statement, 12-5
examples of, 12-6

End-off shift on arrays
function performing, 9-54

End-of-file condition, 10-8
function to check, 9-53
I/O specifier for, 10-7

End-of-file records, 10-2
writing to a file, 12-5

End-of-record condition, 10-8
I/O specifier for, 10-7

Engineering notation
descriptor for (EN), 11-19

Entry names
referencing, 8-54

Entry points
for function subprograms, 8-55
for subprograms, 8-53
for subroutine subprograms, 8-56

ENTRY statement, 8-53
examples of, 8-55, 8-56
in function subprograms, 8-55

in subroutine subprograms, 8-56
RESULT keyword in, 8-53
result variable in, 8-55
using with FUNCTION statement, 8-20
using with SUBROUTINE statement, 8-25

Environment variables
FORTn, 12-32
OMP_SCHEDULE, 14-56

EOF function, 9-53
EOR branch specifier, 10-7
EOSHIFT function, 9-54
EPSILON function, 9-56
Equivalence

association, 5-29
logical, 4-8
objects, 5-29
set, 5-29

EQUIVALENCE statement, 5-29
compared to union declaration, B-20
examples of, 5-30
interaction with COMMON, 5-35
See also your user’s guide
using with arrays, 5-31
using with substrings, 5-33

ERF function, 9-57
ERFC function, 9-57
ERR branch specifier, 10-7
Error conditions, 10-7

I/O specifier for, 10-7
subroutine returning information on, 9-58

Error functions
functions returning, 9-57

Errors
See your user’s guide

ERRSNS subroutine, 9-58
ES edit descriptor, 11-20

input processing, 11-21
output processing, 11-21

Escape sequences
C-style, 3-16

Exclamation point character (!)
as comment indicator, 2-10, 2-11
Index-23

Intel Fortran Language Reference
Exclusive OR, 4-8
function performing, 9-71

Executable constructs
named, 7-1

Executable statements, 2-2
disallowed in main programs, 8-3

Executing
DO loops, 7-17
programs, 8-1

See also Program execution
EXIST specifier

in INQUIRE statements, 12-12
EXIT statement, 7-14, 7-24
EXIT subroutine, 9-59
EXP function, 9-59
Explicit format, 11-1, 11-2

using character expressions, 11-4
Explicit interfaces, 8-45

defining, 8-47
of dummy procedures, 8-38
when required, 8-46

Explicit-shape arguments, 8-33
Explicit-shape arrays, 5-11

adjustable, 5-13
automatic, 5-12

EXPONENT function, 9-60
Exponential operator (**), 4-2

in initialization expressions, 4-13
precedence of, 4-11

Exponential values
function returning, 9-59

Exponents
function returning range of decimal, 9-123

Expressions, 4-1
character, 4-6
determining data type of, 4-6
element array, 4-26
initialization, 4-12
length

effect on character assignments, 4-19
logical, 4-8
masked array, 4-23
numeric, 4-2

effects of parentheses within, 4-4
operator precedence in, 4-3
order of evaluation in, 4-3

relational, 4-7
See also Character expressions
See also Logical expressions
See also Numeric expressions
See also Relational expressions
specification, 4-13
variable format, 11-41
with arrays as operands, 4-2
with pointers as operands, 4-2

EXTEND_SOURCE
OPTIONS statement option, 13-3

Extended intrinsic operators
properties of, 8-51

Extended ranges
for DO constructs, 7-21

Extending arrays, 9-125, 9-136
Extent

definition of, 3-36
function returning, 9-135

EXTERN
option for ATTRIBUTES directive, 14-13

EXTERNAL attribute and statement, 5-38
attributes compatible with, 5-5
examples of, 5-39

External field separators, 11-3, 11-9
comma as, 11-29

External fields
separating, 11-29

External files
connecting to units, 12-20
definition of, 10-2

External procedures, 8-1, 8-28
compared to internal procedures, 8-29
declaring, 5-38
definition of, 8-1
directive specifying alternate name for, 14-5
invoking with CALL, 7-7
scope of, 15-2
See also Functions
See also Subroutines
using as actual arguments, 5-38
Index-24

Index
with the same name as intrinsic procedures, 5-38
External records, 10-2

transferring
character strings to, 11-39
direct-access input, 10-24
direct-access output, 10-35, 10-39
sequential access input, 10-13, 10-28
sequential access output, 10-29, 10-38

EXTERNAL statement
block data program unit in, 8-11
FORTRAN-66 implementation of, B-6
names in, 5-38
using with intrinsic procedures, 8-39

External subprograms, 2-1
providing entry points within, 8-53

F
F edit descriptor, 11-15

input processing, 11-15
output processing, 11-16

F77 OPTIONS statement option, 13-3
FALSE value

for INQUIRE (EXIST), 12-12
for INQUIRE (IOFOCUS), 12-14
for INQUIRE (NAMED), 12-15
for INQUIRE (OPENED), 12-16
for OPEN (IOFOCUS), 12-33

FDX value
for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

FGX value
for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

Field
definition of external, 11-6
in fixed source form, 2-13
in tab source form, 2-13
See also your user’s guide

Field descriptors, 11-6
See also Data edit descriptors

Field names
in record structures, B-14, B-18

Field width
definition of, 11-7

File connection statements
CLOSE, 12-3
OPEN, 12-20

File connections
creating, 12-20

File inquiry statement (INQUIRE), 12-7
File name

in INQUIRE statements, 12-7
in OPEN statements, 12-20, 12-32
specifying default pathname as, 12-7, 12-30

File position statements
BACKSPACE, 12-2
ENDFILE, 12-5
REWIND, 12-41

File properties
inquiring about, 12-7

FILE specifier
in OPEN statements, 12-20, 12-32

Files
access methods for, 10-2
accessing with INCLUDE, 13-1
combining at compilation, 13-1
directive specifying a subtitle for listing header, 14-38
directive specifying a title for listing header, 14-38
disconnecting, 12-3
external, 10-2

See also External files
inquiring about properties of, 12-7
internal, 10-2

See also Internal files
opening, 12-20
relative

See Relative files
sequential

See Sequential files
types of, 10-2

FIND statement, B-5
compared to READ statement, B-5

FIPS standard, 1-2
FIRSTPRIVATE clause, 14-46

in DO directive, 14-55
in PARALLEL directive, 14-62
Index-25

Intel Fortran Language Reference
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66
in SECTIONS directive, 14-67
in SINGLE directive, 14-68

Fixed source form, 2-11
blank characters in, 2-11
comment indicator in, 2-11
continuation character in, 2-11
debugging statement indicator in, 2-12
directive setting line length for, 14-19
fields in, 2-13
labels in, 2-8
sequence number field in, 2-13
short source lines in, 2-11
statement field in, 2-13
statement separator in, 2-7

FIXED value
for INQUIRE (RECORDTYPE), 12-18
for OPEN (RECORDTYPE), 12-37

FIXEDFORMLINESIZE directive, 14-19
example of, 14-19

Flags
See Compiler options

FLOAT
OPTIONS statement option, 13-3

FLOAT function, 9-123
FLOATI function, 9-123
Floating-point data types, 3-6

See also your user’s guide
FLOATJ function, 9-123
FLOATK function, 9-123
FLOOR function, 9-60
Flow of control

in CASE construct, 7-11
in IF construct, 7-27

FLUSH directive, 14-59
example of, 14-60

FMT specifier, 10-5
FORALL construct and statement, 4-26

evaluation of, 4-27
examples of, 4-28, 8-16
pure procedures in, 4-27

FORCEINLINE
option for ATTRIBUTES directive, 14-14

Foreground process
temporarily suspending, 7-32

FORM specifier
in INQUIRE statements, 12-13
in OPEN statements, 12-32

Format
control, 11-43
explicit, 11-1, 11-2
implicit, 11-1

list-directed input, 10-15
list-directed output, 10-31
namelist input, 10-18
namelist output, 10-33

reversion, 11-43
rules for numeric, 11-8
See also Format specifications
specifier, 10-5
using character string edit descriptors, 11-38
using control edit descriptors, 11-30
using data edit descriptors, 11-6
zero-length numeric, 11-9

Format specifications
blanks in, 11-2
character, 11-4
definition of, 11-2
examples of, 11-5
extensions to, F-3
group repeat specifications in, 11-40
nested specifications in, 11-40
omitting a comma in, 11-2
output characters in, 11-3
repeat specifications in, 11-2
See also Format
summary of edit descriptors, 11-3

FORMAT statements, 11-2
field width

output size for D descriptor, 11-17
output size for E descriptor, 11-17
output size for EN descriptor, 11-19
output size for ES descriptor, 11-21
output size for F descriptor, 11-16
output size for G descriptor, 11-23

format reversion with I/O lists, 11-43
Index-26

Index
I/O lists
interaction with, 11-43

interpretation of blanks in, 11-3
See also Format
See also Format specifications
See also your user’s guide
variable format expressions in, 11-41

Formatted data
transfer

See also READ statements
See also WRITE statements
specifier to test for, 12-13
specifying, 12-32

Formatted I/O statements
ACCEPT, 10-28
establishing labels for, 7-4
PRINT and TYPE, 10-38
READ

direct access, 10-24, 10-25
internal, 10-26
sequential, 10-13, 10-15

REWRITE, 10-39
using aggregate field references in, B-23
WRITE

direct access, 10-35, 10-36
internal, 10-36
sequential, 10-29, 10-30

Formatted records
definition of, 10-1
printing, 11-42

FORMATTED specifier
in INQUIRE statements, 12-13

FORMATTED value
for INQUIRE (FORM), 12-13
for OPEN (FORM), 12-32

Forms
for source code, 2-6

FORTn environment variable, 12-32
Fortran 2000 features, 1-2
FORTRAN 77 standard, 1-2
Fortran 90 features, 1-5
Fortran 90 standard, 1-2

directive disabling features not found in, 14-36
Fortran 95 features, 1-3

Fortran 95 standard, 1-2
directive disabling features not found in, 14-36
language extensions to, F-1

Fortran 95/90 character set, 2-5
extensions to, F-1

FORTRAN value
for INQUIRE (CARRIAGECONTROL), 12-11
for OPEN (CARRIAGECONTROL), 12-28

FORTRAN-66 semantics
effect on EXTERNAL, B-6

FP_CLASS function, 9-61
FRACTION function, 9-61
Free source form, 2-9

blank characters in, 2-9
comment indicator in, 2-10
continuation character in, 2-10
directive indicating, 14-20
labels in, 2-8
number of characters in a line, 2-9
statement separator in, 2-7

FREE subroutine, 9-62
FREEFORM directive, 14-20
Function references, 8-12, 8-23

elemental intrinsic, 8-42
example of, 8-24
to external names, 5-39

FUNCTION statement, 8-18
examples of, 8-20
prefixes in, 8-18
RESULT keyword in, 8-23
using with ENTRY statement, 8-20

Function subprograms, 8-12
See also Functions
See also Subprograms

Functions, 8-18
allocatable, 8-19

example of, 8-21
applying to arrays, 9-1
applying to scalar and array arguments, 9-1
character type, 8-19
containing OPERATOR specifier, 4-10, 8-50
declaring as external, 5-38
declaring as intrinsic, 5-43
definition of, 8-2
Index-27

Intel Fortran Language Reference
depending on the properties of an argument, 9-1
elemental intrinsic, 9-1
elemental user-defined, 8-17
ENTRY statements in, 8-55
example of allocatable, 8-21
examples of, 8-20
general rules for, 8-13
generic, 9-1
global intrinsic, 8-40
inquiry, 9-1
invoking, 8-23
invoking in a CALL statement, 8-20
local intrinsic, 8-40
not allowed as actual arguments, 9-2
prefixes in, 8-18
pure, 8-14
recursion in, 8-13
referencing, 8-23
result variable in, 8-23
specific, 9-1
statement defining, 8-18
transformational, 9-1

G
G edit descriptor, 11-22

input processing, 11-15
output processing, 11-16

General compiler directives, 14-2
affecting DO loops, 14-4
ALIAS, 14-5
ATTRIBUTES, 14-5
DECLARE, 14-16
DEFINE, 14-17
DISTRIBUTE POINT, 14-18
ELSE, 14-20
ELSEIF, 14-20
ENDIF, 14-20
FIXEDFORMLINESIZE, 14-19
FREEFORM, 14-20
IDENT, 14-20
IF, 14-20
IF DEFINED, 14-20
INTEGER, 14-22
IVDEP, 14-23
LOOP COUNT, 14-25

MESSAGE, 14-26
NODECLARE, 14-16
NOFREEFORM, 14-20
NOPARALLEL, 14-31
NOPREFETCH, 14-32
NOSTRICT, 14-36
NOSWP (i64), 14-37
NOVECTOR (i32), 14-40
OBJCOMMENT, 14-26
OPTIONS, 14-27
PACK, 14-30
PARALLEL, 14-31
PREFETCH, 14-32
PSECT, 14-33
REAL, 14-35
STRICT, 14-36
SUBTITLE, 14-38
SWP (i64), 14-37
syntax of prefix, 14-1
TITLE, 14-38
UNDEFINE, 14-17
UNROLL, 14-39
VECTOR ALIGNED (i32), 14-39
VECTOR ALWAYS (i32), 14-40
VECTOR NONTEMPORAL (i32), 14-41
VECTOR UNALIGNED (i32), 14-39

Generalized editing (G), 11-22
Generic assignment, 4-21

for procedures, 8-51
Generic identifier, 8-45, 8-47

scope of, 15-2
Generic interfaces, 8-47

in scoping units, 8-9
Generic names

for procedures, 8-49
of intrinsics, 9-1

Generic operators
for procedures, 8-50

Generic procedures
example of, 15-6
references to, 8-38
references to intrinsic, 8-39

Generic references
example of, 8-40
Index-28

Index
GETARG subroutine, 9-62
Global properties

of intrinsic functions, 8-40
Global scope

names having, 15-1
GO TO statements

assigned, 7-5
computed, 7-3
establishing labels for assigned, 7-4
unconditional, 7-2

Graphics routines (W*32, W*64), E-16
Group repeat format specifications, 11-40
GUIDED schedule type, 14-56

H
H edit descriptor

alternative for, A-3
H editing, 11-39
HABS function, 9-18
HBCLR function, 9-67
HBITS function, 9-68
HBSET function, 9-69
Hexadecimal constants, 3-29

alternative syntax for, B-10
assigning with DATA statement, 5-25
data type assignments of, 3-31
examples of, 3-30

Hexadecimal values
transferring, 11-13

HFIX function, 9-73
HIAND function, 9-65
HIEOR function, 9-71
HIOR function, 9-76
HIXOR function, 9-71
HMOD function, 9-105
HMVBITS subroutine, 9-107
HNOT function, 9-111
Hollerith constants, 3-30

as arguments, 8-36
assigned with DATA statements, 5-26
continuation in fixed and tab source, 2-12

data type assignments of, 3-31
examples of, 3-30
See also your user’s guide
uppercase and lowercase letters in, 2-6

Hollerith values
transferring, 11-26

Host, 2-2
association, 15-11

IMPLICIT NONE for, 15-11
in modules, 8-5
scope of, 15-11

HSHFT function, 9-79
HSHFTC function, 9-80
HSIGN function, 9-132
HTEST function, 9-33
HUGE function, 9-64
Hyperbolic arccosine

function returning, 9-21
Hyperbolic arcsine

function returning, 9-27
Hyperbolic arctangent

function returning, 9-32
Hyperbolic cosine

function returning, 9-39
Hyperbolic sine

function returning, 9-134
Hyperbolic tangent

function returning, 9-141

I
I edit descriptor, 11-9

input processing, 11-10
output processing, 11-10

I/O
advancing and nonadvancing, 10-8

I/O control list, 10-3
advance specifier in, 10-8
branch specifiers in, 10-7
character count specifier in, 10-9
format specifier in, 10-5
namelist specifier in, 10-6
record specifier in, 10-6
Index-29

Intel Fortran Language Reference
specifiers in, 10-3
status specifier in, 10-6
unit specifier in, 10-4

I/O data transfer
formatted direct access

READ, 10-25
REWRITE, 10-39
WRITE, 10-36

formatted sequential
ACCEPT, 10-28
PRINT and TYPE, 10-38
READ, 10-15
WRITE, 10-30

internal
READ, 10-26
WRITE, 10-36

unformatted direct access
READ, 10-26
REWRITE, 10-39
WRITE, 10-36

unformatted sequential
READ, 10-23
WRITE, 10-34

I/O lists, 10-9
arrays in, 10-9
derived-type items in, 10-10
general rules for, 10-9
implied-DO lists in, 10-12
interaction with FORMAT statements, 11-43
items in, 10-10
pointers in, 10-9

I/O statements
ACCEPT, 10-28
auxiliary, 12-1
BACKSPACE, 12-2
CLOSE, 12-3
DELETE, 12-4
ENDFILE, 12-5
extensions for file operations, F-4
extensions to, F-3
for data transfer, 10-1
for operations on files, 12-1
formatting, 11-1
INQUIRE, 12-7

list-directed
input, 10-15
output, 10-31

namelist, 5-45
input, 10-18
output, 10-33

OPEN, 12-20
PRINT and TYPE, 10-38
READ, 10-13
REWIND, 12-41
REWRITE, 10-39
UNLOCK, 12-42
WRITE, 10-29

I/O status specifier, 10-6
I/O units

associating with files, B-1
definition of, 10-4
inquiring about properties of, 12-7
scope of, 15-2

I4
OPTIONS statement option, 13-3

IABS function, 9-18
IACHAR function, 9-64
IADDR function, 9-32
IAND function, 9-65
IARG function, 9-66
IARGC function, 9-66
IARGPTR function, 9-66
IBCHNG function, 9-67
IBCLR function, 9-67
IBITS function, 9-68
IBM value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

IBSET function, 9-69
ICHAR function, 9-69, 9-70
IDATE subroutine, 9-71
IDENT directive, 14-20
IDIM function, 9-49
IDINT function, 9-73
IDNINT function, 9-110
Index-30

Index
IEEE* values
function testing for NaN, 9-82
See also your user’s guide

IEOR function, 9-71
IF clause

in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66

IF constructs, 7-26
branching in, 7-27
examples of, 7-29
flow of control in, 7-27
nested, 7-29

IF DEFINED directive, 14-20
IF directive, 14-20

example of, 14-22
IF loops

flow of control in, 7-27
IF statements, 7-31

arithmetic, 7-6
examples of, 7-32

IF THEN statement, 7-26
IFIX function, 9-73
ifort command

overriding, 13-3
See also your user’s guide
statements affecting, 13-1

IGNORE_LOC
option for ATTRIBUTES directive, 14-13

IIABS function, 9-18
IIAND function, 9-65
IIBCLR function, 9-67
IIBITS function, 9-68
IIBSET function, 9-69
IIDIM function, 9-49
IIDINT function, 9-73
IIDNNT function, 9-110
IIEOR function, 9-71
IIFIX function, 9-73
IINT function, 9-73
IIOR function, 9-76
IIQINT function, 9-73

IIQNNT function, 9-110
IISHFT function, 9-79
IISHFTC function, 9-80
IISIGN function, 9-132
IIXOR function, 9-71
IJINT function, 9-73
ILEN function, 9-72
IMAG function, 9-22
IMAX0 function, 9-93
IMAX1 function, 9-93
IMIN0 function, 9-99
IMIN1 function, 9-99
IMOD function, 9-105
Implicit data typing

overriding default, 5-39
Implicit format, 11-1

list-directed input, 10-15
list-directed output, 10-31
namelist input, 10-18
namelist output, 10-33

Implicit interfaces, 8-45
of dummy procedures, 8-38

IMPLICIT NONE statement, 5-39
directive producing similar warnings, 14-16
for host association, 15-11
rules for, 5-40

IMPLICIT statement, 5-39
and host association, 15-11
examples of, 5-40
restriction with intrinsic procedures, 5-40
using to type variables, 3-34
using with intrinsic procedures, 8-40

Implied-DO lists
in DATA statements, 5-24
in data transfer statements, 10-12
in I/O lists, 10-12
scope of variables in, 15-2

Implied-DO loops
in array constructors, 3-44
in I/O lists, 10-12
iteration control for, 7-17
Index-31

Intel Fortran Language Reference
Implied-DO variables
initializing with DATA statement, 5-24
scope of, 15-2

IMVBITS subroutine, 9-107
INCLUDE statements, 13-1

example of, 13-2
Including files during compilation, 13-1
Inclusive OR, 4-8

function performing, 9-76
Indefinite DO statement, 7-23
Index

case, 7-10
INDEX function, 9-73
Indexed DO statement, 7-15

See also Block DO construct
Inequivalence

logical, 4-8
ININT function, 9-110
Initialization expressions, 4-11, 4-12

examples of, 4-13
exponential operators in, 4-13
for derived-type components, 3-21, 3-22
in type declaration statements, 5-4
inquiry functions allowed in, 4-12
invoking inquiry functions in, 4-13
simplest form of, 4-12
transformational functions allowed in, 4-12

Initialization of data
default, 3-22
explicit, 5-2

INLINE
option for ATTRIBUTES directive, 14-14

INOT function, 9-111
Input data

terminating short fields of, 11-29
Input statements, 10-13

ACCEPT, 10-28
READ, 10-13

INQUIRE statements, 12-7
ACCESS specifier in, 12-8
ACTION specifier in, 12-9
BINARY specifier in (W*32, W*64), 12-9
BLANK specifier in, 12-9

BLOCKSIZE specifier in, 12-10
BUFFERED specifier in, 12-10
CARRIAGECONTROL specifier in, 12-10
CONVERT specifier in, 12-11
DELIM specifier in, 12-12
DIRECT specifier in, 12-12
examples of, 12-8
EXIST specifier in, 12-12
FORM specifier in, 12-13
FORMATTED specifier in, 12-13
general description of, 12-7
IOFOCUS specifier in (W*32, W*64), 12-13
MODE specifier in, 12-14
NAME specifier in, 12-14
NAMED specifier in, 12-14
NEXTREC specifier in, 12-15
NUMBER specifier in, 12-15
OPENED specifier in, 12-15
ORGANIZATION specifier in, 12-16
PAD specifier in, 12-16
POSITION specifier in, 12-16
READ specifier in, 12-17
READWRITE specifier in, 12-17
RECL specifier in, 12-17
RECORDTYPE specifier in, 12-18
See also your user’s guide
SEQUENTIAL specifier in, 12-18
SHARE specifier in (W*32, W*64), 12-19
UNFORMATTED specifier in, 12-19
WRITE specifier in, 12-19

Inquiry
bit function, 9-4
functions for numeric, 9-4

Inquiry functions
ALLOCATED, 9-24
allowed in initialization expressions, 4-12
allowed in specification expressions, 4-14
ASSOCIATED, 9-28
BIT_SIZE, 9-33
CACHESIZE, 9-34
definition of, 9-1
DIGITS, 9-48
EOF, 9-53
EPSILON, 9-56
for argument presence, 9-115
for arrays, 9-24, 9-83, 9-130, 9-135, 9-146
Index-32

Index
for bit size, 9-33
for character length, 9-85
for numeric models, 9-48, 9-56, 9-64, 9-95, 9-100,

9-114, 9-120, 9-123, 9-143
for pointers, 9-28
HUGE, 9-64
IARGC, 9-66
IARGPTR, 9-66
INT_PTR_KIND, 9-75
invoking in initialization expressions, 4-13
KIND, 9-82
LBOUND, 9-83
LEN, 9-85
LOC, 9-89
MAXEXPONENT, 9-95
MINEXPONENT, 9-100
NARGS, 9-108
PRECISION, 9-114
PRESENT, 9-115
RADIX, 9-120
RANGE, 9-123
SHAPE, 9-130
SIZE, 9-135
SIZEOF, 9-135
TINY, 9-143
UBOUND, 9-146

INT function, 9-73
INT_PTR_KIND function, 9-75
INT1 function, 9-73
INT2 function, 9-73
INT4 function, 9-73
INT8 function, 9-73
INTEGER data type, 3-2, 3-4

constants, 3-4
default kind, 3-4
function converting to, 9-73
function converting to double-precision real, 9-46,

9-48
function converting to quad-precision real, 9-117,

9-118
in type declaration statements, 5-2, 5-6
See also INTEGER(4)
See also your user’s guide
storage, 15-14

INTEGER directive, 14-22
example of, 14-23

Integer editing (I,B,O,Z), 11-9
B, 11-11
I, 11-9
O, 11-12
Z, 11-13

INTEGER KIND for address
function returning, 9-75

Integer model, D-2
function returning largest number in, 9-64

Integer pointers, B-12
Integer values

transferring, 11-9
Integer variables

assigning labels to, 7-4
INTEGER(1)

constants, 3-4
storage requirements, 15-14

INTEGER(2)
constants, 3-4
storage requirements, 15-14

INTEGER(4)
constants, 3-4
function converting to INTEGER(2) type, 9-73
storage requirements, 15-14

INTEGER(8)
constants, 3-4
storage requirements, 15-14

INTEGER*1 constants
See INTEGER(1)

INTEGER*2 constants
See INTEGER(2)

INTEGER*4 constants
See INTEGER(4)

INTEGER*8 constants
See INTEGER(8)

Integers
bit representation of, 9-5
constants, 3-4

in COMPLEX constants, 3-11
using to assign values, 3-5
Index-33

Intel Fortran Language Reference
default
See "default integer" in the Glossary

directive specifying default kind, 14-22
function converting to double-precision type, 9-48
function multiplying two 64-bit unsigned, 9-106
function returning difference between, 9-49
function returning leading zero bits in, 9-84
function returning number of 1 bits in, 9-114
function returning parity of, 9-114
function returning trailing zero bits in, 9-143
function returning two’s complement length of, 9-72
model for data, D-2

Intent
of arguments, 5-41

INTENT attribute and statement, 5-41
attributes compatible with, 5-5
examples of, 5-42
for pure procedures, 8-15

INTERFACE
ASSIGNMENT

examples of, 8-52
generic

examples of, 8-49
OPERATOR

examples of, 8-51
Interface blocks, 8-2, 8-47

examples of, 8-48, 8-49, 8-51, 8-52
for generic assignment, 8-51
for generic names, 8-49
for generic operators, 8-50

INTERFACE statement, 8-47
defining generic assignment, 8-52
defining generic names, 8-49
defining generic operators, 8-50
generic identifier in, 8-47

INTERFACE TO statement, B-5
Interfaces, 8-45

defining explicit, 8-47
for dummy procedures, 8-38
generic, 8-47

in scoping units, 8-9
of external procedures, 8-29
of internal procedures, 8-30
procedures requiring explicit, 8-46

Internal address
function returning, 9-89

Internal files
definition of, 10-2
position of, 10-5
storage of, 10-4

Internal I/O statements
ENCODE and DECODE, B-3
READ, 10-26
WRITE, 10-36

Internal procedures, 8-29
compared to external procedures, 8-29
definition of, 8-1
example of, 8-30
scope of, 15-2

Internal READ statement, 10-26
Internal subprograms, 2-2, 8-29

introducing in program unit, 8-53
Internal WRITE statement, 10-36
Interrupting

DO constructs, 7-24
Intrinsic assignments, 4-16

array, 4-20
character, 4-18
derived-type, 4-19
logical, 4-18
numeric, 4-17
scope of, 15-2
See also Assignment statements
types of, 4-16

INTRINSIC attribute and statement, 5-43
attributes compatible with, 5-5
examples of, 5-44
names in, 5-44

Intrinsic data types
character, 3-14
complex, 3-10
integer, 3-4
logical, 3-14
numeric nondecimal constants, 3-28
real, 3-6
storage requirements for, 15-14

Intrinsic functions
alphabetical descriptions of all, 9-18 thru 9-150
Index-34

Index
categories of array, 9-5
categories of bit, 9-5
categories of character, 9-5
categories of numeric, 9-4
example of using as arguments, 8-40
for data representation models, D-1
kind type, 9-5
mathematical, 9-5
miscellaneous, 9-6
non-generic, 9-14
not allowed as actual arguments, 9-2
references to generic, 8-39
See also Functions
See also Intrinsic procedures
specified as INTRINSIC, 5-44
summary of generic, 9-6
using external procedures of same name as, 5-38

Intrinsic operators
properties of extended, 8-51
scope of, 15-2

Intrinsic procedures, 9-1
alphabetical descriptions of all, 9-18 thru 9-150
bit functions, 9-16
categories of array, 9-5
categories of bit, 9-5
categories of character, 9-5
categories of numeric, 9-4
classes of, 9-1
definition of, 8-1
extensions of KIND argument, F-9
extensions to, F-7
functions

See Intrinsic functions
inquiry functions

See Inquiry functions
keywords for, 9-3
kind type, 9-5
mathematical, 9-5
miscellaneous, 9-6
names of, 9-1
references to elemental, 8-42
references to generic, 8-39
scope of, 15-2
scope of name, 8-39
See also Elemental intrinsic procedures

subroutines
See Intrinsic subroutines

transformational functions
See Transformational functions

using as actual arguments, 5-43
using with EXTERNAL statement, 8-39
using with IMPLICIT statement, 8-40

Intrinsic subroutines, 9-1, 9-15
alphabetical descriptions of all, 9-18 thru 9-150
See also Intrinsic procedures
See also Subroutines

INUM function, 9-76
Inverse cosine

function returning in degrees, 9-20
function returning in radians, 9-20

Inverse sine
function returning in degrees, 9-27
function returning in radians, 9-26

Inverse tangent
function returning in degrees, 9-31
function returning in degrees (complex), 9-31
function returning in radians, 9-29
function returning in radians (complex), 9-30

IOFOCUS specifier (W*32, W*64)
in INQUIRE statements, 12-13
in OPEN statements, 12-33

IOR function, 9-76
IOSTAT specifier, 10-6
IQINT function, 9-73
IQNINT function, 9-110
ISHA function, 9-77
ISHC function, 9-78
ISHFT function, 9-79
ISHFTC function, 9-80
ISHL function, 9-81
ISIGN function, 9-132
ISNAN function, 9-82
ISO standards, 1-2
Iteration count, 7-17

and loop control, 7-17
Iterative DO loop, 7-17
Index-35

Intel Fortran Language Reference
IVDEP directive, 14-23
example of, 14-24

IXOR function, 9-71
IZEXT function, 9-148

J
JFIX function, 9-73
JIABS function, 9-18
JIAND function, 9-65
JIBCLR function, 9-67
JIBITS function, 9-68
JIBSET function, 9-69
JIDIM function, 9-49
JIDINT function, 9-73
JIDNNT function, 9-110
JIEOR function, 9-71
JIFIX function, 9-73
JINT function, 9-73
JIOR function, 9-76
JIQINT function, 9-73
JIQNNT function, 9-110
JISHFT function, 9-79
JISHFTC function, 9-80
JISIGN function, 9-132
JIXOR function, 9-71
JMAX0 function, 9-93
JMAX1 function, 9-93
JMIN0 function, 9-99
JMIN1 function, 9-99
JMOD function, 9-105
JMVBITS subroutine, 9-107
JNINT function, 9-110
JNOT function, 9-111
JNUM function, 9-82
JZEXT function, 9-148

K
KEEP value

for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

Keywords
argument, 9-3
directive

See Compiler directives
for control-list specifiers, 10-3
statement

See Statements
KIABS function, 9-18
KIAND function, 9-65
KIBCLR function, 9-67
KIBITS function, 9-68
KIBSET function, 9-69
KIDIM function, 9-49
KIDINT function, 9-73
KIDNNT function, 9-110
KIEOR function, 9-71
KIFIX function, 9-73
KIND

directive specifying default for reals, 14-35
function, 9-82
keyword

in intrinsics, 9-3
Kind functions

definition of, 9-4
Kind parameters

See Kind type parameter
Kind selector, 5-3
Kind type parameter

for character constants, 3-3, 3-14
for complex constants, 3-10
for integer constants, 3-4
for logical constants, 3-14
for real constants, 3-6
function returning value of, 9-82
function selecting logical, 9-91
functions to determine, 9-4
of integer data

function returning, 9-129
Index-36

Index
of real data
function returning, 9-129

restriction for real constants, 3-8
selector for, 5-3

KINT function, 9-73
KIOR function, 9-76
KIQINT function, 9-73
KIQNNT function, 9-110
KISHFT function, 9-79
KISHFTC function, 9-80
KISIGN function, 9-132
KMAX0 function, 9-93
KMAX1 function, 9-93
KMIN0 function, 9-99
KMIN1 function, 9-99
KMOD function, 9-105
KMVBITS subroutine, 9-107
KNINT function, 9-110
KNOT function, 9-111
KZEXT function, 9-148

L
L edit descriptor, 11-25

input processing, 11-25
output processing, 11-25

Labels
assigning, 7-4
in block DO constructs, 7-16
in formatted I/O statements, 7-4
in nonblock DO constructs, 7-16
in source form, 2-8
platform, xxxi
scope of, 15-2
See also your user’s guide

Language compatibility
extensions for, F-9
features for, B-1
See also your user’s guide
summary of, 1-2

Language extensions, F-1
directive disabling, 14-36

summary of, F-1
Language features

deleted in Fortran 95, A-1
for compatibility with older versions, B-1
obsolescent in Fortran 90, A-3
obsolescent in Fortran 95, A-2

LASTPRIVATE clause, 14-46
in DO directive, 14-55
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66
in SECTIONS directive, 14-67

LBOUND function, 9-83
in pointer assignment, 5-16

LEADZ function, 9-84
Left shift

function performing arithmetic, 9-52, 9-77, 9-131
function performing circular, 9-78
function performing logical, 9-81

LEN
in character type declaration statements, 5-8

LEN function, 9-85
LEN_TRIM function, 9-85
Length specifier

in character type declaration statements, 5-8
Lexical string comparisons, 9-4

function determining .GE., 9-86
function determining .GT., 9-87
function determining .LE., 9-87
function determining .LT., 9-88

LGE function, 9-86
LGT function, 9-87
Library module routines, E-1
Library routines

DFAUTO (W*32), E-24
DFCOM (W*32), E-23
dialog (W*32), E-20
graphics (W*32, W*64), E-16
miscellaneous, E-22
NLS, E-8
parallel, E-25
portability, E-2
POSIX, E-10
QuickWin (W*32, W*64), E-14
Index-37

Intel Fortran Language Reference
List items
I/O, 10-10

LIST option
in INCLUDE statement, 13-1

LIST value
for INQUIRE (CARRIAGECONTROL), 12-11
for OPEN (CARRIAGECONTROL), 12-28

List-directed formatting
defaults for output, 10-31
for READ statements

sequential, 10-15
for WRITE statements

sequential, 10-31
indicator for, 10-5
input, 10-15
output, 10-31

List-directed statements
ACCEPT, 10-28
PRINT and TYPE, 10-38
READ, 10-13, 10-15
WRITE, 10-29, 10-31

Listing header
directive specifying subtitle for, 14-38
directive specifying title for, 14-38

Lists
I/O control, 10-3
implied-DO

in DATA statements, 5-24
items in I/O, 10-9

Literal constant, 3-1
LITTLE_ENDIAN value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

LLE function, 9-87
LLT function, 9-88
LOC function, 9-89

using with integer pointers, B-12
Local properties

of intrinsic functions, 8-40
Local scope

names having, 15-2
Locked records

freeing, 12-42

LOG function, 9-89
LOG10 function, 9-90
Logarithm

function returning common, 9-90
function returning natural, 9-89

Logical AND
function performing, 9-65

Logical assignment statements, 4-18
Logical complement

function returning, 9-111
Logical conversion

function performing, 9-91
LOGICAL data type, 3-3, 3-14

constants, 3-14
default kind, 3-14
in type declaration statements, 5-2, 5-6
See also LOGICAL(4)
storage, 15-14

Logical editing, 11-25
Logical expressions, 4-8

evaluation of subexpressions in, 4-10
extensions to, F-2
order of evaluation in, 4-9

LOGICAL function, 9-91
Logical I/O units, 10-4

See also I/O units
Logical IF statement, 7-31

See also IF statement
Logical operands, 4-8

See also Logical expressions
Logical operations, 4-9

data types resulting from, 4-9
functions performing, 9-16

Logical operators, 4-8
Logical shift

function performing, 9-79
Logical values

transferring, 11-25
LOGICAL(1)

constants, 3-14
storage requirements, 15-14

LOGICAL(2)
constants, 3-14
Index-38

Index
storage requirements, 15-14
LOGICAL(4)

constants, 3-14
storage requirements, 15-14

LOGICAL(8)
constants, 3-14
storage requirements, 15-14

Loop control, 7-14
DO WHILE, 7-17
iteration count, 7-17
simple, 7-17

Loop control iteration, 7-17
LOOP COUNT directive, 14-25
Loop directives

DISTRIBUTE POINT, 14-18
IVDEP, 14-23
LOOP COUNT, 14-25
PARALLEL and NOPARALLEL, 14-31
PREFETCH and NOPREFETCH, 14-32
SWP and NOSWP (i64), 14-37
UNROLL and NOUNROLL, 14-39
VECTOR ALIGNED and VECTOR UNALIGNED

(i32), 14-39
VECTOR ALWAYS and NOVECTOR (i32), 14-40
VECTOR NONTEMPORAL (i32), 14-41

Loop iteration, 7-14, 7-17
Loops, 7-14

DO
nested, 7-19
skipping, 7-24
terminating, 7-24

IF
flow of control in, 7-27

Lower bounds
function returning, 9-83

Lowercase letters
in character set, 2-5
treatment on compiler, 2-6

LSHFT function, 9-79
LSHIFT function, 9-79

M
Main program, 8-1, 8-2

as a program unit, 2-1
MALLOC function, 9-91

using with integer pointers, B-12
Manipulation

functions for array, 9-4
functions for bit, 9-4
functions for numeric, 9-4

Mantissa in real model, D-3
Many-one array sections, 3-44, 4-20
Map declarations, B-19
MAP statement, B-19

using to make record fields equivalent, B-22
MASK

keyword in intrinsics, 9-3
See also Mask expressions

Mask expressions
function combining arrays using, 9-98
function counting true elements using, 9-40
function determining all true using, 9-23
function determining any true using, 9-25
function finding location of maximum value using,

9-95
function finding location of minimum value using,

9-100
function packing array using, 9-113
function returning maximum value of elements using,

9-97
function returning minimum value of elements using,

9-102
function returning product of elements using, 9-116
function returning sum of elements using, 9-138
function unpacking array using, 9-147
in ELSEWHERE, 4-23
in FORALL, 4-26
in intrinsics, 9-3
in WHERE, 4-23

Masked-array assignment statements (WHERE), 4-23
generalization of (FORALL), 4-26

MASTER directive, 14-60
example of, 14-60

Mathematical functions, 9-4
Index-39

Intel Fortran Language Reference
MATMUL function, 9-92
Matrix multiplication

function performing, 9-92
MAX function, 9-93
MAX0 function, 9-93
MAX1 function, 9-93
MAXEXPONENT function, 9-95
Maximum exponent

function returning, 9-95
Maximum value

function returning, 9-93
function returning location of, 9-95
of array elements

function returning, 9-97
MAXLOC function, 9-95
MAXREC specifier

in OPEN statements, 12-33
MAXVAL function, 9-97
MBCS routines, E-8
MCLOCK function, 9-98
Memory

function allocating, 9-91
subroutine freeing allocated, 9-62

Memory cache
function returning size of a level in, 9-34

Memory location
OpenMP directive to dynamically update, 14-52

MERGE function, 9-98
MESSAGE directive, 14-26
Metacommands

See General compiler directives
MIL standard, 1-2
MIN function, 9-99
MIN0 function, 9-99
MIN1 function, 9-99
MINEXPONENT function, 9-100
Minimum exponent

function returning, 9-100
Minimum value

function returning, 9-99
function returning location of, 9-100

of array elements
function returning, 9-102

MINLOC function, 9-100
Minus operator, 4-2

precedence of, 4-11
MINVAL function, 9-102
Miscellaneous run-time routines, E-22
Mixed-mode expressions, 4-5, 4-8
MM_PREFETCH subroutine, 9-103
MOD function, 9-105
MODE specifier

in INQUIRE statements, 12-14
in OPEN statements, 12-33

Models for data representation, D-1
bit, D-4
integer, D-2
real, D-3

MODULE PROCEDURE statement, 8-47
example of, 15-6

Module procedures, 8-4
definition of, 8-1
examples of, 8-5, 15-6
in interface blocks, 8-47
scope of, 15-2

Module references, 8-7
MODULE statement, 8-4

example of, 8-5, 15-6
See also Module procedures

Module subprograms
introducing in program unit, 8-53
providing entry points within, 8-53

Modules, 2-1, 8-1, 8-4
accessibility of entities in, 5-51, 8-7
containing interface blocks, 8-5
examples of, 8-5, 8-9
references to, 8-7
See also your user’s guide
selecting entities in (USE), 8-8
specification part of, 8-4
terminating, 7-25

Modulo
function returning, 9-106

MODULO function, 9-106
Index-40

Index
MULT_HIGH function (i64), 9-106
Multibyte Character Set routines, E-8
Multidimensional arrays

constructing, 3-46, 9-125
conversion between vectors and, 9-113, 9-147
declaring adjustable, 5-13
storage of, 3-39

Multiplication operator (*), 4-2
precedence of, 4-11

MVBITS subroutine, 9-107

N
NAME specifier

in INQUIRE statements, 12-14
in OPEN statements, 12-33
interaction with OPEN (FILE), 12-14

Named common blocks
agreement of data types in, 5-22
establishing and initializing values in, 8-10
OpenMP directive defining as local to a thread, 14-69
See also Common blocks

Named constants, 5-48
definition of, 3-1
scope of, 15-2

Named constructs
scope of, 15-2

Named control constructs, 7-1
CASE, 7-9
DO, 7-15
FORALL, 4-26
IF, 7-26
WHERE, 4-23

NAMED specifier
in INQUIRE statements, 12-14

Namelist external records, 10-18
alternative form for, B-11

Namelist formatting, 10-6
for READ statements, 10-18
for WRITE statements, 10-33
input, 10-18
output, 10-33

Namelist group, 5-45
accessibility of, 5-45

examples of, 5-46
prompting for information about, 10-20
variables in, 5-45

Namelist group names
scope of, 15-2

Namelist input
comments in, 10-20

Namelist specifier, 10-6
NAMELIST statement, 5-45

examples of, 5-46, 10-21
Namelist statements

ACCEPT, 10-28
PRINT and TYPE, 10-38
READ, 10-13, 10-18
WRITE, 10-29, 10-33

Names, 2-4
associating with constant value, 5-48
associating with group, 5-45
association of, 15-9
association of arguments, 15-10
association of use and host, 15-11
constants with, 3-1
containing dollar sign, 2-4
explicit typing of variable, 3-34
extension to characters in, F-1
extension to length of, F-1
implicit type if first character is $, 3-35
implicit typing of variable, 3-35
in FORTRAN-66 EXTERNAL statement, B-7
in PARAMETER statement, 5-48
length allowed, 2-4
of external and dummy procedures as actual

arguments, 5-38
of intrinsic procedures as actual arguments, 5-43
of procedures

established as generic, 15-5
established as specific, 15-7
nonestablished, 15-8

overriding default data typing of, 5-39
rules for constants with, 5-48
scope of, 15-1
See also your user’s guide
uniqueness within programs, 2-4
with global scope, 15-1
with local scope, 15-2
Index-41

Intel Fortran Language Reference
with statement scope, 15-2
NaN values

function testing for, 9-82
See also your user’s guide

NARGS function, 9-108
National Language Support routines, E-8
NATIVE value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

Nearest different number
function returning, 9-110

NEAREST function, 9-110
Nearest integer

function returning, 9-110
Negation

logical, 4-8
Nested constructs

DO, 7-19
IF, 7-29

Nested DO
construct, 7-21

control transfers in, 7-21
loops, 7-19

Nested format specifications, 11-40
Nested implied-DO lists

in I/O lists, 10-12
NEW value

for OPEN (STATUS), 12-39
NEXTREC specifier

in INQUIRE statements, 12-15
NINT function, 9-110
NLS routines, E-8
NML specifier, 10-6
NO_ARG_CHECK

option for ATTRIBUTES directive, 14-14
NOALIGN

OPTIONS directive option, 14-27
NOCHECK

OPTIONS statement option, 13-3
NODECLARE directive, 14-16
NOEXTEND_SOURCE

OPTIONS statement option, 13-3

NOF77
OPTIONS statement option, 13-3

NOFREEFORM directive, 14-20
NOI4

OPTIONS statement option, 13-3
NOINLINE

option for ATTRIBUTES directive, 14-14
NOLIST option

in INCLUDE statement, 13-1
NOMIXED_STR_LEN_ARG

option for ATTRIBUTES directive, 14-15
Nonadvancing I/O, 10-8, 10-9

See also your user’s guide
Nonblock DO construct, 7-15

examples of, 7-16
Nondecimal numeric constants, 3-28

binary, 3-28
data type of, 3-31
hexadecimal, 3-29
Hollerith, 3-30
octal, 3-29

Nonelemental intrinsic procedures, 9-1
Nonexecutable statements, 2-2
Non-Fortran procedures

argument list functions for, 8-43
in argument list

defaults for, 8-43
references to, 8-43

See also your user’s guide
referencing with %LOC function, 8-44
referencing with %REF function, 8-43
referencing with %VAL function, 8-43

Nonnative floating-point formats, 12-11, 12-28
NOPARALLEL loop directive, 14-31
NOPREFETCH loop directive, 14-32
NOSTRICT directive, 14-36
NOSWP directive (i64), 14-37
NOT function, 9-111
NOUNROLL directive, 14-39
NOVECTOR directive (i32), 14-40

example of, 14-40
Index-42

Index
NOWAIT clause
effect on implied FLUSH directive, 14-59
effect with REDUCTION clause, 14-48
in END DO directive, 14-57
in END SECTIONS directive, 14-67
in END SINGLE directive, 14-69

NULL function, 9-112
NULL value

for INQUIRE (BLANK), 12-10
for OPEN (BLANK), 12-26

Null values
in list-directed records, 10-16
in namelist records, 10-19

NULLIFY statement, 6-8
examples of, 6-8

NUM_THREADS clause
in PARALLEL directive, 14-63
in PARALLEL DO directive, 14-65

NUMARG function, 9-66
NUMBER specifier

in INQUIRE statements, 12-15
Numerals

in character set, 2-5
Numeric and logical type declaration statements, 5-6
Numeric assignment statements, 4-17
Numeric constants

alternative ways to represent, 3-28, 3-29, 3-30
complex, 3-11
integer, 3-4
nondecimal, 3-28
real, 3-7

Numeric editing
general rules for, 11-8

Numeric expressions, 4-2
effects of parentheses within, 4-4
examples of, 4-3
in relational expressions, 4-7
operator precedence in, 4-3
order of evaluation in, 4-3
ranking of data types in, 4-5
rules for typing of, 4-5
using in FORMAT statements, 11-41

Numeric functions
categories of, 9-4
models defining, D-1

Numeric models
integer, D-2
querying parameters in, 9-64, 9-114, 9-143
real, D-3

Numeric nondecimal constants, 3-28
data type of, 3-31
See also Nondecimal numeric constants

Numeric operators
in expressions, 4-2

Numeric storage unit, 15-13
Numeric values

size limits for A editing, 11-28

O
O edit descriptor, 11-12

input processing, 11-12
output processing, 11-12

OBJCOMMENT directive, 14-26
example of, 14-27

Object file
directive specifying library search path for, 14-26
See also Object module
See also your user’s guide

Object libraries
searching for block data program units in, 8-11

Object module
identifying with compiler directives, 14-20
See also Object file

Obsolescent features
in Fortran 90, A-3
in Fortran 95, A-2

Octal constants, 3-29
alternative syntax for, B-10
assigning with DATA statement, 5-25
data type assignments of, 3-31
examples of, 3-29

Octal values
transferring, 11-12
Index-43

Intel Fortran Language Reference
OLD value
for OPEN (STATUS), 12-39

OMP_SCHEDULE environment variable, 14-56
ONLY keyword

in USE statement, 8-8
OPEN statements, 12-20

ACCESS specifier in, 12-24
ACTION specifier in, 12-25
ASSOCIATEVARIABLE specifier in, 12-25
BLANK specifier in, 12-26
BLOCKSIZE specifier in, 12-26
BUFFERCOUNT specifier in, 12-26
BUFFERED specifier in, 12-27
CARRIAGECONTROL specifier in, 12-28
CONVERT specifier in, 12-28
DEFAULTFILE specifier in, 12-30
defaults for specifiers, 12-20
DELIM specifier in, 12-30
DISPOSE specifier in, 12-31
examples of, 12-24
FILE specifier in, 12-20, 12-32
FORM specifier in, 12-32
general description of, 12-20
general rules for, 12-23
IOFOCUS specifier in (W*32, W*64), 12-33
MAXREC specifier in, 12-33
MODE specifier in, 12-33
NAME specifier in, 12-33
ORGANIZATION specifier in, 12-34
PAD specifier in, 12-34
POSITION specifier in, 12-35
READONLY specifier in, 12-35
RECL specifier in, 12-36
RECORDSIZE specifier in, 12-37
RECORDTYPE specifier in, 12-37
See also your user’s guide
SHARE specifier in (W*32, W*64), 12-38
SHARED specifier in, 12-39
STATUS specifier in, 12-39
TITLE specifier in (W*32, W*64), 12-40
TYPE specifier in, 12-40
USEROPEN specifier in, 12-40

OPENED specifier
in INQUIRE statements, 12-15

OpenMP* Fortran clauses and options
COPYIN, 14-44
COPYPRIVATE, 14-44
DEFAULT, 14-45
DEFAULT NONE, 14-45
DEFAULT PRIVATE, 14-45
DEFAULT SHARED, 14-45
FIRSTPRIVATE, 14-46
IF, 14-62
LASTPRIVATE, 14-46
NOWAIT, 14-57, 14-67, 14-68
NUM_THREADS, 14-63
ORDERED, 14-56
PRIVATE, 14-46
REDUCTION, 14-47
SCHEDULE, 14-56
SHARED, 14-49

OpenMP* Fortran compiler directives, 14-42
ATOMIC, 14-52
BARRIER, 14-53
categories of, 14-43
conditional compilation of, 14-49
CRITICAL, 14-54
data scope attribute clauses for, 14-44
DO, 14-55
examples of, 14-43
FLUSH, 14-59
MASTER, 14-60
nesting and binding rules for, 14-50
ORDERED, 14-61
PARALLEL, 14-62
PARALLEL DO, 14-64
PARALLEL SECTIONS, 14-66
SECTION, 14-67
SECTIONS, 14-67
SINGLE, 14-68
syntax of prefix, 14-1
THREADPRIVATE, 14-69

OpenMP* Fortran library routines, E-25
Operands, 4-1

and binary operators, 4-3
and unary operators, 4-3
operating on pair of operands, 4-3
operating on single operand, 4-3
Index-44

Index
Operations
character, 4-6
complex, 4-6
conversion to higher precision, 4-6
defined, 4-10, 8-50
integer

conventions for determining, 4-6
numeric, 4-2
real

conventions for determining, 4-6
relational, 4-7

OPERATOR interface specifier
for functions, 4-10, 8-47, 8-50

Operators, 4-1
character, 4-6
defined, 4-10
exponential

in initialization expressions, 4-13
extended intrinsic

properties of, 8-51
logical, 4-8
numeric, 4-2
operating on pair of operands, 4-3
operating on single operand, 4-3
precedence in

logical expressions, 4-11
numeric expressions, 4-3
relational expressions, 4-7

scope of, 15-2
Optimization

preventing with VOLATILE statement, 5-57
See also your user’s guide
specified by ATOMIC directive, 14-52
specified by SWP and NOSWP directives (i64), 14-37
specified by UNROLL and NOUNROLL directives,

14-39
Optional arguments, 8-32

examples of, 8-33
function returning presence of, 9-115
interface for, 8-33

OPTIONAL attribute and statement, 5-46, 8-32
attributes compatible with, 5-5
examples of, 5-47

OPTIONS directive, 14-27
example of, 14-29

OPTIONS statement, 13-3
examples of, 13-4
position in program unit, 13-4

OR function, 9-76
Order of

elements in an array, 3-39
statements, 2-2
subscript progression, 3-39

ORDERED clause, 14-56
in DO directive, 14-55
in PARALLEL DO directive, 14-65

ORDERED directive, 14-61
example of, 14-62

ORGANIZATION specifier
in INQUIRE statements, 12-16
in OPEN statements, 12-34

Output statements, 10-29
PRINT and TYPE, 10-38
REWRITE, 10-39
WRITE, 10-29

P
P edit descriptor, 11-34

input processing, 11-34
output processing, 11-35

PACK directive, 14-30
example of, 14-30

PACK function, 9-113
Packed array

function creating, 9-113
PAD specifier

in INQUIRE statements, 12-16
in OPEN statements, 12-34

Padding
blank, 11-29, 12-34

Parallel compiler directives, 14-42
categories of, 14-43
data scope attribute clauses for, 14-44
examples of, 14-43
See also OpenMP* Fortran compiler directives

PARALLEL directive
general for loops, 14-31
Index-45

Intel Fortran Language Reference
OpenMP* Fortran, 14-62
examples of, 14-51, 14-53, 14-60, 14-64

PARALLEL DO directive, 14-64
examples of, 14-53, 14-65

Parallel execution library routines, E-25
Parallel region

copying data from the master thread in, 14-44
OpenMP directive defining, 14-62, 14-64, 14-66
specifying scope for variables in, 14-45

PARALLEL SECTIONS directive, 14-66
example of, 14-66

PARAMETER attribute and statement, 5-48
attributes compatible with, 5-5
examples of, 5-49

PARAMETER statement
alternate form of, B-8
using in record structure declarations, B-15

Parentheses
effect in

character expressions, 4-7
logical expression, 4-9
numeric expressions, 4-4

using to specify evaluation order, 4-4
Partial storage association, 15-15
Pathname

See also File name
See also your user’s guide
specifying default for OPEN statement, 12-30
specifying for INQUIRE statement, 12-7
specifying for OPEN statement, 12-32

PAUSE statement, 7-32
alternative for, A-3
default message for, 7-32
effect on Linux systems, 7-33
effect on Windows systems, 7-33
examples of, 7-33

Performance
directives affecting, 14-14, 14-27, 14-39, 14-40,

14-41
See also your user’s guide

Platform
description of, xxxi
labels, xxxi

Plus operator, 4-2
precedence of, 4-11

Pointer arguments, 8-34
requiring explicit interface, 8-46

Pointer assignment statements, 4-22
examples of, 4-22

Pointer association, 15-12
function returning, 9-28

POINTER attribute and statement, 5-50
attributes compatible with, 5-5
examples of, 5-51

POINTER statement
integer form of, B-12

Pointer targets, 5-55
dynamically allocating and deallocating, 6-1
See also Targets

Pointers
allocation of targets, 6-2, 6-4
array, 5-16
as arguments, 8-34
as automatic or static variables, 5-20
as variables, 4-16
assigning values to targets of, 4-16
assignment of, 4-22
associating with targets, 5-55
association of, 4-22, 8-34
association status of, 15-12
association with targets, 4-16
CRAY-style, B-12
deallocation of targets, 6-5, 6-7
disassociating from targets, 4-22, 6-1
examples of, 5-51
Fortran 95/90, 5-50
function returning association status of, 9-28
function returning disassociated, 9-112
in I/O lists, 10-9
initializing, 9-112
integer, B-12
nullifying, 4-22, 6-8
referencing, 5-50
volatile, 5-57

POPCNT function, 9-114
POPPAR function, 9-114
Index-46

Index
Portability
features for older Fortran programs, B-1
routines for, E-2

See also your Libraries Reference
Portability routines, E-2
POSITION specifier

in INQUIRE statements, 12-16
in OPEN statements, 12-35

Positional editing (T,TL,TR,X), 11-31
T, 11-31
TL, 11-32
TR, 11-32
X, 11-32

POSIX library routines, E-10
Precedence of operators

effect of parentheses on, 4-4
in logical expressions, 4-9, 4-11
in numeric expressions, 4-3
in relational expressions, 4-7

Precision
function converting to higher, 9-51, 9-119
function returning, 9-114

PRECISION function, 9-114
Predefined typing rules

for variables, 3-34
PREFETCH loop directive, 14-32
Prefetches of data

directive enabling, 14-32
subroutine performing, 9-103

PRESENT function, 5-47, 8-33, 9-115
Pretested DO statement, 7-23
Primary, 4-1

for array constructors
in initialization expressions, 4-12
in specification expressions, 4-14

PRINT statement, 10-38
example of, 10-38

PRINT value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

PRINT/DELETE value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

Printable characters, 2-6
PRIVATE attribute and statement, 5-51

attributes compatible with, 5-5
examples of, 5-52
in derived-type definition, 3-20

PRIVATE clause, 14-46
in DO directive, 14-55
in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66
in SECTIONS directive, 14-67
in SINGLE directive, 14-68

Procedure arguments, 8-30
defaults for %VAL and %REF functions, 8-43
See also Arguments

Procedure interface, 8-45
blocks, 8-47
defining generic assignment, 8-51
defining generic names, 8-49
defining generic operators, 8-50
definition of, 8-2
modules containing, 8-5
See also your user’s guide
when explicit is required, 8-46

Procedure references
requiring procedures with explicit interface, 8-46
resolving, 15-5
resolving established

generic, 15-5
specific, 15-7

resolving nonestablished, 15-8
unambiguous, 15-4

Procedures
arguments in, 8-30
declaring external, 5-38
declaring intrinsic, 5-43
defining generic assignment for, 8-51
defining generic names for, 8-49
defining generic operators for, 8-50
directive specifying properties of, 14-5
dummy, 8-37

See also Dummy procedures
elemental user-defined, 8-17
established as generic, 15-5
established as specific, 15-7
Index-47

Intel Fortran Language Reference
external, 8-28
external and dummy

using as actual arguments, 5-38
interfaces in, 8-45
internal, 8-29
intrinsic

using as actual arguments, 5-43
kinds of, 8-1
module, 8-4
nonestablished, 15-8
non-Fortran

%LOC function for, 8-44
argument list functions for, 8-43

pure, 8-14
recursive, 8-13
references to non-Fortran, 8-43
requiring explicit interface, 8-46
See also Functions
See also Subroutines

Processor time
subroutine returning, 9-42

PRODUCT function, 9-116
Product of array elements

function returning, 9-116
Program execution, 8-1

stopping, 7-35
subroutine terminating, 9-59
temporary suspension of, 7-32

PROGRAM statement, 8-2
Program structure

overview of, 2-1
Program unit

block data, 2-1, 8-10
effect of using DATA statement in, 8-11

common blocks in, 5-21
definition of, 2-1
effect of EQUIVALENCE statement on, 5-29
external subprograms, 8-12, 8-28
kinds of, 8-1
main, 8-2
modules, 8-4
order of statements in, 2-2
scope of, 15-1, 15-2
terminating, 7-25

Program unit scoping, 15-1
See also Scoping unit

Prompting
for namelist group information, 10-20

PSECT directive, 14-33
ALIGN option, 14-33
NOWRT option, 14-33
WRT option, 14-33

Pseudorandom number generator
routines, 9-120, 9-121, 9-122

Pseudorandom numbers
function returning next in sequence of, 9-120
subroutine computing single-precision, 9-122
subroutine returning, 9-121
subroutine to change or query generator of, 9-121

PUBLIC attribute and statement, 5-51
attributes compatible with, 5-5
examples of, 5-52

PURE prefix, 8-14
in FUNCTION statements, 8-18
in SUBROUTINE statements, 8-25

Pure procedures, 8-14
example of, 8-16
functions as, 8-18
in FORALL statement, 4-27
in interface blocks, 8-48
INTENT for, 8-15
subroutines as, 8-25

Q
Q editing, 11-38
QABS function, 9-18
QACOS function, 9-20
QACOSD function, 9-20
QACOSH function, 9-21
QASIN function, 9-26
QASIND function, 9-27
QASINH function, 9-27
QATAN function, 9-29
QATAN2 function, 9-30
QATAN2D function, 9-31
QATAND function, 9-31
Index-48

Index
QATANH function, 9-32
QCMPLX function, 9-117
QCONJG function, 9-37
QCOS function, 9-38
QCOSD function, 9-38
QCOSH function, 9-39
QCOTAN function, 9-39
QCOTAND function, 9-40
QDIM function, 9-49
QERF function, 9-57
QERFC function, 9-57
QEXP function, 9-59
QEXT function, 9-117
QEXTD function, 9-117
QFLOAT function, 9-118
QIMAG function, 9-22
QINT function, 9-23
QLOG function, 9-89
QLOG10 function, 9-90
QMAX1 function, 9-93
QMIN1 function, 9-99
QMOD function, 9-105
QNINT function, 9-25
QNUM function, 9-119
QREAL function, 9-119
QSIGN function, 9-132
QSIN function, 9-133
QSIND function, 9-134
QSINH function, 9-134
QSQRT function, 9-137
QTAN function, 9-140
QTAND function, 9-141
QTANH function, 9-141
Quad-precision product

function producing, 9-51
Qualification

of variable names in record structures, B-23
Question mark character (?)

as namelist prompt, 10-20

QuickWin routines (W*32, W*64), E-14
Quotation mark character (")

as delimiter for character strings, 3-15
See also Character constants
See also Character strings

QUOTE value
for INQUIRE (DELIM), 12-12
for OPEN (DELIM), 12-31

R
Radix

function returning, 9-120
in integer model, D-2
in real model, D-3

RADIX function, 9-120
RAN function, 9-120
Random number generator

function, 9-120
subroutine, 9-121
subroutine querying the seed for, 9-121

Random numbers
function returning next in sequence of, 9-120
subroutine computing as single-precision, 9-122
subroutine returning, 9-121

RANDOM_NUMBER subroutine, 9-121
See also RANDOM_SEED subroutine

RANDOM_SEED subroutine, 9-121
See also RANDOM_NUMBER subroutine

RANDU subroutine, 9-122
Range

for case values, 7-10, 7-11
for character length, 3-16
for H editing, 11-39
for parameter in control edit descriptors, 11-30
for parameters in data edit descriptors, 11-7
for repeat specifications in data edit descriptors, 11-7
for scale factor, 11-34

RANGE function, 9-123
Rank

definition of, 3-36
Ranking

of data types, 4-5
Index-49

Intel Fortran Language Reference
READ specifier
in INQUIRE statements, 12-17

READ statements, 10-13
compared to DECODE statement, B-3
compared to FIND statement, B-5
direct access, 10-24

example of, 10-25, 10-26
formatted, 10-24, 10-25
forms of, 10-24
unformatted, 10-24, 10-26

internal, 10-26
example of, 10-27
form of, 10-26

list-directed, 10-13, 10-15
example of, 10-17

namelist, 10-13, 10-18
example of, 10-21
nondelimited character strings in, 10-23

sequential, 10-13
formatted, 10-13, 10-15
forms of, 10-13
unformatted, 10-14, 10-23

READ value
for INQUIRE (ACTION), 12-9
for OPEN (ACTION), 12-25

READONLY specifier
in OPEN statements, 12-35

READWRITE specifier
in INQUIRE statements, 12-17

READWRITE value
for INQUIRE (ACTION), 12-9
for OPEN (ACTION), 12-25

Real constants
REAL(16) type, 3-10
REAL(4) type, 3-8
REAL(8) type, 3-9

Real conversion
function performing, 9-123

REAL data type, 3-6
constants, 3-7

double-precision, 3-9
quad-precision, 3-10
single-precision, 3-8

conversion in expressions, 4-6
default kind, 3-6, 3-7

directive specifying default kind, 14-35
function converting to double-precision, 9-46
function converting to quad-precision, 9-117
function converting to single-precision, 9-123
general rules for, 3-7
in type declaration statements, 5-2, 5-6
kind parameters for, 3-2
model sets for, D-3
See also REAL(4)
See also your user’s guide
storage, 15-14

Real data types, 3-6 thru 3-10
REAL directive, 14-35

example of, 14-35
Real DO control

alternative for, A-3
Real editing (F,E,EN,ES,D,G), 11-14

D, 11-16
E, 11-16
EN, 11-19
ES, 11-20
F, 11-15
G, 11-22
scale factor in, 11-34

REAL function, 9-123
Real model, D-3

function returning exponent part in, 9-60
function returning fractional part in, 9-61
function returning largest number in, 9-64
function returning number closest to unity in, 9-56
function returning smallest number in, 9-143

Real numbers
directive specifying default kind, 14-35
function returning absolute spacing of, 9-136
function returning ceiling of, 9-35
function returning class of IEEE, 9-61
function returning difference between, 9-49
function returning floor of, 9-60
function returning fractional part for model of, 9-130
function returning scale of model for, 9-127
function to determine nearest whole number, 9-25
function to truncate, 9-23
See also Real constants
See also REAL data type
Index-50

Index
Real values
transferring, 11-14, 11-15

REAL(16)
constants, 3-10
storage requirements, 15-14

REAL(4)
constants, 3-7, 3-8
storage requirements, 15-14

REAL(8)
constants, 3-7, 3-9
See also DOUBLE PRECISION data type
storage requirements, 15-14

REAL*16 constants
See REAL(16)

REAL*4 constants
See REAL(4)

REAL*8 constants
See REAL(8)

Real-time clock
subroutine returning data from, 9-139
subroutine returning data on, 9-44

REC specifier, 10-6
Reciprocal

function returning, 9-126
RECL specifier

default record lengths for, 12-37
in INQUIRE statements, 12-17
in OPEN statements, 12-36
maximum record lengths for, 12-36

Record number
identifying for data transfer, 10-6

Record specifier, 10-6
alternate form of, B-10

RECORD statement, B-21
Record structures, B-14

aggregate assignment in, B-24
example of, B-25

declarations in, B-14
directive modifying alignment of fields in, 14-27
directive specifying starting address of items in, 14-30
examples of, B-16, B-20, B-23
field names in, B-14, B-18
passing as arguments, B-15

qualifying variable names in, B-23
RECORD statement in, B-21
references to fields in, B-22

examples of, B-23
rules in using scalar field reference, B-22
statements that can use names of, B-21
substructure declarations in, B-18
type declarations in, B-18
union declarations in, B-19
using %FILL in, B-18

Record-oriented I/O, 10-9
Records

default length for OPEN(RECL), 12-37
default types upon file connection, 12-38
definition of, 10-1
deleting from relative files, 12-4
detecting deleted, 12-5
endfile, 10-2
external

See External records
formatted, 10-1
freeing locked (UNLOCK), 12-42
kinds of, 10-1
maximum length for OPEN(RECL), 12-36
unformatted, 10-2

RECORDSIZE specifier
in OPEN statements, 12-37
See also RECL specifier

RECORDTYPE specifier
defaults for, 12-38
in INQUIRE statements, 12-18
in OPEN statements, 12-37

Recursion, 8-2, 8-13
in functions, 8-18
in subroutines, 8-25
See also your user’s guide
with automatic variables, 5-19

RECURSIVE keyword
in FUNCTION statements, 8-18
in OPTIONS statements, 13-3
in subprograms, 8-13
in SUBROUTINE statements, 8-24

Recursive procedures, 8-13
REDUCTION clause, 14-47

in DO directive, 14-55
Index-51

Intel Fortran Language Reference
in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66
in SECTIONS directive, 14-67

REFERENCE
option for ATTRIBUTES directive, 14-15

References
module, 8-7
See also Function references
See also Subroutine references
to elemental intrinsic procedures, 8-42
to generic intrinsic procedures, 8-39
to generic procedures, 8-38
to non-Fortran procedures, 8-43

Relational expressions, 4-7
Relational operators, 4-7

avoiding use as field names, B-23
Relative files

associating with logical unit numbers, B-1
defining size and structure of, B-1
deleting records from, 12-4
detecting deleted records in, 12-5
freeing a record in, 12-42
See also your user’s guide

Relative spacing
function returning reciprocal of, 9-126

RELATIVE value
for INQUIRE (ORGANIZATION), 12-16
for OPEN (ORGANIZATION), 12-34

Remainder
function returning, 9-105

REPEAT function, 9-124
Repeat specification

for control edit descriptors, 11-30
for data edit descriptors, 11-2, 11-7
for groups of descriptors, 11-40
for slash editing, 11-36
for string edit descriptors, 11-39
in DATA statements, 5-24

Repeated execution
See Loops

REPLACE value
for OPEN (STATUS), 12-39

Replicated arrays
function creating, 9-136

RESHAPE function, 3-46, 9-125
Resolving references

generic, 15-5
example of, 15-6

nonestablished, 15-8
specific, 15-7

Restricted expressions
definition of, 4-13
See also Specification expressions

RESULT keyword
in ENTRY statements, 8-53, 8-55
in FUNCTION statements, 8-18, 8-23

Result variables
in ENTRY statements, 8-53
in FUNCTION statements, 8-18, 8-23

value of, 8-19
requiring explicit interface, 8-46

RETURN statement, 7-33
effect in subprograms, 7-34
examples of, 7-34
retaining data after execution of, 5-54

Reversion
format, 11-43

REWIND statement, 12-41
examples of, 12-41

REWIND value
for INQUIRE (POSITION), 12-16
for OPEN (POSITION), 12-35

REWRITE statements, 10-39
example of, 10-40

Right shift
function performing arithmetic, 9-52, 9-77, 9-131
function performing circular, 9-78
function performing logical, 9-81

RNUM function, 9-126
RRSPACING function, 9-126
RSHFT function, 9-79
RSHIFT function, 9-79
Run-time formats, 11-4
Run-time library module routines, E-1
RUNTIME schedule type, 14-56
Index-52

Index
S
S edit descriptor, 11-33
SAVE attribute and statement, 5-54

attributes compatible with, 5-5
examples of, 5-55

SAVE statement
effect of including common block in, 5-55

SAVE value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

Scalar expressions
assigning to array variables, 4-20

Scalar field references, B-22
examples of, B-23

Scalars
as array elements, 3-35, 3-38
as results of expressions, 4-1
as storage units, 15-13
as variables, 3-33
explicit typing of, 3-34
implicit typing of, 3-35
in array assignment statements, 4-20
in elemental intrinsic procedures, 9-1
in numeric expressions, 4-2
in specification expressions, 4-13
in structure constructors, 3-26

Scale factor editing, 11-34
SCALE function, 9-127
SCAN function, 9-127
SCHEDULE clause, 14-56

in DO directive, 14-56
in PARALLEL DO directive, 14-65
types

DYNAMIC, 14-56
GUIDED, 14-56
RUNTIME, 14-56
STATIC, 14-56

Schedule types
DYNAMIC, 14-56
GUIDED, 14-56
RUNTIME, 14-56
STATIC, 14-56

Scientific notation
descriptor for (ES), 11-20

Scope, 15-1 thru 15-9
definition of, 15-1
of argument keywords in procedures, 15-2
of assignment symbol, 15-2
of common blocks, 15-2
of components of derived types, 15-2
of defined assignments, 15-2
of defined operators, 15-2
of derived types, 15-2
of dummy procedures, 15-2
of external procedures, 15-2
of generic identifiers, 15-2
of I/O unit numbers, 15-2
of internal procedures, 15-2
of intrinsic assignments, 15-2
of intrinsic operators, 15-2
of intrinsic procedures, 8-39, 15-2
of labels, 15-2
of module procedures, 15-2
of named constants, 15-2
of named constructs, 15-2
of namelist group names, 15-2
of names, 15-1
of operators, 15-2
of program units, 15-2
of statement functions, 15-2
of unambiguous procedure references, 15-4

Scoping unit, 15-2
definition of, 15-2
rules for multiple USE statements in modules, 8-8
statements not allowed in, 2-3

SCRATCH value
for OPEN (STATUS), 12-39

SECNDS function, 9-128
SECTION directive, 14-67
Section subscript list, 3-35, 3-41
SECTIONS directive, 14-67

example of, 14-68
Sections of arrays, 3-41
Segmented record

definition of, 12-38
Index-53

Intel Fortran Language Reference
SEGMENTED value
for INQUIRE (RECORDTYPE), 12-18
for OPEN (RECORDTYPE), 12-37

SELECT CASE statement, 7-9
branching to, 7-13

SELECTED_INT_KIND function, 9-129
SELECTED_REAL_KIND function, 9-129
Semicolon character

as source form statement separator, 2-7
Separating

external fields, 11-29
statements in source form, 2-7

Sequence derived types, 3-20, 3-22
storage of, 15-15

Sequence number field, 2-13
restriction in tab-format source, 2-14

SEQUENCE statement, 3-20, 3-22
Sequential access

definition of, 10-2
specifying, 12-24

Sequential files
freeing a record in, 12-42
positioning

after an end-of-file record, 12-5
at beginning of preceding record, 12-2
at the beginning of the file, 12-41

See also your user’s guide
Sequential I/O statements

READ, 10-13
forms of, 10-13

WRITE, 10-29
forms of, 10-29

SEQUENTIAL specifier
in INQUIRE statements, 12-18

SEQUENTIAL value
for INQUIRE (ACCESS), 12-9
for INQUIRE (ORGANIZATION), 12-16
for OPEN (ACCESS), 12-25
for OPEN (ORGANIZATION), 12-34

SET_EXPONENT function, 9-130
SHAPE function, 9-130
Shape of array, 3-36

declaring, 5-10

function constructing different, 9-125
function returning, 9-130
in assignment statements, 4-20
statement defining, 5-17, 5-27
when determined, 6-3

SHARE specifier (W*32, W*64)
in INQUIRE statements, 12-19
in OPEN statements, 12-38

SHARED clause, 14-49
in PARALLEL directive, 14-62
in PARALLEL DO directive, 14-65
in PARALLEL SECTIONS directive, 14-66

Shared DO termination
alternative for, A-4

SHARED specifier
in OPEN statements, 12-39

Shift
function performing left, 9-52
function performing right, 9-52

Shift operations
functions performing, 9-16

SHIFTL function, 9-131
SHIFTR function, 9-131
Short field termination, 11-29
Short source lines

in fixed and tab source form, 2-11
Sign editing (S,SP,SS), 11-33

S, 11-33
SP, 11-33
SS, 11-33

SIGN function, 9-132
Significant digits

function returning number of, 9-48, 9-114
Simple list items

in I/O lists, 10-10
SIN function, 9-133
SIND function, 9-134
Sine

function returning hyperbolic, 9-134
function with argument in degrees, 9-134
function with argument in radians, 9-133

SINGLE directive, 14-68
example of, 14-69
Index-54

Index
Single-bit processing
functions performing, 9-16

SINH function, 9-134
SIZE function, 9-135
Size of array, 3-36

function returning, 9-135
SIZE specifier

for nonadvancing READs, 10-9
SIZEOF function, 9-135
Slash character (/)

as division operator, 4-2
precedence of, 4-11

as edit descriptor, 11-36
denoting common block, 5-21
preceding OPTIONS statement option, 13-4
See also Division operator

Slash editing, 11-36
SNGL function, 9-123
SNGLQ function, 9-123
Source code

allowable characters in, 2-5
debugging statements in, 2-12
fixed form of, 2-11
forms of, 2-6
free form of, 2-9
labels in, 2-8
See also Fixed source form
See also Free source form
See also Source program
See also Tab source form
See also your user’s guide
tab form of, 2-11
useable in all forms, 2-15

Source forms, 2-6 thru 2-15
coding that works in all, 2-15
differences between fixed and tab, 2-13
extensions to rules for, F-1
fixed, 2-11
free, 2-9
indicators in, 2-7
See also Fixed source form
See also Free source form
See also Tab source form
tab, 2-11

Source listing
directive specifying subtitle for header in, 14-38
directive specifying title for header in, 14-38
of included files, 13-1
See also your user’s guide

Source program
names in, 2-4
program unit in, 2-1
See also Source code
statement order in, 2-2
using D in, 2-12

SP edit descriptor, 11-33
Space

allocating for arrays and pointer targets, 6-2
deallocating for arrays and pointer targets, 6-5
disassociating for pointers, 6-8
See also Storage

Space characters
See Blank characters

SPACING function, 9-136
Special characters

in character set, 2-5
Specific names of intrinsics, 9-1
Specification expressions, 4-11, 4-13

examples of, 4-15
inquiry functions allowed in, 4-14
simplest form of, 4-13

Specification statements, 5-1 thru 5-58
disallowed in main programs, 8-3
disallowed in modules, 8-4
extensions to, F-2

SPREAD function, 9-136
SQRT function, 9-137
Square root

function returning, 9-137
SS edit descriptor, 11-33
Standards

See ANSI standard
See FIPS standard
See Fortran 90 standard
See Fortran 95 standard
See ISO standard
See MIL standard
Index-55

Intel Fortran Language Reference
Statement functions, 8-27
alternative for, A-3
definition of, 8-1, 8-27
examples of, 8-28
scope of, 15-2
See also your user’s guide

Statement labels
See Labels

Statement numbers
See Labels

Statement order
in program units, 2-2
of OPTIONS statement, 13-4

Statement scope
names having, 15-2

Statement separator
in source form, 2-7

Statements
ACCEPT, 10-28
ALLOCATABLE, 5-17
ALLOCATE, 6-2
array declaration, 5-10
ASSIGN, 7-4
assignment, 4-15

defined, 4-21
intrinsic, 4-16
pointer, 4-22

AUTOMATIC, 5-18
BACKSPACE, 12-2
BLOCK DATA, 8-10
branch, 7-2
CALL, 7-7
CASE, 7-9
CASE DEFAULT, 7-9
character type declaration, 5-8
CLOSE, 12-3
COMMON, 5-21
CONTAINS, 8-53
CONTINUE, 7-14
continuing in fixed source form, 2-11
continuing in free source form, 2-10
continuing in tab source form, 2-11
control, 7-1
CYCLE, 7-24
DATA, 5-24

DEALLOCATE, 6-5
DECODE, B-3
DEFINE FILE, B-1
DELETE, 12-4
derived-type, 3-20
derived-type declaration, 5-10
DIMENSION, 5-27
DO, 7-15
DO WHILE, 7-23
ELSE, 7-26
ELSE IF, 7-26
ELSEWHERE, 4-23
ENCODE, B-3
END, 7-25
ENDFILE, 12-5
ENTRY, 8-53
EQUIVALENCE, 5-29
executable and nonexecutable, 2-2
EXIT, 7-24
EXTERNAL, 5-38
FIND, B-5
for compatibility between language versions, B-1
FORALL, 4-26
FORMAT, 11-2
formatting, 11-1
FUNCTION, 8-18
GO TO

assigned, 7-5
computed, 7-3
unconditional, 7-2

I/O
for data transfer, 10-1
for file operations, 12-1

IF
arithmetic, 7-6
block, 7-26
logical, 7-31

IMPLICIT, 5-39
INCLUDE, 13-1
INQUIRE, 12-7
INTENT, 5-41
INTERFACE

ASSIGNMENT, 8-51
generic, 8-49
OPERATOR, 8-50

INTERFACE TO, B-5
Index-56

Index
INTRINSIC, 5-43
labels for, 2-8
MAP, B-19
MODULE, 8-4
NAMELIST, 5-45
NULLIFY, 6-8
numeric and logical type declaration, 5-6
OPEN, 12-20
OPTIONAL, 5-46
OPTIONS, 13-3
overview of, 2-2
PARAMETER, 5-48
PAUSE, 7-32
POINTER

Fortran 95/90, 5-50
Integer, B-12

PRINT, 10-38
PRIVATE, 5-51
PROGRAM, 8-2
PUBLIC, 5-51
READ, 10-13
RECORD, B-21
required order of, 2-2
restricted from scoping units, 2-3
RETURN, 7-33
REWIND, 12-41
REWRITE, 10-39
SAVE, 5-54
SELECT CASE, 7-9
separating in source form, 2-7
SEQUENCE, 3-22
specification, 5-1
statement function, 8-27
STATIC, 5-18
STOP, 7-35
STRUCTURE, B-14
SUBROUTINE, 8-24
TARGET, 5-55
terminal

See Terminal statements
type declaration, 5-2
TYPE definition, 3-20
TYPE I/O, 10-38
UNION, B-19
UNLOCK, 12-42
USE, 8-8

VIRTUAL, B-9
VOLATILE, 5-57
WHERE, 4-23
WRITE, 10-29

STATIC attribute and statement, 5-18
attributes compatible with, 5-5
examples of, 5-20

STATIC schedule type, 14-56
Static variables, 5-18
STATUS specifier

in CLOSE statements, 12-40
in OPEN statements, 12-39

STDCALL
option for ATTRIBUTES directive, 14-10

STOP statement, 7-35
effect on Linux systems, 7-35
effect on Windows systems, 7-35
examples of, 7-36

Storage
and integer pointers, B-12
association, 5-29, 15-13

full, 15-15
partial, 15-15

function allocating, 9-91
function freeing, 9-62
function returning byte size of, 9-135
function returning internal address of, 8-44, 9-89
of arrays, 3-39
requirements for intrinsic types, 15-14
sequence, 15-13
statement creating for allocatable arrays and pointer

targets, 6-2
statement defining contiguous, 5-21
statement freeing for allocatable arrays and pointer

targets, 6-5
statement preserving for derived-type components,

3-20
statement specifying shared, 5-29
statements controlling allocation of variable, 5-18
units, 15-13

Storage units
types of, 15-13

STREAM value
for INQUIRE (RECORDTYPE), 12-18
Index-57

Intel Fortran Language Reference
for OPEN (RECORDTYPE), 12-37
STREAM_CR value

for INQUIRE (RECORDTYPE), 12-18
for OPEN (RECORDTYPE), 12-37

STREAM_LF value
for INQUIRE (RECORDTYPE), 12-18
for OPEN (RECORDTYPE), 12-37

STRICT directive, 14-36
example of, 14-36

Stride
in array constructors, 3-45
in FORALL triplets, 4-26
in subscript triplets, 3-42, 3-43

String edit descriptors, 11-38 thru 11-40
repeating, 11-40
See also Character string edit descriptors

String-handling character functions, 9-4
Structure components, 3-23, 5-26

arrays as, 3-24
examples of, 3-24
in pointer assignment, 4-22

Structure constructors, 3-19, 3-26
examples of, 3-27

Structure declarations
derived type, 3-19, 3-20, 5-10
record, B-14

nesting, B-15
type declarations for, B-18
using %FILL in, B-18

STRUCTURE statement, B-14
using to initialize record fields, B-22

Structures
array, 3-35
derived-type, 3-19

array as component of, 3-21
components of, 3-19, 3-20
referencing components of, 3-23

record, B-14
See also Record structures

Subexpressions
in logical expressions, 4-10

SUBMIT value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

SUBMIT/DELETE value
for CLOSE statements, 12-3
for OPEN (DISPOSE), 12-31

Subobjects, 3-33
Subprogram arguments

associating arrays with, 15-15
using aggregate field references as, B-23

Subprograms
automatic and static variables in, 5-18
effect of RETURN statement in, 7-33
ENTRY statements in, 8-55, 8-56
external, 2-1
internal, 2-2
module, 2-1
See also Functions
See also Internal subprograms
See also Module subprograms
See also Subroutines
terminating, 7-25
using as actual arguments, 5-38, 5-43
using assumed-length character arguments in, 3-34
using AUTOMATIC or STATIC in called, 5-18

Subroutine arguments, 8-30
See also Procedure arguments

Subroutine references, 7-7, 8-25
to elemental intrinsics, 8-42
to external names, 5-39

SUBROUTINE statement, 8-24
examples of, 8-25
prefixes in, 8-25
using with ENTRY statement, 8-25

Subroutine subprograms, 8-12
See also Subprograms
See also Subroutines

Subroutines, 8-24
containing ASSIGNMENT specifier, 4-21, 8-51
definition of, 8-2
elemental user-defined, 8-17
examples of, 8-25
general rules for, 8-13
intrinsic, 9-1
invoking, 8-25
prefixes in, 8-25
pure, 8-14
recursion in, 8-13
Index-58

Index
statement declaring as external, 5-38
statement declaring as intrinsic, 5-43
statement defining, 8-24
statement referencing, 7-7
statement transferring control to, 7-7
statements excluded from, 8-25

Subscript list, 3-35, 3-38
in array sections, 3-41
referencing array elements in, 3-38

Subscript progression
order of, 3-39

Subscript triplets, 3-42
stride in, 3-42

Subscripts
order of progression, 3-39
vector, 3-43

Substrings, 3-17
function returning starting position of, 9-73
making equivalent, 5-33
See also your user’s guide

Substructure declarations, B-18
SUBTITLE directive, 14-38
Subtraction operator, 4-2

See also Unary operators
SUM function, 9-138
Sum of array elements

function returning, 9-138
SWP directive (i64), 14-37

example of, 14-37
Synchronization points

OpenMP directive identifying, 14-59
System errors

subroutine returning information on, 9-58
System subprograms

CPU_TIME, 9-42
DATE, 9-44
DATE_AND_TIME, 9-44
EXIT, 9-59
IDATE, 9-71
SECNDS, 9-128
SYSTEM_CLOCK, 9-139
TIME, 9-142

System time
function calculating in seconds, 9-128
subroutine returning, 9-142

SYSTEM_CLOCK subroutine, 9-139

T
T edit descriptor, 11-31
Tab source form, 2-11

blank characters in, 2-11
comment indicator in, 2-11
continuation character in, 2-11
debugging statement indicator in, 2-12
fields in, 2-13
labels in, 2-8
short source lines in, 2-11
statement field in, 2-13
statement separator in, 2-7

TAN function, 9-140
TAND function, 9-141
Tangent

function returning hyperbolic, 9-141
function with argument in degrees, 9-141
function with argument in radians, 9-140

TANH function, 9-141
TARGET attribute and statement, 5-55

attributes compatible with, 5-5
examples of, 5-56

Target statements
branch

See also Branch target statements
Targets

allocation of, 6-2, 6-4
as variables, 4-22
assigning values to, 4-16
associating with pointers, 4-16, 4-22, 5-55
deallocation of, 6-5, 6-7
declaration of, 5-55
disassociating from pointers, 6-1
dynamically allocating and deallocating, 6-1
requiring explicit interface, 8-46

Temporary suspension
of program execution, 7-32
Index-59

Intel Fortran Language Reference
Terminal statement
for block DO constructs, 7-16
for CASE constructs, 7-10
for IF constructs, 7-27
for nested DO constructs, 7-19
for nonblock DO constructs, 7-16

Termination
immediate

of DO constructs, 7-24
of innermost (or named) DO, 7-24
of program execution before end, 7-35
of short fields, 11-29

THREADPRIVATE directive, 14-69
example of, 14-70

Threads in a team
OpenMP directive synchronizing, 14-53

Time
function returning current in seconds, 9-128
function returning for program, 9-98
subroutines returning current, 9-44, 9-142

TIME subroutine, 9-142
TINY function, 9-143
TITLE directive, 14-38
TITLE specifier (W*32, W*64)

in OPEN statements, 12-40
TL edit descriptor, 11-32
TR edit descriptor, 11-32
TRAILZ function, 9-143
TRANSFER function, 9-144
Transfer of data, 10-2

See also Data transfer statements
Transformational functions

allowed in initialization expressions, 4-12
array

ALL, 9-23
ANY, 9-25
COUNT, 9-40
CSHIFT, 9-42
EOSHIFT, 9-54
MAXLOC, 9-95
MAXVAL, 9-97
MINLOC, 9-100
MINVAL, 9-102

PACK, 9-113
PRODUCT, 9-116
RESHAPE, 9-125
SPREAD, 9-136
SUM, 9-138
TRANSPOSE, 9-145
UNPACK, 9-147

character
REPEAT, 9-124
TRIM, 9-145

data transfer, 9-144
definition of, 9-1
numeric, 9-4

DOT_PRODUCT, 9-50
MATMUL, 9-92
SELECTED_INT_KIND, 9-129
SELECTED_REAL_KIND, 9-129

pointer
NULL, 9-112

TRANSPOSE function, 9-145
Transposed arrays

function producing, 9-145
TRIM function, 9-145
TRUE value

for INQUIRE (EXIST), 12-12
for INQUIRE (IOFOCUS), 12-14
for INQUIRE (NAMED), 12-15
for INQUIRE (OPENED), 12-16
for OPEN (IOFOCUS), 12-33

Truncation of assigned values, 4-16
Two’s complement

function returning length in, 9-72
TYPE

I/O statement, 10-38
keyword in derived type statements, 3-20, 3-21
specifier in OPEN statements, 12-40

Type declaration statements, 3-34, 5-2
array, 5-10
arrays in, 5-3
attributes in, 5-3

See also Attributes
character, 3-34, 5-8
constants in, 5-3
derived-type, 5-10
double colon separator in, 5-4
Index-60

Index
examples of, 5-5
examples of character, 5-9
examples of noncharacter, 5-7
initialization expressions in, 5-4
kind parameters in, 5-6
kind selector in, 5-3
limits within block data program unit, 8-11
numeric and logical, 5-6
specifiers in, 5-2
using to explicitly type variables, 3-34

Types
data, 3-1 thru 3-33

See also Data types

U
UBOUND function, 9-146

in pointer assignment, 5-16
Unambiguous generic references, 15-4
Unary operations, 4-3
Unary operators, 4-2

definition of, 4-3
form of defined, 8-50
precedence of, 4-11

Unconditional
DO statement, 7-15
GO TO statement, 7-2

Undeclared names, 5-39
See also Names

UNDEFINE directive, 14-17
example of, 14-17

Undefined variables, 3-33
Underscore character (_)

in names, 2-4
Unformatted data

specifying nonnative numeric, 12-11, 12-28
transfer

See also READ statements
See also WRITE statements
specifier to test for, 12-13, 12-19
specifying, 12-32

Unformatted I/O statements
READ

direct access, 10-24, 10-26

sequential, 10-14, 10-23
REWRITE, 10-39
using aggregate field references in, B-23
WRITE

direct access, 10-35, 10-36
sequential, 10-30, 10-34

Unformatted records
definition of, 10-2

UNFORMATTED specifier
in INQUIRE statements, 12-19

UNFORMATTED value
for INQUIRE (FORM), 12-13
for OPEN (FORM), 12-32

Union declarations, B-19
compared to EQUIVALENCE statement, B-20
initializing data in, B-19
size of shared area, B-20

UNION statement, B-19
using to make record fields equivalent, B-22

Unit number
assignment of, 10-4

UNIT specifier, 10-4
UNKNOWN value

for OPEN (STATUS), 12-39
UNLOCK statement, 12-42

examples of, 12-42
Unlocking records, 12-42
UNPACK function, 9-147
Unpacked array

function creating, 9-147
UNROLL directive, 14-39
Unspecified storage unit, 15-14
Upper bounds

function returning, 9-146
Uppercase letters

in character set, 2-5
treatment on compiler, 2-6

Use association, 8-7, 15-11
USE statement, 8-7, 8-8

examples of, 8-9
ONLY keyword in, 8-8
Index-61

Intel Fortran Language Reference
User-defined
data types, 3-19

See also Derived data types
elemental procedures, 8-17
pure procedures, 8-14

USEROPEN specifier
in OPEN statements, 12-40

User-written subprograms
for opening files, 12-40
types of, 8-12

V
VALUE

option for ATTRIBUTES directive, 14-15
Variable format expressions, 11-41

See also your user’s guide
VARIABLE value

for INQUIRE (RECORDTYPE), 12-18
for OPEN (RECORDTYPE), 12-37

Variables, 3-33
allocating to stack or static storage, 5-19
assigning labels to, 7-4
assigning values to, 4-16
associating with group name, 5-45
automatic and static, 5-18
controlling storage allocation and initial value of, 5-18
defining and undefining, 3-33, 4-15
directive creating symbolic, 14-17
directive generating warnings for undeclared, 14-16
DO, 7-18
explicit typing of scalar, 3-34
implicit typing of scalar, 3-35
initializing, 5-24

in DATA statement, 5-24
length

effect on character assignments, 4-19
of name, 2-4

pointers as, 4-16
public, 8-7
referencing, 4-2
saving values of, 5-54
See also your user’s guide
targets as, 4-22
truncation of values assigned to, 4-16

warnings for undeclared, 5-40, 14-16
VARYING

option for ATTRIBUTES directive, 14-16
VAXD value

for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

VAXG value
for INQUIRE (CONVERT), 12-11
for OPEN (CONVERT), 12-28

VECTOR ALIGNED directive (i32), 14-39
VECTOR ALWAYS directive (i32), 14-40

example of, 14-40
VECTOR NONTEMPORAL directive (i32), 14-41
Vector subscripts, 3-43, 4-20
VECTOR UNALIGNED directive (i32), 14-39
Vectors

function performing dot-product multiplication of,
9-50

VERIFY function, 9-148
Virtual memory

using allocatable arrays, 6-4
VIRTUAL statement, B-9

See also DIMENSION attribute and statement
VOLATILE attribute and statement, 5-57

attributes compatible with, 5-5
examples of, 5-58
See also your user’s guide

W
WARN=[NO]ALIGNMENT

OPTIONS directive option, 14-27
Warnings

directive generating for undeclared variables, 14-16
directive modifying for data alignment, 14-27
See also your user’s guide

WHERE construct and statement, 4-23
as branch target, 4-24
ELSEWHERE, 4-23
examples of, 4-24
execution of, 4-25

WHILE statement, 7-14, 7-17, 7-23
examples of, 7-23
Index-62

Index
terminating, 7-23
Whole arrays, 3-36, 3-38
Window

specifying active, 12-33
specifying title for, 12-40

WRITE specifier
in INQUIRE statements, 12-19

WRITE statements, 10-29
compared to ENCODE statement, B-3
direct access, 10-35

examples of, 10-36
formatted, 10-35, 10-36
forms of, 10-35
unformatted, 10-35, 10-36

internal, 10-36
example of, 10-37
form of, 10-36

list-directed, 10-29, 10-31
example of, 10-32

namelist, 10-29, 10-33
example of, 10-33
nondelimited character strings in, 10-23

sequential, 10-29
formatted, 10-29, 10-30
forms of, 10-29
unformatted, 10-30, 10-34

WRITE value
for INQUIRE (ACTION), 12-9
for OPEN (ACTION), 12-25

X
X edit descriptor, 11-32
XOR function, 9-71

Z
Z edit descriptor, 11-13

input processing, 11-13
output processing, 11-14

ZABS function, 9-18
ZCOS function, 9-38
Zero character

effect in statement label fields, 2-8

ZERO value
for INQUIRE (BLANK), 12-10
for OPEN (BLANK), 12-26

Zero-extend function, 9-148
Zero-length format, 11-9
Zero-size array, 3-36, 5-12

section, 3-41
ZEXP function, 9-59
ZEXT function, 9-148
ZLOG function, 9-89
ZSIN function, 9-133
ZSQRT function, 9-137
ZTAN function, 9-140
Index-63

Intel Fortran Language Reference
Index-64

	Intel® Fortran Language Reference
	Disclaimer and Legal Information
	Contents
	About This Manual
	Product Website and Support
	Related Publications
	Conventions
	Platform Labels

	1 Overview
	Language Standards Conformance
	Language Compatibility
	Fortran 2003 Features
	Improved Features

	Fortran 95 Features
	New Features
	Improved Features

	Fortran 90 Features
	New Features
	Improved Features

	2 Program Structure, Characters, and Source Forms
	Program Structure
	Statements
	Names

	Character Sets
	Source Forms
	Free Source Form
	Fixed and Tab Source Forms
	Fixed-Format Lines
	Tab-Format Lines

	Source Code Useable for All Source Forms

	3 Data Types, Constants, and Variables
	Intrinsic Data Types
	Integer Data Types
	Real Data Types
	General Rules for Real Constants
	REAL(4) Constants
	REAL(8) or DOUBLE PRECISION Constants
	REAL(16) Constants

	Complex Data Types
	General Rules for Complex Constants
	COMPLEX(4) Constants
	COMPLEX(8) or DOUBLE COMPLEX Constants
	COMPLEX(16) Constants

	Logical Data Types
	Character Data Type
	C Strings in Character Constants
	Character Substrings

	Derived Data Types
	Derived-Type Definition
	Default Initialization
	Structure Components
	Structure Constructors

	Binary, Octal, Hexadecimal, and Hollerith Constants
	Binary Constants
	Octal Constants
	Hexadecimal Constants
	Hollerith Constants
	Determining the Data Type of Nondecimal Constants

	Variables
	Data Types of Scalar Variables
	Specification of Data Type
	Implicit Typing Rules

	Arrays
	Whole Arrays
	Array Elements
	Array Sections
	Array Constructors

	4 Expressions and Assignment Statements
	Expressions
	Numeric Expressions
	Using Parentheses in Numeric Expressions
	Data Type of Numeric Expressions

	Character Expressions
	Relational Expressions
	Logical Expressions
	Data Types Resulting from Logical Operations
	Evaluation of Logical Expressions

	Defined Operations
	Summary of Operator Precedence
	Initialization and Specification Expressions
	Initialization Expressions
	Specification Expressions

	Assignment Statements
	Intrinsic Assignments
	Numeric Assignment Statements
	Logical Assignment Statements
	Character Assignment Statements
	Derived-Type Assignment Statements
	Array Assignment Statements

	Defined Assignments
	Pointer Assignments
	WHERE Statement and Construct
	FORALL Statement and Construct

	5 Specification Statements
	Type Declaration Statements
	Declaration Statements for Noncharacter Types
	Declaration Statements for Character Types
	Declaration Statements for Derived Types
	Declaration Statements for Arrays
	Explicit-Shape Specifications
	Assumed-Shape Specifications
	Assumed-Size Specifications
	Deferred-Shape Specifications

	ALLOCATABLE Attribute and Statement
	AUTOMATIC and STATIC Attributes and Statements
	COMMON Statement
	DATA Statement
	DIMENSION Attribute and Statement
	EQUIVALENCE Statement
	Making Arrays Equivalent
	Making Substrings Equivalent
	EQUIVALENCE and COMMON Interaction

	EXTERNAL Attribute and Statement
	IMPLICIT Statement
	INTENT Attribute and Statement
	INTRINSIC Attribute and Statement
	NAMELIST Statement
	OPTIONAL Attribute and Statement
	PARAMETER Attribute and Statement
	POINTER Attribute and Statement
	PRIVATE and PUBLIC Attributes and Statements
	SAVE Attribute and Statement
	TARGET Attribute and Statement
	VOLATILE Attribute and Statement

	6 Dynamic Allocation
	ALLOCATE Statement
	Allocation of Allocatable Arrays
	Allocation of Pointer Targets

	DEALLOCATE Statement
	Deallocation of Allocatable Arrays
	Deallocation of Pointer Targets

	NULLIFY Statement

	7 Execution Control
	Branch Statements
	Unconditional GO TO Statement
	Computed GO TO Statement
	The ASSIGN and Assigned GO TO Statements
	ASSIGN Statement
	Assigned GO TO Statement

	Arithmetic IF Statement

	CALL Statement
	CASE Constructs
	CONTINUE Statement
	DO Constructs
	Forms for DO Constructs
	Execution of DO Constructs
	Iteration Loop Control
	Nested DO Constructs
	Extended Range

	DO WHILE Statement
	CYCLE Statement
	EXIT Statement

	END Statement
	IF Construct and Statement
	IF Construct
	IF Statement

	PAUSE Statement
	RETURN Statement
	STOP Statement

	8 Program Units and Procedures
	Main Program
	Modules and Module Procedures
	Module References
	USE Statement

	Block Data Program Units
	Functions, Subroutines, and Statement Functions
	General Rules for Function and Subroutine Subprograms
	Recursive Procedures
	Pure Procedures
	Elemental Procedures

	Functions
	RESULT Keyword
	Function References

	Subroutines
	Statement Functions

	External Procedures
	Internal Procedures
	Argument Association
	Optional Arguments
	Array Arguments
	Pointer Arguments
	Assumed-Length Character Arguments
	Character Constant and Hollerith Arguments
	Alternate Return Arguments
	Dummy Procedure Arguments
	References to Generic Procedures
	References to Generic Intrinsic Functions
	References to Elemental Intrinsic Procedures

	References to Non-Fortran Procedures
	%REF and %VAL Argument List Functions
	%LOC Function

	Procedure Interfaces
	Determining When Procedures Require Explicit Interfaces
	Defining Explicit Interfaces
	Defining Generic Names for Procedures
	Defining Generic Operators
	Defining Generic Assignment

	CONTAINS Statement
	ENTRY Statement
	ENTRY Statements in Function Subprograms
	ENTRY Statements in Subroutine Subprograms

	9 Intrinsic Procedures
	Argument Keywords in Intrinsic Procedures
	Overview of Intrinsic Procedures
	Categories of Intrinsic Functions
	Intrinsic Subroutines
	Bit Functions

	Descriptions of Intrinsic Procedures
	ABS
	ACHAR
	ACOS
	ACOSD
	ACOSH
	ADJUSTL
	ADJUSTR
	AIMAG
	AINT
	ALL
	ALLOCATED
	ANINT
	ANY
	ASIN
	ASIND
	ASINH
	ASSOCIATED
	ATAN
	ATAN2
	ATAN2D
	ATAND
	ATANH
	BADDRESS
	BIT_SIZE
	BTEST
	CACHESIZE (i64 only)
	CEILING
	CHAR
	CMPLX
	CONJG
	COS
	COSD
	COSH
	COTAN
	COTAND
	COUNT
	CPU_TIME
	CSHIFT
	DATE
	DATE_AND_TIME
	DBLE
	DCMPLX
	DFLOAT
	DIGITS
	DIM
	DNUM
	DOT_PRODUCT
	DPROD
	DREAL
	DSHIFTL
	DSHIFTR
	EOF
	EOSHIFT
	EPSILON
	ERF
	ERFC
	ERRSNS
	EXIT
	EXP
	EXPONENT
	FLOOR
	FP_CLASS
	FRACTION
	FREE
	GETARG
	HUGE
	IACHAR
	IAND
	IARGC
	IARGPTR
	IBCHNG
	IBCLR
	IBITS
	IBSET
	ICHAR
	IDATE
	IEOR
	ILEN
	INDEX
	INT
	INT_PTR_KIND
	INUM
	IOR
	ISHA
	ISHC
	ISHFT
	ISHFTC
	ISHL
	ISNAN
	JNUM
	KIND
	LBOUND
	LEADZ
	LEN
	LEN_TRIM
	LGE
	LGT
	LLE
	LLT
	LOC
	LOG
	LOG10
	LOGICAL
	MALLOC
	MATMUL
	MAX
	MAXEXPONENT
	MAXLOC
	MAXVAL
	MCLOCK
	MERGE
	MIN
	MINEXPONENT
	MINLOC
	MINVAL
	MM_PREFETCH
	MOD
	MODULO
	MULT_HIGH (i64 only)
	MVBITS
	NARGS
	NEAREST
	NINT
	NOT
	NULL
	PACK
	POPCNT
	POPPAR
	PRECISION
	PRESENT
	PRODUCT
	QCMPLX
	QEXT
	QFLOAT
	QNUM
	QREAL
	RADIX
	RAN
	RANDOM_NUMBER
	RANDOM_SEED
	RANDU
	RANGE
	REAL
	REPEAT
	RESHAPE
	RNUM
	RRSPACING
	SCALE
	SCAN
	SECNDS
	SELECTED_INT_KIND
	SELECTED_REAL_KIND
	SET_EXPONENT
	SHAPE
	SHIFTL
	SHIFTR
	SIGN
	SIN
	SIND
	SINH
	SIZE
	SIZEOF
	SPACING
	SPREAD
	SQRT
	SUM
	SYSTEM_CLOCK
	TAN
	TAND
	TANH
	TIME
	TINY
	TRAILZ
	TRANSFER
	TRANSPOSE
	TRIM
	UBOUND
	UNPACK
	VERIFY
	ZEXT

	10 Data Transfer I/O Statements
	Records and Files
	Components of Data Transfer Statements
	I/O Control List
	Unit Specifier
	Format Specifier
	Namelist Specifier
	Record Specifier
	I/O Status Specifier
	Branch Specifiers
	Advance Specifier
	Character Count Specifier

	I/O Lists
	Simple List Items in I/O Lists
	implied-DO Lists in I/O Lists

	READ Statements
	Forms for Sequential READ Statements
	Rules for Formatted Sequential READ Statements
	Rules for List-Directed Sequential READ Statements
	Rules for Namelist Sequential READ Statements
	Rules for Unformatted Sequential READ Statements

	Forms for Direct-Access READ Statements
	Rules for Formatted Direct-Access READ Statements
	Rules for Unformatted Direct-Access READ Statements

	Forms and Rules for Internal READ Statements

	ACCEPT Statement
	WRITE Statements
	Forms for Sequential WRITE Statements
	Rules for Formatted Sequential WRITE Statements
	Rules for List-Directed Sequential WRITE Statements
	Rules for Namelist Sequential WRITE Statements
	Rules for Unformatted Sequential WRITE Statements

	Forms for Direct-Access WRITE Statements
	Rules for Formatted Direct-Access WRITE Statements
	Rules for Unformatted Direct-Access WRITE Statements

	Forms and Rules for Internal WRITE Statements

	PRINT and TYPE Statements
	REWRITE Statement

	11 I/O Formatting
	Format Specifications
	Data Edit Descriptors
	Forms for Data Edit Descriptors
	General Rules for Numeric Editing
	Integer Editing
	I Editing
	B Editing
	O Editing
	Z Editing

	Real and Complex Editing
	F Editing
	E and D Editing
	EN Editing
	ES Editing
	G Editing
	Complex Editing

	Logical Editing (L)
	Character Editing (A)
	Default Widths for Data Edit Descriptors
	Terminating Short Fields of Input Data

	Control Edit Descriptors
	Forms for Control Edit Descriptors
	Positional Editing
	T Editing
	TL Editing
	TR Editing
	X Editing

	Sign Editing
	SP Editing
	SS Editing
	S Editing

	Blank Editing
	BN Editing
	BZ Editing

	Scale Factor Editing (P)
	Slash Editing (/)
	Colon Editing (:)
	Dollar Sign ($) and Backslash (\) Editing
	Character Count Editing (Q)

	Character String Edit Descriptors
	Character Constant Editing
	H Editing

	Nested and Group Repeat Specifications
	Variable Format Expressions
	Printing of Formatted Records
	Interaction Between Format Specifications and I/O Lists

	12 File Operation I/O Statements
	BACKSPACE Statement
	CLOSE Statement
	DELETE Statement
	ENDFILE Statement
	INQUIRE Statement
	ACCESS Specifier
	ACTION Specifier
	BINARY Specifier (W*32, W*64)
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DELIM Specifier
	DIRECT Specifier
	EXIST Specifier
	FORM Specifier
	FORMATTED Specifier
	IOFOCUS Specifier (W*32, W*64)
	MODE Specifier
	NAME Specifier
	NAMED Specifier
	NEXTREC Specifier
	NUMBER Specifier
	OPENED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READ Specifier
	READWRITE Specifier
	RECL Specifier
	RECORDTYPE Specifier
	SEQUENTIAL Specifier
	SHARE Specifier (W*32, W*64)
	UNFORMATTED Specifier
	WRITE Specifier

	OPEN Statement
	ACCESS Specifier
	ACTION Specifier
	ASSOCIATEVARIABLE Specifier
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERCOUNT Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DEFAULTFILE Specifier
	DELIM Specifier
	DISPOSE Specifier
	FILE Specifier
	FORM Specifier
	IOFOCUS Specifier (W*32, W*64)
	MAXREC Specifier
	MODE Specifier
	NAME Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READONLY Specifier
	RECL Specifier
	RECORDSIZE Specifier
	RECORDTYPE Specifier
	SHARE Specifier (W*32, W*64)
	SHARED Specifier
	STATUS Specifier
	TITLE Specifier (W*32, W*64)
	TYPE Specifier
	USEROPEN Specifier

	REWIND Statement
	UNLOCK Statement

	13 Compilation Control Statements
	INCLUDE Statement
	OPTIONS Statement

	14 Directive Enhanced Compilation
	Syntax Rules for Compiler Directives
	General Compiler Directives
	Rules for General Directives that Affect DO Loops
	ALIAS Directive
	ATTRIBUTES Directive
	ATTRIBUTES ALIAS
	ATTRIBUTES ALIGN
	ATTRIBUTES ALLOCATABLE
	ATTRIBUTES ALLOW_NULL
	ATTRIBUTES ARRAY_VISUALIZER (W*32 only)
	ATTRIBUTES C and STDCALL
	ATTRIBUTES DECORATE
	ATTRIBUTES DEFAULT
	ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)
	ATTRIBUTES EXTERN
	ATTRIBUTES IGNORE_LOC
	ATTRIBUTES INLINE, NOINLINE, and FORCEDINLINE
	ATTRIBUTES NO_ARG_CHECK
	ATTRIBUTES NOMIXED_STR_LEN_ARG
	ATTRIBUTES REFERENCE and VALUE
	ATTRIBUTES VARYING

	DECLARE and NODECLARE Directives
	DEFINE and UNDEFINE Directives
	DISTRIBUTE POINT Directive
	FIXEDFORMLINESIZE Directive
	FREEFORM and NOFREEFORM Directives
	IDENT Directive
	IF and IF DEFINED Directives
	INTEGER Directive
	IVDEP Directive
	LOOP COUNT Directive
	MESSAGE Directive
	OBJCOMMENT Directive
	OPTIONS Directive
	PACK Directive
	PARALLEL and NOPARALLEL Directives
	PREFETCH and NOPREFETCH Directives
	PSECT Directive
	REAL Directive
	STRICT and NOSTRICT Directives
	SWP and NOSWP Directives (i64 only)
	TITLE and SUBTITLE Directives
	UNROLL and NOUNROLL Directives
	VECTOR ALIGNED and VECTOR UNALIGNED Directives (i32 only)
	VECTOR ALWAYS and NOVECTOR Directives (i32 only)
	VECTOR NONTEMPORAL Directive (i32 only)

	OpenMP* Fortran Compiler Directives
	Data Scope Attribute Clauses
	COPYIN Clause
	COPYPRIVATE Clause
	DEFAULT Clause
	FIRSTPRIVATE Clause
	LASTPRIVATE Clause
	PRIVATE Clause
	REDUCTION Clause
	SHARED Clause

	Conditional Compilation Rules
	Nesting and Binding Rules
	ATOMIC Directive
	BARRIER Directive
	CRITICAL Directive
	DO Directive
	FLUSH Directive
	MASTER Directive
	ORDERED Directive
	PARALLEL Directive
	PARALLEL DO Directive
	PARALLEL SECTIONS Directive
	SECTIONS Directive
	SINGLE Directive
	THREADPRIVATE Directive

	15 Scope and Association
	Scope
	Unambiguous Generic Procedure References
	Resolving Procedure References
	References to Generic Names
	References to Specific Names
	References to Nonestablished Names

	Association
	Name Association
	Argument Association
	Use and Host Association

	Pointer Association
	Storage Association
	Storage Units and Storage Sequence
	Array Association

	A Deleted and Obsolescent Language Features
	Deleted Language Features in Fortran 95
	Obsolescent Language Features in Fortran 95
	Obsolescent Language Features in Fortran 90

	B Additional Language Features
	DEFINE FILE Statement
	ENCODE and DECODE Statements
	FIND Statement
	INTERFACE TO Statement
	FORTRAN-66 Interpretation of the EXTERNAL Statement
	Alternative Syntax for the PARAMETER Statement
	VIRTUAL Statement
	Alternative Syntax for Octal and Hexadecimal Constants
	Alternative Syntax for a Record Specifier
	Alternative Syntax for the DELETE Statement
	Alternative Form for Namelist External Records
	Integer POINTER Statement
	Record Structures
	Structure Declarations
	Type Declarations
	Substructure Declarations
	Union Declarations

	RECORD Statement
	References to Record Fields
	Aggregate Assignment

	C The ASCII Character Set for Linux Systems
	The ASCII Character Set (L*X)

	D Data Representation Models
	Model for Integer Data
	Model for Real Data
	Model for Bit Data

	E Run-Time Library Routines
	Module Routines
	Portability Routines
	National Language Support Routines (W*32, W*64)
	POSIX* Routines
	QuickWin Routines (W*32, W*64)
	Graphics Routines (W*32, W*64)
	Dialog Routines (W*32)
	Miscellaneous Run-Time Routines
	COM Routines (W*32)
	AUTO Routines (W*32)

	OpenMP* Fortran Routines

	F Summary of Language Extensions
	Source Forms
	Names
	Character Sets
	Intrinsic Data Types
	Constants
	Expressions and Assignment
	Specification Statements
	Execution Control
	Compilation Control Statements
	Built-In Functions
	I/O Statements
	I/O Formatting
	File Operation Statements
	Compiler Directives
	Intrinsic Procedures
	Additional Language Features
	Run-Time Library Routines

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

