*DECK DBESY SUBROUTINE DBESY (X, FNU, N, Y) C***BEGIN PROLOGUE DBESY C***PURPOSE Implement forward recursion on the three term recursion C relation for a sequence of non-negative order Bessel C functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive C X and non-negative orders FNU. C***LIBRARY SLATEC C***CATEGORY C10A3 C***TYPE DOUBLE PRECISION (BESY-S, DBESY-D) C***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION C***AUTHOR Amos, D. E., (SNLA) C***DESCRIPTION C C Abstract **** a double precision routine **** C DBESY implements forward recursion on the three term C recursion relation for a sequence of non-negative order Bessel C functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and C FNU+1 are obtained from DBSYNU which computes by a power C series for X .LE. 2, the K Bessel function of an imaginary C argument for 2 .LT. X .LE. 20 and the asymptotic expansion for C X .GT. 20. C C If FNU .GE. NULIM, the uniform asymptotic expansion is coded C in DASYJY for orders FNU and FNU+1 to start the recursion. C NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An C overflow test is made on the leading term of the asymptotic C expansion before any extensive computation is done. C C The maximum number of significant digits obtainable C is the smaller of 14 and the number of digits carried in C double precision arithmetic. C C Description of Arguments C C Input C X - X .GT. 0.0D0 C FNU - order of the initial Y function, FNU .GE. 0.0D0 C N - number of members in the sequence, N .GE. 1 C C Output C Y - a vector whose first N components contain values C for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N. C C Error Conditions C Improper input arguments - a fatal error C Overflow - a fatal error C C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate C or Large Orders, NPL Mathematical Tables 6, Her C Majesty's Stationery Office, London, 1962. C N. M. Temme, On the numerical evaluation of the modified C Bessel function of the third kind, Journal of C Computational Physics 19, (1975), pp. 324-337. C N. M. Temme, On the numerical evaluation of the ordinary C Bessel function of the second kind, Journal of C Computational Physics 21, (1976), pp. 343-350. C***ROUTINES CALLED D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY, C I1MACH, XERMSG C***REVISION HISTORY (YYMMDD) C 800501 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890911 Removed unnecessary intrinsics. (WRB) C 890911 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 920501 Reformatted the REFERENCES section. (WRB) C***END PROLOGUE DBESY