*DECK DQC25S SUBROUTINE DQC25S (F, A, B, BL, BR, ALFA, BETA, RI, RJ, RG, RH, + RESULT, ABSERR, RESASC, INTEGR, NEV) C***BEGIN PROLOGUE DQC25S C***PURPOSE To compute I = Integral of F*W over (BL,BR), with error C estimate, where the weight function W has a singular C behaviour of ALGEBRAICO-LOGARITHMIC type at the points C A and/or B. (BL,BR) is a part of (A,B). C***LIBRARY SLATEC (QUADPACK) C***CATEGORY H2A2A2 C***TYPE DOUBLE PRECISION (QC25S-S, DQC25S-D) C***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE C***AUTHOR Piessens, Robert C Applied Mathematics and Programming Division C K. U. Leuven C de Doncker, Elise C Applied Mathematics and Programming Division C K. U. Leuven C***DESCRIPTION C C Integration rules for integrands having ALGEBRAICO-LOGARITHMIC C end point singularities C Standard fortran subroutine C Double precision version C C PARAMETERS C F - Double precision C Function subprogram defining the integrand C F(X). The actual name for F needs to be declared C E X T E R N A L in the driver program. C C A - Double precision C Left end point of the original interval C C B - Double precision C Right end point of the original interval, B.GT.A C C BL - Double precision C Lower limit of integration, BL.GE.A C C BR - Double precision C Upper limit of integration, BR.LE.B C C ALFA - Double precision C PARAMETER IN THE WEIGHT FUNCTION C C BETA - Double precision C Parameter in the weight function C C RI,RJ,RG,RH - Double precision C Modified CHEBYSHEV moments for the application C of the generalized CLENSHAW-CURTIS C method (computed in subroutine DQMOMO) C C RESULT - Double precision C Approximation to the integral C RESULT is computed by using a generalized C CLENSHAW-CURTIS method if B1 = A or BR = B. C in all other cases the 15-POINT KRONROD C RULE is applied, obtained by optimal addition of C Abscissae to the 7-POINT GAUSS RULE. C C ABSERR - Double precision C Estimate of the modulus of the absolute error, C which should equal or exceed ABS(I-RESULT) C C RESASC - Double precision C Approximation to the integral of ABS(F*W-I/(B-A)) C C INTEGR - Integer C Which determines the weight function C = 1 W(X) = (X-A)**ALFA*(B-X)**BETA C = 2 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A) C = 3 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(B-X) C = 4 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)* C LOG(B-X) C C NEV - Integer C Number of integrand evaluations C C***REFERENCES (NONE) C***ROUTINES CALLED DQCHEB, DQK15W, DQWGTS C***REVISION HISTORY (YYMMDD) C 810101 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890531 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C***END PROLOGUE DQC25S