SLATEC Common Mathematical Library -- Table of Contents


SECTION I. User-callable Routines
Category J. Integral transforms

         J1.  Fast Fourier transforms
         J4.  Hilbert transforms

J1.  Fast Fourier transforms (search class L10 for time series analysis)
 
          FFTDOC-A  Documentation for FFTPACK, a collection of Fast Fourier
                    Transform routines.
 
J1A.  One-dimensional
J1A1.  Real
 
          EZFFTB-S  A simplified real, periodic, backward fast Fourier
                    transform.
 
          EZFFTF-S  Compute a simplified real, periodic, fast Fourier forward
                    transform.
 
          EZFFTI-S  Initialize a work array for EZFFTF and EZFFTB.
 
          RFFTB1-S  Compute the backward fast Fourier transform of a real
          CFFTB1-C  coefficient array.
 
          RFFTF1-S  Compute the forward transform of a real, periodic sequence.
          CFFTF1-C
 
          RFFTI1-S  Initialize a real and an integer work array for RFFTF1 and
          CFFTI1-C  RFFTB1.
 
J1A2.  Complex
 
          CFFTB1-C  Compute the unnormalized inverse of CFFTF1.
          RFFTB1-S
 
          CFFTF1-C  Compute the forward transform of a complex, periodic
          RFFTF1-S  sequence.
 
          CFFTI1-C  Initialize a real and an integer work array for CFFTF1 and
          RFFTI1-S  CFFTB1.
 
J1A3.  Trigonometric (sine, cosine)
 
          COSQB-S   Compute the unnormalized inverse cosine transform.
 
          COSQF-S   Compute the forward cosine transform with odd wave numbers.
 
          COSQI-S   Initialize a work array for COSQF and COSQB.
 
          COST-S    Compute the cosine transform of a real, even sequence.
 
          COSTI-S   Initialize a work array for COST.
 
          SINQB-S   Compute the unnormalized inverse of SINQF.
 
          SINQF-S   Compute the forward sine transform with odd wave numbers.
 
          SINQI-S   Initialize a work array for SINQF and SINQB.
 
          SINT-S    Compute the sine transform of a real, odd sequence.
 
          SINTI-S   Initialize a work array for SINT.
 
J4.  Hilbert transforms
 
          QAWC-S    The routine calculates an approximation result to a
          DQAWC-D   Cauchy principal value I = INTEGRAL of F*W over (A,B)
                    (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
                    following claim for accuracy
                    ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
 
          QAWCE-S   The routine calculates an approximation result to a
          DQAWCE-D  CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
                    (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
                    following claim for accuracy
                    ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 
          QC25C-S   To compute I = Integral of F*W over (A,B) with
          DQC25C-D  error estimate, where W(X) = 1/(X-C)