# SLATEC Common Mathematical Library -- Table of Contents

## SECTION I. User-callable Routines

Category J. Integral transforms

J1. Fast Fourier transforms
J4. Hilbert transforms
J1. Fast Fourier transforms (search class L10 for time series analysis)
FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier
Transform routines.
J1A. One-dimensional
J1A1. Real
EZFFTB-S A simplified real, periodic, backward fast Fourier
transform.
EZFFTF-S Compute a simplified real, periodic, fast Fourier forward
transform.
EZFFTI-S Initialize a work array for EZFFTF and EZFFTB.
RFFTB1-S Compute the backward fast Fourier transform of a real
CFFTB1-C coefficient array.
RFFTF1-S Compute the forward transform of a real, periodic sequence.
CFFTF1-C
RFFTI1-S Initialize a real and an integer work array for RFFTF1 and
CFFTI1-C RFFTB1.
J1A2. Complex
CFFTB1-C Compute the unnormalized inverse of CFFTF1.
RFFTB1-S
CFFTF1-C Compute the forward transform of a complex, periodic
RFFTF1-S sequence.
CFFTI1-C Initialize a real and an integer work array for CFFTF1 and
RFFTI1-S CFFTB1.
J1A3. Trigonometric (sine, cosine)
COSQB-S Compute the unnormalized inverse cosine transform.
COSQF-S Compute the forward cosine transform with odd wave numbers.
COSQI-S Initialize a work array for COSQF and COSQB.
COST-S Compute the cosine transform of a real, even sequence.
COSTI-S Initialize a work array for COST.
SINQB-S Compute the unnormalized inverse of SINQF.
SINQF-S Compute the forward sine transform with odd wave numbers.
SINQI-S Initialize a work array for SINQF and SINQB.
SINT-S Compute the sine transform of a real, odd sequence.
SINTI-S Initialize a work array for SINT.
J4. Hilbert transforms
QAWC-S The routine calculates an approximation result to a
DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
(W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
following claim for accuracy
ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
QAWCE-S The routine calculates an approximation result to a
DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
(W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
following claim for accuracy
ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
QC25C-S To compute I = Integral of F*W over (A,B) with
DQC25C-D error estimate, where W(X) = 1/(X-C)