*DECK QAGS SUBROUTINE QAGS (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL, + IER, LIMIT, LENW, LAST, IWORK, WORK) C***BEGIN PROLOGUE QAGS C***PURPOSE The routine calculates an approximation result to a given C Definite integral I = Integral of F over (A,B), C Hopefully satisfying following claim for accuracy C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)). C***LIBRARY SLATEC (QUADPACK) C***CATEGORY H2A1A1 C***TYPE SINGLE PRECISION (QAGS-S, DQAGS-D) C***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES, C EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE, C QUADPACK, QUADRATURE C***AUTHOR Piessens, Robert C Applied Mathematics and Programming Division C K. U. Leuven C de Doncker, Elise C Applied Mathematics and Programming Division C K. U. Leuven C***DESCRIPTION C C Computation of a definite integral C Standard fortran subroutine C Real version C C C PARAMETERS C ON ENTRY C F - Real C Function subprogram defining the integrand C Function F(X). The actual name for F needs to be C Declared E X T E R N A L in the driver program. C C A - Real C Lower limit of integration C C B - Real C Upper limit of integration C C EPSABS - Real C Absolute accuracy requested C EPSREL - Real C Relative accuracy requested C If EPSABS.LE.0 C And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28), C The routine will end with IER = 6. C C ON RETURN C RESULT - Real C Approximation to the integral C C ABSERR - Real C Estimate of the modulus of the absolute error, C which should equal or exceed ABS(I-RESULT) C C NEVAL - Integer C Number of integrand evaluations C C IER - Integer C IER = 0 Normal and reliable termination of the C routine. It is assumed that the requested C accuracy has been achieved. C IER.GT.0 Abnormal termination of the routine C The estimates for integral and error are C less reliable. It is assumed that the C requested accuracy has not been achieved. C ERROR MESSAGES C IER = 1 Maximum number of subdivisions allowed C has been achieved. One can allow more sub- C divisions by increasing the value of LIMIT C (and taking the according dimension C adjustments into account. However, if C this yields no improvement it is advised C to analyze the integrand in order to C determine the integration difficulties. If C the position of a local difficulty can be C determined (e.g. SINGULARITY, C DISCONTINUITY within the interval) one C will probably gain from splitting up the C interval at this point and calling the C integrator on the subranges. If possible, C an appropriate special-purpose integrator C should be used, which is designed for C handling the type of difficulty involved. C = 2 The occurrence of roundoff error is detec- C ted, which prevents the requested C tolerance from being achieved. C The error may be under-estimated. C = 3 Extremely bad integrand behaviour C occurs at some points of the integration C interval. C = 4 The algorithm does not converge. C Roundoff error is detected in the C Extrapolation table. It is presumed that C the requested tolerance cannot be C achieved, and that the returned result is C the best which can be obtained. C = 5 The integral is probably divergent, or C slowly convergent. It must be noted that C divergence can occur with any other value C of IER. C = 6 The input is invalid, because C (EPSABS.LE.0 AND C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28) C OR LIMIT.LT.1 OR LENW.LT.LIMIT*4. C RESULT, ABSERR, NEVAL, LAST are set to C zero. Except when LIMIT or LENW is C invalid, IWORK(1), WORK(LIMIT*2+1) and C WORK(LIMIT*3+1) are set to zero, WORK(1) C is set to A and WORK(LIMIT+1) TO B. C C DIMENSIONING PARAMETERS C LIMIT - Integer C Dimensioning parameter for IWORK C LIMIT determines the maximum number of subintervals C in the partition of the given integration interval C (A,B), LIMIT.GE.1. C IF LIMIT.LT.1, the routine will end with IER = 6. C C LENW - Integer C Dimensioning parameter for WORK C LENW must be at least LIMIT*4. C If LENW.LT.LIMIT*4, the routine will end C with IER = 6. C C LAST - Integer C On return, LAST equals the number of subintervals C produced in the subdivision process, determines the C number of significant elements actually in the WORK C Arrays. C C WORK ARRAYS C IWORK - Integer C Vector of dimension at least LIMIT, the first K C elements of which contain pointers C to the error estimates over the subintervals C such that WORK(LIMIT*3+IWORK(1)),... , C WORK(LIMIT*3+IWORK(K)) form a decreasing C sequence, with K = LAST IF LAST.LE.(LIMIT/2+2), C and K = LIMIT+1-LAST otherwise C C WORK - Real C Vector of dimension at least LENW C on return C WORK(1), ..., WORK(LAST) contain the left C end-points of the subintervals in the C partition of (A,B), C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain C the right end-points, C WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain C the integral approximations over the subintervals, C WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST) C contain the error estimates. C C***REFERENCES (NONE) C***ROUTINES CALLED QAGSE, XERMSG C***REVISION HISTORY (YYMMDD) C 800101 DATE WRITTEN C 890831 Modified array declarations. (WRB) C 890831 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C***END PROLOGUE QAGS