*DECK BESK SUBROUTINE BESK (X, FNU, KODE, N, Y, NZ) C***BEGIN PROLOGUE BESK C***PURPOSE Implement forward recursion on the three term recursion C relation for a sequence of non-negative order Bessel C functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions C EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive C X and non-negative orders FNU. C***LIBRARY SLATEC C***CATEGORY C10B3 C***TYPE SINGLE PRECISION (BESK-S, DBESK-D) C***KEYWORDS K BESSEL FUNCTION, SPECIAL FUNCTIONS C***AUTHOR Amos, D. E., (SNLA) C***DESCRIPTION C C Abstract C BESK implements forward recursion on the three term C recursion relation for a sequence of non-negative order Bessel C functions K/sub(FNU+I-1)/(X), or scaled Bessel functions C EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N for real X .GT. 0.0E0 and C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and C FNU+1 are obtained from BESKNU to start the recursion. If C FNU .GE. NULIM, the uniform asymptotic expansion is used for C orders FNU and FNU+1 to start the recursion. NULIM is 35 or C 70 depending on whether N=1 or N .GE. 2. Under and overflow C tests are made on the leading term of the asymptotic expansion C before any extensive computation is done. C C Description of Arguments C C Input C X - X .GT. 0.0E0 C FNU - order of the initial K function, FNU .GE. 0.0E0 C KODE - a parameter to indicate the scaling option C KODE=1 returns Y(I)= K/sub(FNU+I-1)/(X), C I=1,...,N C KODE=2 returns Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), C I=1,...,N C N - number of members in the sequence, N .GE. 1 C C Output C y - a vector whose first n components contain values C for the sequence C Y(I)= K/sub(FNU+I-1)/(X), I=1,...,N or C Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N C depending on KODE C NZ - number of components of Y set to zero due to C underflow with KODE=1, C NZ=0 , normal return, computation completed C NZ .NE. 0, first NZ components of Y set to zero C due to underflow, Y(I)=0.0E0, I=1,...,NZ C C Error Conditions C Improper input arguments - a fatal error C Overflow - a fatal error C Underflow with KODE=1 - a non-fatal error (NZ .NE. 0) C C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate C or Large Orders, NPL Mathematical Tables 6, Her C Majesty's Stationery Office, London, 1962. C N. M. Temme, On the numerical evaluation of the modified C Bessel function of the third kind, Journal of C Computational Physics 19, (1975), pp. 324-337. C***ROUTINES CALLED ASYIK, BESK0, BESK0E, BESK1, BESK1E, BESKNU, C I1MACH, R1MACH, XERMSG C***REVISION HISTORY (YYMMDD) C 790201 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890531 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 900326 Removed duplicate information from DESCRIPTION section. C (WRB) C 920501 Reformatted the REFERENCES section. (WRB) C***END PROLOGUE BESK