SLATEC Routines --- ASYJY ---

```*DECK ASYJY
SUBROUTINE ASYJY (FUNJY, X, FNU, FLGJY, IN, Y, WK, IFLW)
C***BEGIN PROLOGUE  ASYJY
C***SUBSIDIARY
C***PURPOSE  Subsidiary to BESJ and BESY
C***LIBRARY   SLATEC
C***TYPE      SINGLE PRECISION (ASYJY-S, DASYJY-D)
C***AUTHOR  Amos, D. E., (SNLA)
C***DESCRIPTION
C
C                 ASYJY computes Bessel functions J and Y
C               for arguments X.GT.0.0 and orders FNU.GE.35.0
C               on FLGJY = 1 and FLGJY = -1 respectively
C
C                                  INPUT
C
C      FUNJY - external function JAIRY or YAIRY
C          X - argument, X.GT.0.0E0
C        FNU - order of the first Bessel function
C      FLGJY - selection flag
C              FLGJY =  1.0E0 gives the J function
C              FLGJY = -1.0E0 gives the Y function
C         IN - number of functions desired, IN = 1 or 2
C
C                                  OUTPUT
C
C         Y  - a vector whose first in components contain the sequence
C       IFLW - a flag indicating underflow or overflow
C                    return variables for BESJ only
C      WK(1) = 1 - (X/FNU)**2 = W**2
C      WK(2) = SQRT(ABS(WK(1)))
C      WK(3) = ABS(WK(2) - ATAN(WK(2)))  or
C              ABS(LN((1 + WK(2))/(X/FNU)) - WK(2))
C            = ABS((2/3)*ZETA**(3/2))
C      WK(4) = FNU*WK(3)
C      WK(5) = (1.5*WK(3)*FNU)**(1/3) = SQRT(ZETA)*FNU**(1/3)
C      WK(6) = SIGN(1.,W**2)*WK(5)**2 = SIGN(1.,W**2)*ZETA*FNU**(2/3)
C      WK(7) = FNU**(1/3)
C
C     Abstract
C         ASYJY implements the uniform asymptotic expansion of
C         the J and Y Bessel functions for FNU.GE.35 and real
C         X.GT.0.0E0. The forms are identical except for a change
C         in sign of some of the terms. This change in sign is
C         accomplished by means of the flag FLGJY = 1 or -1. On
C         FLGJY = 1 the AIRY functions AI(X) and DAI(X) are
C         supplied by the external function JAIRY, and on
C         FLGJY = -1 the AIRY functions BI(X) and DBI(X) are
C         supplied by the external function YAIRY.
C