SLATEC Routines --- DSPENC ---


*DECK DSPENC
      DOUBLE PRECISION FUNCTION DSPENC (X)
C***BEGIN PROLOGUE  DSPENC
C***PURPOSE  Compute a form of Spence's integral due to K. Mitchell.
C***LIBRARY   SLATEC (FNLIB)
C***CATEGORY  C5
C***TYPE      DOUBLE PRECISION (SPENC-S, DSPENC-D)
C***KEYWORDS  FNLIB, SPECIAL FUNCTIONS, SPENCE'S INTEGRAL
C***AUTHOR  Fullerton, W., (LANL)
C***DESCRIPTION
C
C DSPENC(X) calculates the double precision Spence's integral
C for double precision argument X.  Spence's function defined by
C        integral from 0 to X of  -LOG(1-Y)/Y  DY.
C For ABS(X) .LE. 1, the uniformly convergent expansion
C        DSPENC = sum K=1,infinity  X**K / K**2     is valid.
C This is a form of Spence's integral due to K. Mitchell which differs
C from the definition in the NBS Handbook of Mathematical Functions.
C
C Spence's function can be used to evaluate much more general integral
C forms.  For example,
C        integral from 0 to Z of  LOG(A*X+B)/(C*X+D)  DX  =
C             LOG(ABS(B-A*D/C))*LOG(ABS(A*(C*X+D)/(A*D-B*C)))/C
C             - DSPENC (A*(C*Z+D)/(A*D-B*C)) / C.
C
C Ref -- K. Mitchell, Philosophical Magazine, 40, p.351 (1949).
C        Stegun and Abromowitz, AMS 55, p.1004.
C
C
C Series for SPEN       on the interval  0.          to  5.00000E-01
C                                        with weighted error   4.74E-32
C                                         log weighted error  31.32
C                               significant figures required  30.37
C                                    decimal places required  32.11
C
C***REFERENCES  (NONE)
C***ROUTINES CALLED  D1MACH, DCSEVL, INITDS
C***REVISION HISTORY  (YYMMDD)
C   780201  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   891115  Corrected third argument in reference to INITDS.  (WRB)
C   891115  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C***END PROLOGUE  DSPENC